Current Designs and Developments of Fucoidan-based Formulations for Cancer Therapy

Author(s): Phuong H.L. Tran, Thao T.D. Tran*

Journal Name: Current Drug Metabolism

Volume 20 , Issue 12 , 2019


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Natural nanostructure materials have been involved in antitumor drug delivery systems due to their biocompatibility, biodegradation, and bioactive properties.

Methods: These materials have contributed to advanced drug delivery systems in the roles of both bioactive compounds and delivery nanocarriers. Fucoidan, a valuable ocean material used in drug delivery systems, has been exploited in research on cancer and a variety of other diseases.

Results: Although the uniqueness, structure, properties, and health benefits of fucoidan have been mentioned in various prominent reviews, current developments and designs of fucoidan-based formulations still need to be assessed to further develop an effective anticancer therapy. In this review, current important formulations using fucoidan as a functional material and as an anticancer agent will be discussed. This article will also provide a brief principle of the methods that incorporate functional nanostructure materials in formulations exploiting fucoidan.

Conclusion: Current research and future perspectives on the use of fucoidan in anticancer therapy will advance innovative and important products for clinical uses.

Keywords: Fucoidan, drug delivery system, nanotechnology, functional nanomaterials, anticancer, nanocarriers.

[1]
Alessandri, G.; Coccè, V.; Pastorino, F.; Paroni, R.; Dei Cas, M.; Restelli, F.; Pollo, B.; Gatti, L.; Tremolada, C.; Berenzi, A.; Parati, E.; Brini, A.T.; Bondiolotti, G.; Ponzoni, M.; Pessina, A. Microfragmented human fat tissue is a natural scaffold for drug delivery: Potential application in cancer chemotherapy. J. Control. Release, 2019, 302, 2-18.
[http://dx.doi.org/10.1016/j.jconrel.2019.03.016] [PMID: 30890444]
[2]
Cheng, Y.; He, C.; Ding, J.; Xiao, C.; Zhuang, X.; Chen, X. Thermosensitive hydrogels based on polypeptides for localized and sustained delivery of anticancer drugs. Biomaterials, 2013, 34(38), 10338-10347.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.064] [PMID: 24095250]
[3]
De Souza, R.; Zahedi, P.; Allen, C.J.; Piquette-Miller, M. Polymeric drug delivery systems for localized cancer chemotherapy. Drug Deliv., 2010, 17(6), 365-375.
[http://dx.doi.org/10.3109/10717541003762854] [PMID: 20429844]
[4]
Song, W.; Musetti, S.N.; Huang, L. Nanomaterials for cancer immunotherapy. Biomaterials, 2017, 148, 16-30.
[http://dx.doi.org/10.1016/j.biomaterials.2017.09.017] [PMID: 28961532]
[5]
Ju, Y.; Dong, B.; Yu, J.; Hou, Y. Inherent multifunctional inorganic nanomaterials for imaging-guided cancer therapy. Nano Today, 2019, 26, 108-122.
[http://dx.doi.org/10.1016/j.nantod.2019.03.006]
[6]
Han, H.J.; Ekweremadu, C.; Patel, N. Advanced drug delivery system with nanomaterials for personalised medicine to treat breast cancer. J. Drug Deliv. Sci. Technol., 2019, 52, 1051-1060.
[http://dx.doi.org/10.1016/j.jddst.2019.05.024]
[7]
Nguyen, T.N.G.; Tran, V.T.; Duan, W.; Tran, P.H.L.; Tran, T.T.D. Nanoprecipitation for poorly water-soluble drugs. Curr. Drug Metab., 2017, 18(11), 1000-1015.
[http://dx.doi.org/10.2174/1389200218666171004112122] [PMID: 28982324]
[8]
Tran, P.H.L.; Duan, W.; Lee, B.J.; Tran, T.T.D. Nanogels for skin cancer therapy via transdermal delivery: Current designs. Curr. Drug Metab., 2019, 20(7), 575-582.
