Synthetic Routes to 1,4,5,6-Tetrahydropyrimidines: An Overview and Recent Advances

Author(s): Aditya Bhattacharyya*

Journal Name: Current Organic Chemistry

Volume 23 , Issue 17 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Partially reduced heterocyclic compounds such as 1,4,5,6-tetrahydropyrimidines are often found to possess interesting pharmacological properties. Yet, the synthetic routes towards such systems are less developed than their fully aromatic counterparts. In this review article, the biological significance of 1,4,5,6-tetrahydropyrimidines is discussed and the existing literature reports describing various preparative routes to access 1,4,5,6-tetrahydropyrimidine derivatives have been categorically described. The focus has been expanded to present an overview of the chronological development of the traditional synthetic routes as well as the contemporary approaches to 1,4,5,6-tetrahydropyrimidines that generally include: (i) condensation reactions of diamines with various appropriate counterparts such as carbonyl compounds, imino ethers, amidines or nitriles, condensation of amidines with 1,3-dibromopropane and α,β-unstaurated carbonyl compounds, condensation of amino alcohols; (ii) selective reduction of pyrimidines; (iii) ring expansion chemistry of cyclopropanes, aziridines, and azetidines; and (iv) miscellaneous examples such as various multicomponent reactions.

Keywords: Tetrahydropyrimidine, aziridine, azetidine, cyclopropane, condensation, domino ring-opening cyclization, ring expansion.

[1]
Shinada, T.; Ikebe, E.; Oe, K.; Namba, K.; Kawasaki, M.; Ohfune, Y. Synthesis and absolute structure of manzacidin B. Org. Lett., 2007, 9(9), 1765-1767.
[http://dx.doi.org/10.1021/ol0704789] [PMID: 17411060]
[2]
Messer, W.S., Jr; Rajeswaran, W.G.; Cao, Y.; Zhang, H.J.; el-Assadi, A.A.; Dockery, C.; Liske, J.; O’Brien, J.; Williams, F.E.; Huang, X.P.; Wroblewski, M.E.; Nagy, P.I.; Peseckis, S.M. Design and development of selective muscarinic agonists for the treatment of Alzheimer’s disease: Characterization of tetrahydropyrimidine derivatives and development of new approaches for improved affinity and selectivity for M1 receptors. Pharm. Acta Helv., 2000, 74(2-3), 135-140.
[http://dx.doi.org/10.1016/S0031-6865(99)00026-6] [PMID: 10812950]
[3]
Messer, W.S., Jr; Abuh, Y.F.; Liu, Y.; Periyasamy, S.; Ngur, D.O.; Edgar, M.A.N.; El-Assadi, A.A.; Sbeih, S.; Dunbar, P.G.; Roknich, S.; Rho, T.; Fang, Z.; Ojo, B.; Zhang, H.; Huzl, J.J., III; Nagy, P.I. Synthesis and biological characterization of 1,4,5,6-tetrahydropyrimidine and 2-amino-3,4,5,6-tetrahydropyridine derivatives as selective m1 agonists. J. Med. Chem., 1997, 40(8), 1230-1246.
[http://dx.doi.org/10.1021/jm960467d] [PMID: 9111297]
[4]
Severin, J.; Wohlfarth, A.; Galinski, E.A. The predominant role of recently discovered tetrahydropyrimidines for the osmoadaptation of halophilic eubacteria. Microbiology, 1992, 138, 1629.
[5]
Pastor, J.M.; Salvador, M.; Argandoña, M.; Bernal, V.; Reina-Bueno, M.; Csonka, L.N.; Iborra, J.L.; Vargas, C.; Nieto, J.J.; Cánovas, M. Ectoines in cell stress protection: Ues and biotechnological production. Biotechnol. Adv., 2010, 28(6), 782-801.
[http://dx.doi.org/10.1016/j.biotechadv.2010.06.005] [PMID: 20600783]
[6]
Malin, G.; Lapidot, A. Induction of synthesis of tetrahydropyrimidine derivatives in Streptomyces strains and their effect on Escherichia coli in response to osmotic and heat stress. J. Bacteriol., 1996, 178(2), 385-395.
[http://dx.doi.org/10.1128/jb.178.2.385-395.1996] [PMID: 8550457]
[7]
Inbar, L.; Lapidot, A. The structure and biosynthesis of new tetrahydropyrimidine derivatives in actinomycin D producer Streptomyces parvulus. Use of 13C- and 15N-labeled L-glutamate and 13C and 15N NMR spectroscopy. J. Biol. Chem., 1988, 263(31), 16014-16022.
[PMID: 2903148]
[8]
Bursy, J.; Kuhlmann, A.U.; Pittelkow, M.; Hartmann, H.; Jebbar, M.; Pierik, A.J.; Bremer, E. Synthesis and uptake of the compatible solutes ectoine and 5-hydroxyectoine by Streptomyces coelicolor A3(2) in response to salt and heat stresses. Appl. Environ. Microbiol., 2008, 74(23), 7286-7296.
