Lopinavir Loaded Spray Dried Liposomes with Penetration Enhancers for Cytotoxic Activity

Author(s): Mithun Maniyar*, Ashok Chandak, Chandrakant Kokare

Journal Name: Infectious Disorders - Drug Targets
Formerly Current Drug Targets - Infectious Disorders

Volume 20 , Issue 5 , 2020

Become EABM
Become Reviewer
Call for Editor


Objective: HIV protease inhibitors (HIV-PI) are the drugs utilized for the treatment of HIV. However, their effectiveness is limited due to lack of bioavailability and they need to be coadministered with another drug. In this study single lopinavir (LPV) loaded phospholipid vesicles were prepared by the spray-drying method. The LPV-loaded spray-dried powder (L-SDP) was transformed into vesicles and then entrapped in a cream base with peppermint and olive oil.

Method: It is an Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) membrane fluidity study that is used to predict oil’s effect on skin. The central composite design was used to optimize the L-SDP cream formulation. Ex-vivo drug release, skin deposition study, and cell proliferation assays were carried out using cancer cell lines of breast, lung, and skin melanoma. Analysis of DNA by flow cytometry on human breast cancer cell line MDA-MB-231 was carried out. The fluorescence microscopy, histopathological study, and in-vivo bioavailability studies were performed to measure the penetration and inertness of cream in animals.

Results: A membrane fluidity study revealed the effectiveness of oils as penetration enhancers. The L-SDP cream showed comparatively superior (%) drug deposition and permeability . Fluorescence images further confirm the penetration ability of the L-SDP cream which showed promising antiproliferative action on breast and lung cancer cells. The histopathological study demonstrates the inertness of cream while in-vivo bioavailability studies showed the many-fold increase in bioavailability of LPV.

Conclusions: The liposomal drug delivery system of LPV has the potential to expose skin to systemic circulation and is useful for treating cancer.

Keywords: Liposomes, membrane fluidity study, cell proliferation assay, flow cytometry, fluorescence microscopy, in-vivo bioavailability studies.