[http://dx.doi.org/10.2174/1389200220666190618100030] [PMID: 31237201]
[9]
Ranjan, A.; Fofaria, N.M.; Kim, S-H.; Srivastava, S.K. Modulation of signal transduction pathways by natural compounds in cancer. Chin. J. Nat. Med., 2015, 13(10), 730-742.
[http://dx.doi.org/10.1016/S1875-5364(15)30073-X] [PMID: 26481373]
[10]
Narayani, S.S.; Saravanan, S.; Ravindran, J.; Ramasamy, M.S.; Chitra, J. In vitro anticancer activity of fucoidan extracted from Sargassum cinereum against Caco-2 cells. Int. J. Biol. Macromol., 2019, 138, 618-628.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.127] [PMID: 31344415]
[11]
Chollet, L.; Saboural, P.; Chauvierre, C.; Villemin, J-N.; Letourneur, D.; Chaubet, F. Fucoidans in nanomedicine. Mar. Drugs, 2016, 14(8), 145.
[http://dx.doi.org/10.3390/md14080145] [PMID: 27483292]
[12]
January, G.G.; Naidoo, R.K.; Kirby-McCullough, B.; Bauer, R. Assessing methodologies for fucoidan extraction from South African brown algae. Algal Res., 2019, 40, 101517.
[http://dx.doi.org/10.1016/j.algal.2019.101517]
[13]
Peng, Y.; Song, Y.; Wang, Q.; Hu, Y.; He, Y.; Ren, D.; Wu, L.; Liu, S.; Cong, H.; Zhou, H. In vitro and in vivo immunomodulatory effects of fucoidan compound agents. Int. J. Biol. Macromol., 2019, 127, 48-56.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.197] [PMID: 30593813]
[14]
Zayed, A.; Hahn, T.; Finkelmeier, D.; Burger-Kentischer, A.; Rupp, S.; Krämer, R.; Ulber, R. Phenomenological investigation of the cytotoxic activity of fucoidan isolated from Fucus vesiculosus. Process Biochem., 2019, 81, 182-187.
[http://dx.doi.org/10.1016/j.procbio.2019.03.026]
[15]
Usoltseva, R.V.; Shevchenko, N.M.; Malyarenko, O.S.; Anastyuk, S.D.; Kasprik, A.E.; Zvyagintsev, N.V.; Ermakova, S.P. Fucoidans from brown algae Laminaria longipes and Saccharina cichorioides: Structural characteristics, anticancer and radiosensitizing activity in vitro. Carbohydr. Polym., 2019, 221, 157-165.
[http://dx.doi.org/10.1016/j.carbpol.2019.05.079] [PMID: 31227154]
[16]
Somasundaram, S.N.; Shanmugam, S.; Subramanian, B.; Jaganathan, R. Cytotoxic effect of fucoidan extracted from Sargassum cinereum on colon cancer cell line HCT-15. Int. J. Biol. Macromol., 2016, 91, 1215-1223.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.084] [PMID: 27370748]
[17]
Heeba, G.H.; Morsy, M.A. Fucoidan ameliorates steatohepatitis and insulin resistance by suppressing oxidative stress and inflammatory cytokines in experimental non-alcoholic fatty liver disease. Environ. Toxicol. Pharmacol., 2015, 40(3), 907-914.
[http://dx.doi.org/10.1016/j.etap.2015.10.003] [PMID: 26498267]
[18]
Rui, X.; Pan, H-F.; Shao, S-L.; Xu, X-M. Anti-tumor and anti-angiogenic effects of fucoidan on prostate cancer: Possible JAK-STAT3 pathway. BMC Complement. Altern. Med., 2017, 17(1), 378.
[http://dx.doi.org/10.1186/s12906-017-1885-y] [PMID: 28764703]
[19]
Shen, H.Y.; Li, L.Z.; Xue, K.C.; Hu, D.D.; Gao, Y.J. Antitumor activity of fucoidan in anaplastic thyroid cancer via apoptosis and anti-angiogenesis. Mol. Med. Rep., 2017, 15(5), 2620-2624.