[http://dx.doi.org/10.1128/AEM.00768-08] [PMID: 18849444]
[9]
Nair, A.C.; Jayatilleke, P.; Wang, X.; Miertus, S.; Welsh, W.J. Computational studies on tetrahydropyrimidine-2-one HIV-1 protease inhibitors: Improving three-dimensional quantitative structure-activity relationship comparative molecular field analysis models by inclusion of calculated inhibitor- and receptor-based properties. J. Med. Chem., 2002, 45(4), 973-983.
[http://dx.doi.org/10.1021/jm010417v] [PMID: 11831910]
[10]
De Lucca, G.V.; Liang, J.; De Lucca, I. Stereospecific synthesis, structure-activity relationship, and oral bioavailability of tetrahydropyrimidin-2-one HIV protease inhibitors. J. Med. Chem., 1999, 42(1), 135-152.
[http://dx.doi.org/10.1021/jm9803626] [PMID: 9888839]
[11]
Kopp, S.R.; Kotze, A.C.; McCarthy, J.S.; Traub, R.J.; Coleman, G.T. Pyrantel in small animal medicine: 30 years on. Vet. J., 2008, 178(2), 177-184.
[http://dx.doi.org/10.1016/j.tvjl.2007.06.021] [PMID: 17720556]
[12]
Lynch, M.J.; Mosher, F.R.; Levesque, W.R.; Newby, T.J. The in vitro and in vivo metabolism of morantel in cattle and toxicology species. Drug Metab. Rev., 1987, 18(2-3), 253-288.
[http://dx.doi.org/10.3109/03602538708998308] [PMID: 3330517]
[13]
Messer, W.S.; Bachmann, K.A.; Dockery, C.; El-Assadi, A.A.; Hassoun, E.; Haupt, N.; Tang, B.; Li, X. Development of CDD-0102 as a selective M1 agonist for the treatment of Alzheimer’s disease. Drug Dev. Res., 2002, 57, 200.
[http://dx.doi.org/10.1002/ddr.10153]
[14]
Ragozzino, M.E.; Artis, S.; Singh, A.; Twose, T.M.; Beck, J.E.; Messer, W.S., Jr The selective M1 muscarinic cholinergic agonist CDD-0102A enhances working memory and cognitive flexibility. J. Pharmacol. Exp. Ther., 2012, 340(3), 588-594.
[http://dx.doi.org/10.1124/jpet.111.187625] [PMID: 22135384]
[15]
Han, S.; Morrison, K.C.; Hergenrother, P.J.; Movassaghi, M. Total synthesis, stereochemical assignment, and biological activity of all known (-)-trigonoliimines. J. Org. Chem., 2014, 79(2), 473-486.
[PMID: 24127681]
[16]
Scala, F.; Fattorusso, E.; Menna, M.; Taglialatela-Scafati, O.; Tierney, M.; Kaiser, M.; Tasdemir, D. Bromopyrrole alkaloids as lead compounds against protozoan parasites. Mar. Drugs, 2010, 8(7), 2162-2174.
[http://dx.doi.org/10.3390/md8072162] [PMID: 20714430]
[17]
Namba, K.; Shinada, T.; Teramoto, T.; Ohfune, Y. Total synthesis and absolute structure of manzacidin A and C. J. Am. Chem. Soc., 2000, 122, 10708.
[http://dx.doi.org/10.1021/ja002556s]
[18]
Birman, V.B.; Li, X. Homobenzotetramisole: an effective catalyst for kinetic resolution of aryl-cycloalkanols. Org. Lett., 2008, 10(6), 1115-1118.
[http://dx.doi.org/10.1021/ol703119n] [PMID: 18278928]
[19]
Yang, X.; Birman, V.B. Homobenzotetramisole-Catalyzed kinetic resolution of α-Aryl-, α-Aryloxy-, and α-Arylthioalkanoic acids. Adv. Synth. Catal., 2009, 351(14), 2301-2304.
[http://dx.doi.org/10.1002/adsc.200900451] [PMID: 20179782]
[20]
Çetinkaya, B.; Alici, B.; Özdemir, I.; Bruneau, C.; Dixneuf, P.H. 2-Imidazoline– and 1,4,5,6-tetrahydropyrimidine–ruthenium(II) complexes and catalytic synthesis of furan. J. Organomet. Chem., 1999, 575, 187.
[21]
Mao, P.; Yang, L.; Xiao, Y.; Yuan, J.; Liu, X.; Song, M. Suzuki cross-coupling catalyzed by palladium (II) complexes bearing 1-aryl-3,4,5,6-tetrahydropyrimidine ligands. J. Organomet. Chem., 2012, 705, 39.
[22]
Martin, D.; Lassauque, N.; Donnadieu, B.; Bertrand, G. A cyclic diaminocarbene with a pyramidalized nitrogen atom: A stable N-heterocyclic carbene with enhanced electrophilicity. Angew. Chem. Int. Ed. Engl., 2012, 51(25), 6172-6175.