Mervis, J. Productivity counts--but the definition is key. Science, 2005, 309(5735), 726-726.
[http://dx.doi.org/10.1126/science.309.5735.726] [PMID: 16051784]
O’Connor, K.A.; Roth, B.L. Finding new tricks for old drugs: an efficient route for public-sector drug discovery. Nat. Rev. Drug Discov., 2005, 4(12), 1005-1014.
[http://dx.doi.org/10.1038/nrd1900] [PMID: 16341065]
Garofalo, R.S.; Orena, S.J.; Rafidi, K.; Torchia, A.J.; Stock, J.L.; Hildebrandt, A.L.; Coskran, T.; Black, S.C.; Brees, D.J.; Wicks, J.R.; McNeish, J.D.; Coleman, K.G. Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB β. J. Clin. Invest., 2003, 112(2), 197-208.
[http://dx.doi.org/10.1172/JCI16885] [PMID: 12843127]
Chow, W.A.; Jiang, C.; Guan, M. Anti-HIV drugs for cancer therapeutics: back to the future? Lancet Oncol., 2009, 10(1), 61-71.
[http://dx.doi.org/10.1016/S1470-2045(08)70334-6] [PMID: 19111246]
Ramana, L.N.; Sharma, S.; Sethuraman, S.; Ranga, U.; Krishnan, U.M. Investigation on the stability of saquinavir loaded liposomes: implication on stealth, release characteristics and cytotoxicity. Int. J. Pharm., 2012, 431(1-2), 120-129.
[http://dx.doi.org/10.1016/j.ijpharm.2012.04.054] [PMID: 22569226]
Gills, J.J.; Lopiccolo, J.; Tsurutani, J.; Shoemaker, R.H.; Best, C.J.; Abu-Asab, M.S.; Borojerdi, J.; Warfel, N.A.; Gardner, E.R.; Danish, M.; Hollander, M.C.; Kawabata, S.; Tsokos, M.; Figg, W.D.; Steeg, P.S.; Dennis, P.A. Nelfinavir, A lead HIV protease inhibitor, is a broad-spectrum, anticancer agent that induces endoplasmic reticulum stress, autophagy, and apoptosis in vitro and in vivo. Clin. Cancer Res., 2007, 13(17), 5183-5194.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0161] [PMID: 17785575]
Plastaras, J.P.; Vapiwala, N.; Ahmed, M.S.; Gudonis, D.; Cerniglia, G.J.; Feldman, M.D.; Frank, I.; Gupta, A.K. Validation and toxicity of PI3K/Akt pathway inhibition by HIV protease inhibitors in humans. Cancer Biol. Ther., 2008, 7(5), 628-635.
[http://dx.doi.org/10.4161/cbt.7.5.5728] [PMID: 18285707]
Bernstein, W.B.; Dennis, P.A. Repositioning HIV protease inhibitors as cancer therapeutics. Curr. Opin. HIV AIDS, 2008, 3(6), 666-675.
[http://dx.doi.org/10.1097/COH.0b013e328313915d] [PMID: 19373040]
Heard, I.; Tassie, J-M.; Kazatchkine, M.D.; Orth, G. Highly active antiretroviral therapy enhances regression of cervical intraepithelial neoplasia in HIV-seropositive women. AIDS, 2002, 16(13), 1799-1802.
[http://dx.doi.org/10.1097/00002030-200209060-00013] [PMID: 12218392]
Monini, P.; Sgadari, C.; Toschi, E.; Barillari, G.; Ensoli, B. Antitumour effects of antiretroviral therapy. Nat. Rev. Cancer, 2004, 4(11), 861-875.
[http://dx.doi.org/10.1038/nrc1479] [PMID: 15516959]
Patel, K.K.; Kumar, P.; Thakkar, H.P. Formulation of niosomal gel for enhanced transdermal lopinavir delivery and its comparative evaluation with ethosomal gel. AAPS PharmSciTech, 2012, 13(4), 1502-1510.
[http://dx.doi.org/10.1208/s12249-012-9871-7] [PMID: 23104306]
Molla, A.; Mo, H.; Vasavanonda, S.; Han, L.; Lin, C.T.; Hsu, A.; Kempf, D.J. In vitro antiviral interaction of lopinavir with other protease inhibitors. Antimicrob. Agents Chemother., 2002, 46(7), 2249-2253.
[http://dx.doi.org/10.1128/AAC.46.7.2249-2253.2002] [PMID: 12069982]
Barry, B.W. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur. J. Pharm. Sci., 2001, 14(2), 101-114.
[http://dx.doi.org/10.1016/S0928-0987(01)00167-1] [PMID: 11500256]
Singh, N.; Parashar, P.; Tripathi, C.B.; Kanoujia, J.; Kaithwas, G.; Saraf, S.A. Oral delivery of allopurinol niosomes in treatment of gout in animal model. J. Liposome Res., 2017, 27(2), 130-138.
[http://dx.doi.org/10.1080/08982104.2016.1174943] [PMID: 28067087]
Ascenso, A.; Salgado, A.; Euletério, C.; Praça, F.G.; Bentley, M.V.; Marques, H.C.; Oliveira, H.; Santos, C.; Simões, S. In vitro and in vivo topical delivery studies of tretinoin-loaded ultradeformable vesicles. Eur. J. Pharm. Biopharm., 2014, 88(1), 48-55.
[http://dx.doi.org/10.1016/j.ejpb.2014.05.002] [PMID: 24854884]
Uchino, T.; Lefeber, F.; Gooris, G.; Bouwstra, J. Characterization and skin permeation of ketoprofen-loaded vesicular systems. Eur. J. Pharm. Biopharm., 2014, 86(2), 156-166.
[http://dx.doi.org/10.1016/j.ejpb.2013.02.009] [PMID: 23500115]
Dubey, V.; Mishra, D.; Dutta, T.; Nahar, M.; Saraf, D.K.; Jain, N.K. Dermal and transdermal delivery of an anti-psoriatic agent via ethanolic liposomes. J. Control. Release, 2007, 123(2), 148-154.
[http://dx.doi.org/10.1016/j.jconrel.2007.08.005] [PMID: 17884226]