[http://dx.doi.org/10.3892/mmr.2017.6338] [PMID: 28447753]
[20]
Zhang, Z.; Till, S.; Jiang, C.; Knappe, S.; Reutterer, S.; Scheiflinger, F.; Szabo, C.M.; Dockal, M. Structure-activity relationship of the pro- and anticoagulant effects of Fucus vesiculosus fucoidan. Thromb. Haemost., 2014, 111(3), 429-437.
[http://dx.doi.org/10.1160/TH13-08-0635] [PMID: 24285223]
[21]
Varghese, S.; Joseph, M.M.; Aravind, S.R.; Unnikrishnan, B.S.; Pillai, K.R.; Sreelekha, T.T. Immunostimulatory plant polysaccharides impede cancer progression and metastasis by avoiding off-target effects. Int. Immunopharmacol., 2019, 73, 280-292.
[http://dx.doi.org/10.1016/j.intimp.2019.05.025] [PMID: 31125927]
[22]
Huang, T-H.; Chiu, Y-H.; Chan, Y-L.; Chiu, Y-H.; Wang, H.; Huang, K-C.; Li, T-L.; Hsu, K-H.; Wu, C-J. Prophylactic administration of fucoidan represses cancer metastasis by inhibiting vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) in Lewis tumor-bearing mice. Mar. Drugs, 2015, 13(4), 1882-1900.
[http://dx.doi.org/10.3390/md13041882] [PMID: 25854641]
[23]
P, A.; K, A.; L, S.; M, M.; K, M. Anticancer effect of fucoidan on cell proliferation, cell cycle progression, genetic damage and apoptotic cell death in HepG2 cancer cells. Toxicol. Rep., 2019, 6, 556-563.
[http://dx.doi.org/10.1016/j.toxrep.2019.06.005] [PMID: 31249789]
[24]
Kyung, J.; Kim, D.; Park, D.; Yang, Y-H.; Choi, E-K.; Lee, S-P.; Kim, T-S.; Lee, Y-B.; Kim, Y-B. Synergistic anti-inflammatory effects of Laminaria japonica fucoidan and Cistanche tubulosa extract. Lab. Anim. Res., 2012, 28(2), 91-97.
[http://dx.doi.org/10.5625/lar.2012.28.2.91] [PMID: 22787482]
[25]
Senthilkumar, K.; Manivasagan, P.; Venkatesan, J.; Kim, S-K. Brown seaweed fucoidan: biological activity and apoptosis, growth signaling mechanism in cancer. Int. J. Biol. Macromol., 2013, 60, 366-374.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.06.030] [PMID: 23817097]
[26]
Atashrazm, F.; Lowenthal, R.M.; Woods, G.M.; Holloway, A.F.; Dickinson, J.L. Fucoidan and cancer: A multifunctional molecule with anti-tumor potential. Mar. Drugs, 2015, 13(4), 2327-2346.
[http://dx.doi.org/10.3390/md13042327] [PMID: 25874926]
[27]
Ohnogi, H.; Nakade, Y.; Takimoto, Y.; Sekiya, A.; Kawashima, T.; Schneider, A.; Arai, T.; Uebaba, K.; Suzuki, N. Safety of fucoidan from Gagome kombu (Kjellmaniella crassifolia) in healthy adult volunteers. Japanese J. Complement. Alter. Med., 2011, 8(2), 45-53.
[http://dx.doi.org/10.1625/jcam.8.45]
[28]
Suzuki, N.; Uebaba, K.; Song, H.; Takimoto, Y.; Suzuki, R.; Kawabata, T.; Fenghao, X.; Ohnogi, H.; Nakai, M. The safety of long-term ingestion of fucoidan from Gagome kombu (Kjellmaniella Crassifolia) on cancer patients. Japanese J. Complement. Alter. Med., 2013, 10(1), 17-24.