[PMID: 22565863]
[23]
Reddy, P.V.G.; Tabassum, S.; Blanrue, A.; Wilhelm, R. New enantiopure NHCs derived from camphor. Chem. Commun. (Camb.), 2009, 39, 5910-5912.
[http://dx.doi.org/10.1039/b911476a] [PMID: 19787138]
[24]
Yang, B-M.; Xiang, K.; Tu, Y-Q.; Zhang, S-H.; Yang, D-T.; Wang, S-H.; Zhang, F-M. Spiro-fused six-membered N-heterocyclic carbene: A new scaffold toward unique properties and activities. Chem. Commun. (Camb.), 2014, 50(54), 7163-7165.
[http://dx.doi.org/10.1039/C4CC01627K] [PMID: 24851922]
[25]
Martin, D.; Lassauque, N.; Steinmann, F.; Manuel, G.; Bertrand, G. Experimental and computational studies of anti-Bredt amidinium salts. Chemistry, 2013, 19(44), 14895-14901.
[http://dx.doi.org/10.1002/chem.201302474] [PMID: 24105742]
[26]
Hofmann, A.W. Notiz über anhydrobasen der aliphatischen diamine. Ber. Dtsch. Chem. Ges., 1888, 21, 2332.
[http://dx.doi.org/10.1002/cber.18880210228]
[27]
Haga, T.; Majima, R. Ueber einige anhydrobasen aus diaminen der fettreihe. Ber. Dtsch. Chem. Ges., 1903, 36, 333.
[http://dx.doi.org/10.1002/cber.19030360175]
[28]
Aspinall, S.R. A Synthesis of tetrahydropyrimidines. J. Am. Chem. Soc., 1940, 62, 2160.
[http://dx.doi.org/10.1021/ja01865a068]
[29]
Skinner, G.S.; Wunz, P.R. 2,5,5-Trialkyl-1,4,5,6-tetrahydropyrimidines. J. Am. Chem. Soc., 1951, 73, 3814.
[http://dx.doi.org/10.1021/ja01152a074]
[30]
Brown, D.J.; Evans, R.F. Hydropyrimidines. Part I. 1,4,5,6-Tetrahydropyrimidine and its derivatives. J. Chem. Soc., 1962, 527.
[31]
Brown, D.J.; Evans, R.F. Hydropyrimidines. Part II. A new general synthesis of substituted 1,4,5,6-tetrahydropyrimidines. J. Chem. Soc., 1962, 4039.
[32]
Brimblecombe, R.W.; Hunt, R.R.; Rickard, R.L.; Taylor, J.V. The synthesis and pharmacology of some 1,4,5,6-tetrahydropyrimidines. Br. J. Pharmacol., 1969, 37(2), 425-435.
[http://dx.doi.org/10.1111/j.1476-5381.1969.tb10579.x] [PMID: 5348429]
[33]
Butler, R.N.; Thornton, J.D.; O’Regan, C.B. Rapid synthesis and interconversions of fatty 4,5-dihydroimidazoles and fatty 1,4,5,6-tetrahydropyrimidines. Thermal cyclizations of fatty amides involving phenyl phosphorodiamidate. J. Chem. Soc., 1983, 1, 2197.
[http://dx.doi.org/10.1039/p19830002197]
[34]
Forsberg, J.H.; Spaziano, V.T.; Balasubramanian, T.M.; Liu, G.K.; Kinsley, S.A.; Duckworth, C.A.; Poteruca, J.J.; Brown, P.S.; Miller, J.L. Use of lanthanide(III) ions as catalysts for the reactions of amines with nitriles. J. Org. Chem., 1987, 52, 1017.
[http://dx.doi.org/10.1021/jo00382a009]
[35]
Koteswara Rao, V.; Babu, H.B.; Raveendra Babu, K.; Srinivasulu, D.; Naga Raju, C. Eco friendly synthesis of tetrahydropyrimidine derivatives in aqueous medium under ultrasonic irradiation. Synth. Commun., 2012, 42, 3368.
[http://dx.doi.org/10.1080/00397911.2011.582218]
[36]
An, S.; Yin, B.; Liu, P.; Li, X.; Li, C.; Li, J.; Shi, Z. Microwave-assisted cascade cycloaddition for C-N bond formation: An approach to the construction of 1,4,5,6-tetrahydropyrimidine and 2-imidazoline derivatives. Synthesis, 2013, 45, 2525.
[http://dx.doi.org/10.1055/s-0033-1339406]
[37]
Loughlin, W.A.; Jenkins, I.D.; Petersson, M.J. Cyclodehydration of N-(aminoalkyl)benzamides under mild conditions with a Hendrickson reagent analogue. J. Org. Chem., 2013, 78(14), 7356-7361.
[http://dx.doi.org/10.1021/jo401082q] [PMID: 23805907]
[38]
Pinner, A. Ueber sauerstoffreie pyrimidine. Ber. Dtsch. Chem. Ges., 1893, 26, 2122.