Dragicevic-Curic, N.; Scheglmann, D.; Albrecht, V.; Fahr, A. Temoporfin-loaded invasomes: development, characterization and in vitro skin penetration studies. J. Control. Release, 2008, 127(1), 59-69.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.013] [PMID: 18281119]
Caddeo, C.; Sales, O.D.; Valenti, D.; Saurí, A.R.; Fadda, A.M.; Manconi, M. Inhibition of skin inflammation in mice by diclofenac in vesicular carriers: liposomes, ethosomes and PEVs. Int. J. Pharm., 2013, 443(1-2), 128-136.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.041] [PMID: 23299087]
Mura, S.; Manconi, M.; Sinico, C.; Valenti, D.; Fadda, A.M. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil. Int. J. Pharm., 2009, 380(1-2), 72-79.
[http://dx.doi.org/10.1016/j.ijpharm.2009.06.040] [PMID: 19589377]
Manconi, M.; Caddeo, C.; Sinico, C.; Valenti, D.; Mostallino, M.C.; Lampis, S.; Monduzzi, M.; Fadda, A.M. Penetration enhancer-containing vesicles: composition dependence of structural features and skin penetration ability. Eur. J. Pharm. Biopharm., 2012, 82(2), 352-359.
[http://dx.doi.org/10.1016/j.ejpb.2012.06.015] [PMID: 22922162]
Joshi, S.; Cooke, J.R.N.; Chan, D.K.W.; Ellis, J.A.; Hossain, S.S.; Singh-Moon, R.P.; Wang, M.; Bigio, I.J.; Bruce, J.N.; Straubinger, R.M. Liposome size and charge optimization for intraarterial delivery to gliomas. Drug Deliv. Transl. Res., 2016, 6(3), 225-233.
[http://dx.doi.org/10.1007/s13346-016-0294-y] [PMID: 27091339]
Manca, M.L.; Zaru, M.; Manconi, M.; Lai, F.; Valenti, D.; Sinico, C.; Fadda, A.M. Glycerosomes: a new tool for effective dermal and transdermal drug delivery. Int. J. Pharm., 2013, 455(1-2), 66-74.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.060] [PMID: 23911913]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
Skalko-Basnet, N.; Pavelic, Z.; Becirevic-Lacan, M. Liposomes containing drug and cyclodextrin prepared by the one-step spray-drying method. Drug Dev. Ind. Pharm., 2000, 26(12), 1279-1284.
[http://dx.doi.org/10.1081/DDC-100102309] [PMID: 11147128]
Scognamiglio, I.; De Stefano, D.; Campani, V.; Mayol, L.; Carnuccio, R.; Fabbrocini, G.; Ayala, F.; La Rotonda, M.I.; De Rosa, G. Nanocarriers for topical administration of resveratrol: a comparative study. Int. J. Pharm., 2013, 440(2), 179-187.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.009] [PMID: 22909994]
Joshim, S.A.; Jalalpure, S.S.; Kempwade, A.A.; Peram, M.R. Fabrication and in-vivo evaluation of lipid nanocarriers based transdermal patch of colchicine. J. Drug Deliv. Sci. Technol., 2017, 41, 444-453.
Ruozi, B.; Belletti, D.; Tombesi, A.; Tosi, G.; Bondioli, L.; Forni, F.; Vandelli, M.A. AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study. Int. J. Nanomedicine, 2011, 6, 557-563.
[http://dx.doi.org/10.2147/IJN.S14615] [PMID: 21468358]
Damonte, S.P.; Selem, C.; Parente, M.E.; Ares, G.; Manzoni, A.V. Freshness evaluation of refreshing creams: influence of two types of peppermint oil and emulsion formulation. J. Cosmet. Sci., 2011, 62(6), 525-533.
[PMID: 22682397]
Maheshwari, R.G.S.; Tekade, R.K.; Sharma, P.A.; Darwhekar, G.; Tyagi, A.; Patel, R.P.; Jain, D.K. Ethosomes and ultradeformable liposomes for transdermal delivery of clotrimazole: A comparative assessment. Saudi Pharm. J., 2012, 20(2), 161-170.
[http://dx.doi.org/10.1016/j.jsps.2011.10.001] [PMID: 23960788]
Chourasia, M.K.; Kang, L.; Chan, S.Y. Nanosized ethosomes bearing ketoprofen for improved transdermal delivery. Results Pharma Sci., 2011, 1(1), 60-67.
[http://dx.doi.org/10.1016/j.rinphs.2011.10.002] [PMID: 25755983]
Wu, M.; Lao, Y.; Xu, N.; Wang, X.; Tan, H.; Fu, W.; Lin, Z.; Xu, H. Guttiferone K induces autophagy and sensitizes cancer cells to nutrient stress-induced cell death. Phytomedicine, 2015, 22(10), 902-910.
[http://dx.doi.org/10.1016/j.phymed.2015.06.008] [PMID: 26321739]
Bavarsad, N.; Akhgari, A.; Seifmanesh, S.; Salimi, A.; Rezaie, A. Statistical optimization of tretinoin-loaded penetration-enhancer vesicles (PEV) for topical delivery. Daru, 2016, 24(1), 7.
[http://dx.doi.org/10.1186/s40199-016-0142-0] [PMID: 26926453]
Jagadeeswaran, M.; Gopal, N. Pavan kumar, K.; Siva kumar, T. Quantitative Estimation of Lopinavir and Ritonavir in Tablets by RP-HPLC Method. Pharm. Anal. Acta, 2012, 03(05)
Yoshida, S.; Koike, K. Chapter One – Lipid and Membrane Dynamics in Biological Tissues—Infrared Spectroscopic Studies, 1st ed; Elsevier Inc., 2011, Vol. 13, pp. 00001-00008.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [724 - 736]
Pages: 13
DOI: 10.2174/1871526519666191008112207
Price: $65

Article Metrics

PDF: 16