[http://dx.doi.org/10.1625/jcam.10.17]
[29]
Lee, M-C.; Huang, Y-C. Soluble eggshell membrane protein-loaded chitosan/fucoidan nanoparticles for treatment of defective intestinal epithelial cells. Int. J. Biol. Macromol., 2019, 131, 949-958.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.113] [PMID: 30910672]
[30]
Juenet, M.; Aid-Launais, R.; Li, B.; Berger, A.; Aerts, J.; Ollivier, V.; Nicoletti, A.; Letourneur, D.; Chauvierre, C. Thrombolytic therapy based on fucoidan-functionalized polymer nanoparticles targeting P-selectin. Biomaterials, 2018, 156, 204-216.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.047] [PMID: 29216534]
[31]
Raveendran, S.; Yoshida, Y.; Maekawa, T.; Kumar, D.S. Pharmaceutically versatile sulfated polysaccharide based bionano platforms. Nanomedicine (Lond.), 2013, 9(5), 605-626.
[http://dx.doi.org/10.1016/j.nano.2012.12.006] [PMID: 23347895]
[32]
Barbosa, A.I.; Costa Lima, S.A.; Reis, S. Development of methotrexate loaded fucoidan/chitosan nanoparticles with anti-inflammatory potential and enhanced skin permeation. Int. J. Biol. Macromol., 2019, 124, 1115-1122.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.014] [PMID: 30521895]
[33]
Tsai, L-C.; Chen, C-H.; Lin, C-W.; Ho, Y-C.; Mi, F-L. Development of mutlifunctional nanoparticles self-assembled from trimethyl chitosan and fucoidan for enhanced oral delivery of insulin. Int. J. Biol. Macromol., 2019, 126, 141-150.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.182] [PMID: 30586591]
[34]
Ravichandran, A.; Subramanian, P.; Manoharan, V.; Muthu, T.; Periyannan, R.; Thangapandi, M.; Ponnuchamy, K.; Pandi, B.; Marimuthu, P.N. Phyto-mediated synthesis of silver nanoparticles using fucoidan isolated from Spatoglossum asperum and assessment of antibacterial activities. J. Photochem. Photobiol. B, 2018, 185, 117-125.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.05.031] [PMID: 29886330]
[35]
Huang, Y-C.; Li, R-Y.; Chen, J-Y.; Chen, J-K. Biphasic release of gentamicin from chitosan/fucoidan nanoparticles for pulmonary delivery. Carbohydr. Polym., 2016, 138, 114-122.
[http://dx.doi.org/10.1016/j.carbpol.2015.11.072] [PMID: 26794744]
[36]
Minaei, S.E.; Khoei, S.; Khoee, S.; Vafashoar, F.; Mahabadi, V.P. In vitro anti-cancer efficacy of multi-functionalized magnetite nanoparticles combining alternating magnetic hyperthermia in glioblastoma cancer cells. Mater. Sci. Eng. C, 2019, 101, 575-587.
[http://dx.doi.org/10.1016/j.msec.2019.04.007] [PMID: 31029351]
[37]
Hepokur, C.; Kariper, İ.A.; Mısır, S.; Ay, E.; Tunoğlu, S.; Ersez, M.S.; Zeybek, Ü.; Kuruca, S.E.; Yaylım, İ. Silver nanoparticle/capecitabine for breast cancer cell treatment. Toxicol. In Vitro, 2019, 61 104600
[http://dx.doi.org/10.1016/j.tiv.2019.104600] [PMID: 31302208]
[38]
Kozielski, K.L.; Ruiz-Valls, A.; Tzeng, S.Y.; Guerrero-Cázares, H.; Rui, Y.; Li, Y.; Vaughan, H.J.; Gionet-Gonzales, M.; Vantucci, C.; Kim, J.; Schiapparelli, P.; Al-Kharboosh, R.; Quiñones-Hinojosa, A.; Green, J.J. Cancer-selective nanoparticles for combinatorial siRNA delivery to primary human GBM in vitro and in vivo. Biomaterials, 2019, 209, 79-87.