[http://dx.doi.org/10.1002/cber.189302602187]
[39]
Cho, H.; Shima, K.; Hayashimatsu, M.; Ohnaka, Y.; Mizuno, A.; Takeuchi, Y. Synthesis of novel dihydropyrimidines and tetrahydropyrimidines. J. Org. Chem., 1985, 50, 4227.
[http://dx.doi.org/10.1021/jo00222a009]
[40]
Weis, A.L.; Frolow, F.; Vishkautsan, R. Optically active synthons containing tetra- and dihydropyrimidine rings. J. Heterocycl. Chem., 1986, 23, 705.
[http://dx.doi.org/10.1002/jhet.5570230313]
[41]
Weis, A.L.; Zamir, D. Dihydropyrimidines. 13. Acrolein as a synthon for 6-hydroxytetrahydropyrimidines, 1,4(1,6)-dihydropyrimidines, and pyrimidines. J. Org. Chem., 1987, 52, 3421.
[http://dx.doi.org/10.1021/jo00391a047]
[42]
Madruga, C.D.C.; Clerici, E.; Marcos, A.P. Haloacetylated enol ethers: 4 [6]. Synthesis of 4-trihalomethyl-2-methylthiopyrimidines. J. Heterocycl. Chem., 1995, 32, 735.
[http://dx.doi.org/10.1002/jhet.5570320306]
[43]
Zanatta, N.; Madruga, C.C.; Marisco, P.C.; Da Rosa, L.S.; Fernandes, L.D.S.; Flores, D.C.; Flores, A.F.C.; Burrow, R.A.; Bonacorso, H.G.; Martins, M.A.P. Synthesis and structural study of a new series of 2-methylsulfanyl-tetrahydropyrimidines from β-alkoxyvinyl trihalomethyl ketones. J. Heterocycl. Chem., 2008, 45, 221.
[http://dx.doi.org/10.1002/jhet.5570450127]
[44]
Zanatta, N.; Madruga, C.C.; Marisco, P.C.; da Rosa, L.S.; da Silva, F.M.; Bonacorso, H.G.; Martins, M.A.P. Synthesis and structural study of N-methyl-2-methylthiopyrimidine derivatives from trihalomethylated enones. J. Heterocycl. Chem., 2010, 47, 1234.
[http://dx.doi.org/10.1002/jhet.425]
[45]
Yaremenko, F.; Beryozkina, T.; Khvat, A.; Svidlo, I.; Shishkin, O.; Shishkina, S.; Orlov, V. 5,7-Substituted thiazolo[2,3-a]pyrimidines: Synthesis, stereochemistry and crystal structure. J. Mol. Struct., 2008, 874, 57.
[http://dx.doi.org/10.1016/j.molstruc.2007.03.031]
[46]
Wang, J.; Sánchez-Roselló, M.; Aceña, J.L.; del Pozo, C.; Sorochinsky, A.E.; Fustero, S.; Soloshonok, V.A.; Liu, H. Fluorine in pharmaceutical industry: Fluorine-containing drugs introduced to the market in the last decade (2001-2011). Chem. Rev., 2014, 114(4), 2432-2506.
[http://dx.doi.org/10.1021/cr4002879] [PMID: 24299176]
[47]
Shaabani, A.; Rahmati, A.; Rezayan, A.H.; Khavasi, H.R. A stereoselective three-component reaction: The facile synthesis of fluorinated tetrahydropyrimido[1,2-b]benzothiazoles. J. Iran. Chem. Soc., 2011, 8, 24.
[48]
Kumar, M.; Arya, A.K.; George, J.; Arya, K.; Pardasani, R.T. DFT studied hetero-diels–alder cycloaddition for the domino synthesis of spiroheterocycles fused to benzothiazole and chromene/pyrimidine rings in aqueous media. J. Heterocycl. Chem., 2017, 54, 3418.
[http://dx.doi.org/10.1002/jhet.2964]
[49]
Fandrick, D.R.; Reinhardt, D.; Desrosiers, J-N.; Sanyal, S.; Fandrick, K.R.; Ma, S.; Grinberg, N.; Lee, H.; Song, J.J.; Senanayake, C.H. General and rapid pyrimidine condensation by addressing the rate limiting aromatization. Org. Lett., 2014, 16(11), 2834-2837.
[http://dx.doi.org/10.1021/ol500886a] [PMID: 24818876]
[50]
Zhang, Y.; Birman, V.B. Effects of Methyl substituents on the activity and enantioselectivity of homobenzotetramisole-based catalysts in the kinetic resolution of alcohols. Adv. Synth. Catal., 2009, 351(14-15), 2525-2529.
[http://dx.doi.org/10.1002/adsc.200900383] [PMID: 23807875]
[51]
Konnerth, H.; Prechtl, M.H.G. Selective hydrogenation of N-heterocyclic compounds using Ru nanocatalysts in ionic liquids. Green Chem., 2017, 19, 2762.