[http://dx.doi.org/10.1016/j.biomaterials.2019.04.020] [PMID: 31026613]
[39]
Malyarenko, O.S.; Zdobnova, E.V.; Silchenko, A.S.; Kusaykin, M.I.; Ermakova, S.P. Radiosensitizing effect of the fucoidan from brown alga Fucus evanescens and its derivative in human cancer cells. Carbohydr. Polym., 2019, 205, 465-471.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.083] [PMID: 30446129]
[40]
Beik, J.; Khateri, M.; Khosravi, Z.; Kamrava, S.K.; Kooranifar, S.; Ghaznavi, H.; Shakeri-Zadeh, A. Gold nanoparticles in combinatorial cancer therapy strategies. Coord. Chem. Rev., 2019, 387, 299-324.
[http://dx.doi.org/10.1016/j.ccr.2019.02.025]
[41]
Pavitra, E.; Dariya, B.; Srivani, G.; Kang, S-M.; Alam, A.; Sudhir, P-R.; Kamal, M.A.; Raju, G.S.R.; Han, Y-K.; Lakkakula, B.V.K.S.; Nagaraju, G.P.; Huh, Y.S. Engineered nanoparticles for imaging and drug delivery in colorectal cancer. Semin. Cancer Biol, 2019. [Epub ahead of print
[http://dx.doi.org/10.1016/j.semcancer.2019.06.017] [PMID: 31260733]
[42]
Tran, T.T.D.; Tran, P.H.L.; Yoon, T.J.; Lee, B.J. Fattigation-platform theranostic nanoparticles for cancer therapy. Mater. Sci. Eng. C, 2017, 75, 1161-1167.
[http://dx.doi.org/10.1016/j.msec.2017.03.012] [PMID: 28415402]
[43]
Tran, T.T-D.; Tran, P.H-L.; Amin, H.H.; Lee, B-J. Biodistribution and in vivo performance of fattigation-platform theranostic nanoparticles. Mater. Sci. Eng. C, 2017, 79, 671-678.
[http://dx.doi.org/10.1016/j.msec.2017.05.029] [PMID: 28629067]
[44]
Tran, P.H.L.; Wang, T.; Yin, W.; Tran, T.T.D.; Barua, H.T.; Zhang, Y.; Midge, S.B.; Nguyen, T.N.G.; Lee, B.J.; Duan, W. Development of a nanoamorphous exosomal delivery system as an effective biological platform for improved encapsulation of hydrophobic drugs. Int. J. Pharm., 2019, 566, 697-707.
[http://dx.doi.org/10.1016/j.ijpharm.2019.06.028] [PMID: 31207280]
[45]
Yang, S.; Chen, L.; Zhou, X.; Sun, P.; Fu, L.; You, Y.; Xu, M.; You, Z.; Kai, G.; He, C. Tumor-targeted biodegradable multifunctional nanoparticles for cancer theranostics. Chem. Eng. J., 2019, 378 122171
[http://dx.doi.org/10.1016/j.cej.2019.122171]
[46]
Deepika, M.S.; Thangam, R.; Sheena, T.S.; Sasirekha, R.; Sivasubramanian, S.; Babu, M.D.; Jeganathan, K.; Thirumurugan, R. A novel rutin-fucoidan complex based phytotherapy for cervical cancer through achieving enhanced bioavailability and cancer cell apoptosis. Biomed. Pharmacother., 2019, 109, 1181-1195.
[http://dx.doi.org/10.1016/j.biopha.2018.10.178] [PMID: 30551368]
[47]
Lu, K-Y.; Li, R.; Hsu, C-H.; Lin, C-W.; Chou, S-C.; Tsai, M-L.; Mi, F-L. Development of a new type of multifunctional fucoidan-based nanoparticles for anticancer drug delivery. Carbohydr. Polym., 2017, 165, 410-420.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.065] [PMID: 28363567]
[48]
Tissot, B.; Montdargent, B.; Chevolot, L.; Varenne, A.; Descroix, S.; Gareil, P.; Daniel, R. Interaction of fucoidan with the proteins of the complement classical pathway. Biochim. Biophys. Acta, 2003, 1651(1-2), 5-16.
[http://dx.doi.org/10.1016/S1570-9639(03)00230-9] [PMID: 14499584]
[49]
Taktak, F.F.; Bütün, V. Synthesis and physical gels of pH- and thermo-responsive tertiary amine methacrylate based ABA triblock copolymers and drug release studies. Polymer (Guildf.), 2010, 51(16), 3618-3626.
[http://dx.doi.org/10.1016/j.polymer.2010.06.010]
[50]
Pawar, V.K.; Singh, Y.; Sharma, K.; Shrivastav, A.; Sharma, A.; Singh, A.; Meher, J.G.; Singh, P.; Raval, K.; Kumar, A.; Bora, H.K.; Datta, D.; Lal, J.; Chourasia, M.K. Improved chemotherapy against breast cancer through immunotherapeutic activity of fucoidan decorated electrostatically assembled nanoparticles bearing doxorubicin. Int. J. Biol. Macromol., 2019, 122, 1100-1114.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.059] [PMID: 30219515]
[51]
Miyazaki, Y.; Nakamizo, M.; Shibasaki, T.; Kirino, T.; Kawahara, K.; Otsuka, K.; Tachibana, H.; Yamada, K.; Tachikawa, D. Immune enhancing effects of fucoidan-agaricus mix under treatment of an immunosuppressive anti-cancer agent (TUM7P. 939). Am. Assoc. Immnol., 2014, 192(1)(Suppl.), 203-221.
[52]
Tran, C.T.M.; Tran, P.H.L.; Tran, T.T.D. pH-independent dissolution enhancement for multiple poorly water-soluble drugs by nano-sized solid dispersions based on hydrophobic-hydrophilic conjugates. Drug Dev. Ind. Pharm., 2019, 45(3), 514-519.
[http://dx.doi.org/10.1080/03639045.2018.1562466] [PMID: 30575412]
[53]
Dinh, H.T.T.; Tran, P.H.L.; Duan, W.; Lee, B-J.; Tran, T.T.D. Nano-sized solid dispersions based on hydrophobic-hydrophilic conjugates for dissolution enhancement of poorly water-soluble drugs. Int. J. Pharm., 2017, 533(1), 93-98.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.065] [PMID: 28951346]
[54]
Tran, T.T.D.; Tran, P.H.L. Nanoconjugation and encapsulation strategies for improving drug delivery and therapeutic efficacy of poorly water-soluble drugs. Pharmaceutics, 2019, 11(7) E325
[http://dx.doi.org/10.3390/pharmaceutics11070325] [PMID: 31295947]
[55]
Xie, Z.; Guan, H.; Chen, X.; Lu, C.; Chen, L.; Hu, X.; Shi, Q.; Jing, X. A novel polymer-paclitaxel conjugate based on amphiphilic triblock copolymer. J. Control. Release, 2007, 117(2), 210-216.
[http://dx.doi.org/10.1016/j.jconrel.2006.11.014] [PMID: 17188776]
[56]
Kim, D-Y.; Shin, W-S. Characterisation of bovine serum albumin-fucoidan conjugates prepared via the Maillard reaction. Food Chem., 2015, 173, 1-6.
[http://dx.doi.org/10.1016/j.foodchem.2014.09.167] [PMID: 25465988]
[57]
Lee, K.W.; Jeong, D.; Na, K. Doxorubicin loading fucoidan acetate nanoparticles for immune and chemotherapy in cancer treatment. Carbohydr. Polym., 2013, 94(2), 850-856.
[http://dx.doi.org/10.1016/j.carbpol.2013.02.018] [PMID: 23544642]
[58]
Li, F.; Bae, B.C.; Na, K. Acetylated hyaluronic acid/photosensitizer conjugate for the preparation of nanogels with controllable phototoxicity: synthesis, characterization, autophotoquenching properties, and in vitro phototoxicity against HeLa cells. Bioconjug. Chem., 2010, 21(7), 1312-1320.