[http://dx.doi.org/10.1039/C7GC00513J]
[52]
Dunbar, P.G.; Durant, G.J.; Fang, Z.; Abuh, Y.F.; el-Assadi, A.A.; Ngur, D.O.; Periyasamy, S.; Hoss, W.P.; Messer, W.S., Jr Design, synthesis, and neurochemical evaluation of 5-(3-alkyl-1,2,4- oxadiazol-5-yl)-1,4,5,6-tetrahydropyrimidines as M1 muscarinic receptor agonists. J. Med. Chem., 1993, 36(7), 842-847.
[http://dx.doi.org/10.1021/jm00059a008] [PMID: 8464038]
[53]
Lovering, F.; Bikker, J.; Humblet, C. Escape from flatland: Increasing saturation as an approach to improving clinical success. J. Med. Chem., 2009, 52(21), 6752-6756.
[http://dx.doi.org/10.1021/jm901241e] [PMID: 19827778]
[54]
Saha, A.; Bhattacharyya, A.; Talukdar, R.; Ghorai, M.K. Stereospecific syntheses of enaminonitriles and β-enaminoesters via Domino Ring-Opening Cyclization (DROC) of activated cyclopropanes with pronucleophilic malononitriles. J. Org. Chem., 2018, 83(4), 2131-2144.
[http://dx.doi.org/10.1021/acs.joc.7b03033] [PMID: 29342362]
[55]
Ghorai, M.K.; Talukdar, R.; Tiwari, D.P. An efficient synthetic route to carbocyclic enaminonitriles via Lewis acid catalysed domino-ring-opening-cyclisation (DROC) of donor-acceptor cyclopropanes with malononitrile. Chem. Commun. (Camb.), 2013, 49(74), 8205-8207.
[http://dx.doi.org/10.1039/c3cc44533j] [PMID: 23925528]
[56]
Ghorai, M.K.; Talukdar, R.; Tiwari, D.P. A route to highly functionalized β-enaminoesters via a domino ring-opening cyclization/decarboxylative tautomerization sequence of donor-acceptor cyclopropanes with substituted malononitriles. Org. Lett., 2014, 16(8), 2204-2207.
[http://dx.doi.org/10.1021/ol5007218] [PMID: 24708168]
[57]
Talukdar, R.; Tiwari, D.P.; Saha, A.; Ghorai, M.K. Diastereoselective synthesis of functionalized tetrahydrocarbazoles via a domino-ring opening-cyclization of donor-acceptor cyclopropanes with substituted 2-vinylindoles. Org. Lett., 2014, 16(15), 3954-3957.
[http://dx.doi.org/10.1021/ol501763n] [PMID: 25008386]
[58]
Ganesh, V.; Sureshkumar, D.; Chandrasekaran, S. Tandem ring opening/cyclization of vinylcyclopropanes: A facile synthesis of chiral bicyclic amidines. Angew. Chem. Int. Ed. Engl., 2011, 50(26), 5878-5881.
[http://dx.doi.org/10.1002/anie.201100375] [PMID: 21560211]
[59]
Ganesh, V.; Sureshkumar, D.; Chanda, D.; Chandrasekaran, S. Bromenium-catalysed tandem ring opening/cyclisation of vinylcyclopropanes and vinylcyclobutanes: A metal-free [3+2+1]/[4+2+1] cascade for the synthesis of chiral amidines and computational investigation. Chemistry, 2012, 18(39), 12498-12511.
[http://dx.doi.org/10.1002/chem.201103556] [PMID: 22945873]
[60]
Silverberg, L.J.; Kistler, K.A.; Brobst, K.; Yennawar, H.P.; Lagalante, A.; He, G.; Ali, K.; Blatt, A.; Foster, S.; Grossman, D.; Hegel, S.; Minehan, M.; Valinsky, D.; Yeasted, J.G. Reactions of the halonium ions of carenes and pinenes: an experimental and theoretical study. Eur. J. Chem., 2015, 6, 430.
[http://dx.doi.org/10.5155/eurjchem.6.4.430-443.1307]
[61]
De, D.; Bhattacharyya, A.; Bharadwaj, P.K. Enantioselective aldol reactions in water by a proline-derived cryptand and fixation of CO2 by its exocyclic CO(II) complex. Inorg. Chem., 2017.
[62]
Hossain, A.; Bhattacharyya, A.; Reiser, O. Copper’s rapid ascent in visible-light photoredox catalysis. Science, 2019, 364(6439)eaav9713
[http://dx.doi.org/10.1126/science.aav9713] [PMID: 31048464]
[63]
Zheng, D.; Wu, J. Generation of tetrahydro-3h-indeno[2,1-d]pyrimidines by the tandem reaction of 2-(2-Alkynylphenyl)aziridines with 2-isocyanoacetates. Eur. J. Org. Chem., 2014, 2014, 767.
[http://dx.doi.org/10.1002/ejoc.201301426]
[64]
Wang, L.; Yang, D.; Li, D.; Wang, R. Catalytic enantioselective ring-opening and ring-closing reactions of 3-isothiocyanato oxindoles and N-(2-picolinoyl)aziridines. Org. Lett., 2015, 17(12), 3004-3007.
[http://dx.doi.org/10.1021/acs.orglett.5b01291] [PMID: 26030403]
[65]
Ghorai, M.K.; Shukla, D.; Bhattacharyya, A. Syntheses of chiral β- and γ-amino ethers, morpholines, and their homologues via nucleophilic ring-opening of chiral activated aziridines and azetidines. J. Org. Chem., 2012, 77(8), 3740-3753.
[http://dx.doi.org/10.1021/jo300002u] [PMID: 22448664]
[66]
Ghorai, M.K.; Sahoo, A.K.; Bhattacharyya, A. Syntheses of imidazo-, oxa-, and thiazepine ring systems via ring-opening of aziridines/Cu-catalyzed C-N/C-C bond formation. J. Org. Chem., 2014, 79(14), 6468-6479.
[http://dx.doi.org/10.1021/jo500888j] [PMID: 24955856]
[67]
Ghorai, M.K.; Shahi, C.K.; Bhattacharyya, A.; Sayyad, M.; Mal, A.; Wani, I.A.; Chauhan, N. Syntheses of Tetrahydrobenzodiazepines via SN2-Type Ring-Opening of Activated Aziridines with 2-Bromobenzylamine Followed by Copper-Powder-Mediated C−N Bond Formation. Asian J. Org. Chem., 2015, 4, 1103.
[http://dx.doi.org/10.1002/ajoc.201500224]
[68]
Bhattacharyya, A.; Kavitha, C.V.; Ghorai, M.K. Stereospecific synthesis of 2-iminothiazolidines via domino ring-opening cyclization of Activated Aziridines with Aryl- and Alkyl isothiocyanates. J. Org. Chem., 2016, 81(15), 6433-6443.
[http://dx.doi.org/10.1021/acs.joc.6b01551] [PMID: 27425856]
[69]
Ghorai, M.K.; Bhattacharyya, A.; Das, S.; Chauhan, N. Ring expansions of activated aziridines and azetidines. Top. Heterocycl. Chem., 2016, 41, 49.
[http://dx.doi.org/10.1007/7081_2015_159]
[70]
Pradhan, S.; Shahi, C.K.; Bhattacharyya, A.; Chauhan, N.; Ghorai, M.K. Syntheses of tetrahydrobenzoazepinoindoles and dihydrobenzodiazepinoindoles via ring-opening cyclization of activated aziridines with 2-(2-bromophenyl)-1h-indoles. Org. Lett., 2017, 19(13), 3438-3441.
[http://dx.doi.org/10.1021/acs.orglett.7b01397] [PMID: 28613075]
[71]
Shahi, C.K.; Bhattacharyya, A.; Nanaji, Y.; Ghorai, M.K. A Stereoselective Route to Tetrahydrobenzoxazepines and tetrahydrobenzodiazepines via ring-opening and aza-michael addition of activated aziridines with 2-hydroxyphenyl and 2-aminophenyl acrylates. J. Org. Chem., 2017, 82(1), 37-47.
[http://dx.doi.org/10.1021/acs.joc.6b01919] [PMID: 27704829]
[72]
Shahi, C.K.; Pradhan, S.; Bhattacharyya, A.; Kumar, R.; Ghorai, M.K. Accessing quinoxalines by ring-opening/cyclization/detosylation/aromatization of activated aziridines with 2-bromoanilines: Synthesis of tyrphostin AG 1296. Eur. J. Org. Chem., 2017, 2017, 3487.
[http://dx.doi.org/10.1002/ejoc.201700506]
[73]
Bhattacharyya, A.; Shahi, C.K.; Pradhan, S.; Ghorai, M.K. Stereospecific synthesis of 1,4,5,6-tetrahydropyrimidines via domino ring-opening cyclization of activated aziridines with α-acidic isocyanides. Org. Lett., 2018, 20(10), 2925-2928.
[http://dx.doi.org/10.1021/acs.orglett.8b00986] [PMID: 29738257]
[74]
Pradhan, S.; Shahi, C.K.; Bhattacharyya, A.; Ghorai, M.K. Stereoselective synthesis of 3-spiropiperidino indolenines via SN2-type ring opening of activated aziridines with 1H-indoles/Pd-catalyzed spirocyclization with propargyl carbonates. Chem. Commun. (Camb.), 2018, 54(62), 8583-8586.
[http://dx.doi.org/10.1039/C8CC04249G] [PMID: 29951688]
[75]
Bhattacharyya, A. Tetrabutylammonium hydrogen sulfate. Synlett, 2012, 23, 2142.
[http://dx.doi.org/10.1055/s-0032-1317162]
[76]
Ghorai, M.K.; Shukla, D.; Das, K. Enantioselective syntheses of morpholines and their homologues via S(N)2-type ring opening of aziridines and azetidines with haloalcohols. J. Org. Chem., 2009, 74(18), 7013-7022.
[http://dx.doi.org/10.1021/jo901297d] [PMID: 19673479]
[77]
Ghorai, M.K.; Tiwari, D.P. Lewis acid catalyzed highly stereoselective domino-ring-opening cyclization of activated aziridines with enolates: Synthesis of functionalized chiral γ-lactams. J. Org. Chem., 2010, 75(18), 6173-6181.
[http://dx.doi.org/10.1021/jo101004x] [PMID: 20707384]
[78]
Ghorai, M.K.; Sahoo, A.K.; Kumar, S. Synthetic route to chiral tetrahydroquinoxalines via ring-opening of activated aziridines. Org. Lett., 2011, 13(22), 5972-5975.
[http://dx.doi.org/10.1021/ol2023906] [PMID: 22004011]
[79]
Ghorai, M.K.; Tiwari, D.P. Enantioselective synthesis of 4,5-dihydropyrroles via domino ring-opening cyclization (DROC) of N-activated aziridines with malononitrile. J. Org. Chem., 2013, 78(6), 2617-2625.
[http://dx.doi.org/10.1021/jo302815m] [PMID: 23387394]
[80]
Pradhan, S.; Shahi, C.K.; Bhattacharyya, A.; Chauhan, N.; Ghorai, M.K. Divergent and stereospecific routes to five to eight-membered 1,3- and 1,4-di-aza-heterocycles via ring-opening cyclization of activated aziridines with aryl amines. ChemistrySelect, 2017, 2, 550.
[http://dx.doi.org/10.1002/slct.201602062]
[81]
Kok, G.P.Y.; Yang, H.; Wong, M.W.; Zhao, Y. Cu-Catalyzed [3 + 3] Cycloaddition of isocyanoacetates with aziridines and stereoselective access to α,γ-diamino acids. Org. Lett., 2018, 20(17), 5112-5115.
[http://dx.doi.org/10.1021/acs.orglett.8b01948] [PMID: 30141633]
[82]
Li, D.; Wang, L.; Zhu, H.; Bai, L.; Yang, Y.; Zhang, M.; Yang, D.; Wang, R. Catalytic asymmetric reactions of α-isocyanoacetates and meso-aziridines mediated by an in situ generated magnesium catalytic method. Org. Lett., 2019, 21(12), 4717-4720.
[http://dx.doi.org/10.1021/acs.orglett.9b01599] [PMID: 31145625]
[83]
Prasad, B.A.; Bisai, A.; Singh, V.K. 2-aryl-N-tosylazetidines as formal 1,4-dipoles for [4 + 2] cycloaddition reactions with nitriles: An easy access to the tetrahydropyrimidine derivatives. Org. Lett., 2004, 6(26), 4829-4831.
[http://dx.doi.org/10.1021/ol048161l] [PMID: 15606077]
[84]
Yadav, V.K.; Sriramurthy, V. Silylmethyl-substituted aziridine and azetidine as masked 1,3- and 1,4-dipoles for formal [3 + 2] and [4 + 2] cycloaddition reactions. J. Am. Chem. Soc., 2005, 127(47), 16366-16367.
[http://dx.doi.org/10.1021/ja055664t] [PMID: 16305202]
[85]
Ghorai, M.K.; Das, K.; Kumar, A.; Das, A. A convenient synthetic route to 2-Aryl-N-tosylazetidines and their ZnX2 (X=I, OTf) mediated regioselective nucleophilic ring opening reactions: Synthesis of γ-iodoamines and tetrahydropyrimidines. Tetrahedron Lett., 2006, 47, 5393.
[http://dx.doi.org/10.1016/j.tetlet.2006.05.058]
[86]
Ghorai, M.K.; Das, K.; Kumar, A. An efficient synthetic route to substituted tetrahydropyrimidines by Cu(OTf)2-mediated nucleophilic ring-opening followed by the [4+2] cycloaddition of N-tosylazetidines with nitriles. Tetrahedron Lett., 2009, 50, 1105.
[http://dx.doi.org/10.1016/j.tetlet.2008.12.035]
[87]
Sondhi, S.M.; Goyal, R.N.; Lahoti, A.M.; Singh, N.; Shukla, R.; Raghubir, R. Synthesis and biological evaluation of 2-thiopyrimidine derivatives. Bioorg. Med. Chem., 2005, 13(9), 3185-3195.
[http://dx.doi.org/10.1016/j.bmc.2005.02.047] [PMID: 15809154]
[88]
Kano, T.; Hashimoto, T.; Maruoka, K. Enantioselective 1,3-dipolar cycloaddition reaction between diazoacetates and α-substituted acroleins: Total synthesis of manzacidin A. J. Am. Chem. Soc., 2006, 128(7), 2174-2175.
[http://dx.doi.org/10.1021/ja056851u] [PMID: 16478146]
[89]
Tran, K.; Lombardi, P.J.; Leighton, J.L. An efficient asymmetric synthesis of manzacidin C. Org. Lett., 2008, 10(14), 3165-3167.
[http://dx.doi.org/10.1021/ol8011869] [PMID: 18572947]
[90]
Sankar, K.; Rahman, H.; Das, P.P.; Bhimireddy, E.; Sridhar, B.; Mohapatra, D.K. Practical syntheses of proposed and revised manzacidin B and their congeners. Org. Lett., 2012, 14(4), 1082-1085.
[http://dx.doi.org/10.1021/ol203466m] [PMID: 22315965]
[91]
Yoshimura, T.; Kinoshita, T.; Yoshioka, H.; Kawabata, T. Asymmetric intermolecular conjugate addition of amino acid derivatives via memory of chirality: Total synthesis of manzacidin A. Org. Lett., 2013, 15(4), 864-867.
[http://dx.doi.org/10.1021/ol303568f] [PMID: 23350911]
[92]
Nagatomo, M.; Nishiyama, H.; Fujino, H.; Inoue, M. Decarbonylative radical coupling of α-aminoacyl tellurides: Single-step preparation of γ-amino and α,β-diamino acids and rapid synthesis of gabapentin and manzacidin A. Angew. Chem. Int. Ed. Engl., 2015, 54(5), 1537-1541.
[http://dx.doi.org/10.1002/anie.201410186] [PMID: 25504989]
[93]
Wehn, P.M.; Du Bois, J. Enantioselective synthesis of the bromopyrrole alkaloids manzacidin A and C by stereospecific C-H bond oxidation. J. Am. Chem. Soc., 2002, 124(44), 12950-12951.
[http://dx.doi.org/10.1021/ja028139s] [PMID: 12405813]
[94]
Tong, T.M.T.; Soeta, T.; Suga, T.; Kawamoto, K.; Hayashi, Y.; Ukaji, Y. Formal total synthesis of manzacidin C based on asymmetric 1,3-dipolar cycloaddition of azomethine imines. J. Org. Chem., 2017, 82(4), 1969-1976.
[http://dx.doi.org/10.1021/acs.joc.6b02816] [PMID: 28092157]
[95]
Ichikawa, Y.; Okumura, K.; Matsuda, Y.; Hasegawa, T.; Nakamura, M.; Fujimoto, A.; Masuda, T.; Nakano, K.; Kotsuki, H. Synthesis of manzacidin A and C: Efficient construction of quaternary carbon stereocenters bearing nitrogen substituents. Org. Biomol. Chem., 2012, 10(3), 614-622.
[http://dx.doi.org/10.1039/C1OB06559A] [PMID: 22113586]
[96]
Lanter, J.C.; Chen, H.; Zhang, X.; Sui, Z. Asymmetric aza-Mannich reactions of sulfinimines: Scope and application to the total synthesis of a bromopyrrole alkaloid. Org. Lett., 2005, 7(26), 5905-5907.
[http://dx.doi.org/10.1021/ol0525258] [PMID: 16354096]
[97]
Oe, K.; Shinada, T.; Ohfune, Y. Short and stereoselective synthesis of manzacidins A and C, and their enantiomers. Tetrahedron Lett., 2008, 49, 7426.
[http://dx.doi.org/10.1016/j.tetlet.2008.10.074]
[98]
Drouin, C.; Woo, J.C.S.; MacKay, D.B.; Lavigne, R.M.A. Total synthesis of (±)-manzacidin D. Tetrahedron Lett., 2004, 45, 7197.
[http://dx.doi.org/10.1016/j.tetlet.2004.08.038]
[99]
Preciado, S.; Vicente-García, E.; Llabrés, S.; Luque, F.J.; Lavilla, R. Exploration of forbidden Povarov processes as a source of unexpected reactivity: A multicomponent Mannich-Ritter transformation. Angew. Chem. Int. Ed. Engl., 2012, 51(28), 6874-6877.
[http://dx.doi.org/10.1002/anie.201202927] [PMID: 22653883]
[100]
Llabrés, S.; Vicente-García, E.; Preciado, S.; Guiu, C.; Pouplana, R.; Lavilla, R.; Luque, F.J. Evolution of a multicomponent system: Computational and mechanistic studies on the chemo- and stereoselectivity of a divergent process. Chemistry, 2013, 19(40), 13355-13361.
[http://dx.doi.org/10.1002/chem.201302072] [PMID: 24078415]
[101]
Kramer, P.; Schönfeld, J.; Bolte, M.; Manolikakes, G. Stereoselective one-pot synthesis of dihydropyrimido[2,1-a]isoindole-6(2H)-ones. Org. Lett., 2018, 20(1), 178-181.
[http://dx.doi.org/10.1021/acs.orglett.7b03545] [PMID: 29278338]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 17
Year: 2019
Page: [1843 - 1856]
Pages: 14
DOI: 10.2174/1385272823666191007163310
Price: $58

Article Metrics

PDF: 22
HTML: 3
EPUB: 1
PRC: 1