[http://dx.doi.org/10.1021/bc100116v] [PMID: 20586473]
[59]
Park, W.; Park, S.J.; Na, K. Potential of self-organizing nanogel with acetylated chondroitin sulfate as an anti-cancer drug carrier. Colloids Surf. B Biointerfaces, 2010, 79(2), 501-508.
[http://dx.doi.org/10.1016/j.colsurfb.2010.05.025] [PMID: 20541919]
[60]
Yang, M.; Ma, C.; Sun, J.; Shao, Q.; Gao, W.; Zhang, Y.; Li, Z.; Xie, Q.; Dong, Z.; Qu, X. Fucoidan stimulation induces a functional maturation of human monocyte-derived dendritic cells. Int. Immunopharmacol., 2008, 8(13-14), 1754-1760.
[http://dx.doi.org/10.1016/j.intimp.2008.08.007] [PMID: 18783737]
[61]
Choi, E-M.; Kim, A-J.; Kim, Y-O.; Hwang, J-K. Immunomodulating activity of arabinogalactan and fucoidan in vitro. J. Med. Food, 2005, 8(4), 446-453.
[http://dx.doi.org/10.1089/jmf.2005.8.446] [PMID: 16379554]
[62]
Aisa, Y.; Miyakawa, Y.; Nakazato, T.; Shibata, H.; Saito, K.; Ikeda, Y.; Kizaki, M. Fucoidan induces apoptosis of human HS-sultan cells accompanied by activation of caspase-3 and down-regulation of ERK pathways. Am. J. Hematol., 2005, 78(1), 7-14.
[http://dx.doi.org/10.1002/ajh.20182] [PMID: 15609279]
[63]
Phan, U.T.; Nguyen, K.T.; Vo, T.V.; Duan, W.; Tran, P.H.; Tran, T.D. Investigation of fucoidan-oleic acid conjugate for delivery of curcumin and paclitaxel. Anticancer. Agents Med. Chem., 2016, 16(10), 1281-1287.
[http://dx.doi.org/10.2174/1567201810666131124140259] [PMID: 27237629]
[64]
Phan, N.H.; Ly, T.T.; Pham, M.N.; Luu, T.D.; Vo, T.V.; Tran, P.H.L.; Tran, T.T.D. A comparison of fucoidan conjugated to paclitaxel and curcumin for the dual delivery of cancer therapeutic agents. Anticancer. Agents Med. Chem., 2018, 18(9), 1349-1355.
[http://dx.doi.org/10.2174/1871520617666171121125845] [PMID: 29173183]
[65]
Sandur, S.K.; Pandey, M.K.; Sung, B.; Ahn, K.S.; Murakami, A.; Sethi, G.; Limtrakul, P.; Badmaev, V.; Aggarwal, B.B. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis, 2007, 28(8), 1765-1773.
[http://dx.doi.org/10.1093/carcin/bgm123] [PMID: 17522064]
[66]
Manju, S.; Sreenivasan, K. Conjugation of curcumin onto hyaluronic acid enhances its aqueous solubility and stability. J. Colloid Interface Sci., 2011, 359(1), 318-325.
[http://dx.doi.org/10.1016/j.jcis.2011.03.071] [PMID: 21492865]
[67]
Mudshinge, S.R.; Deore, A.B.; Patil, S.; Bhalgat, C.M. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm. J., 2011, 19(3), 129-141.
[http://dx.doi.org/10.1016/j.jsps.2011.04.001] [PMID: 23960751]
[68]
Takahashi, M.; Akiyama, Y.; Ikezumi, J.; Nagata, T.; Yoshino, T.; Iizuka, A.; Yamaguchi, K.; Matsunaga, T. Magnetic separation of melanoma-specific cytotoxic T lymphocytes from a vaccinated melanoma patient’s blood using MHC/peptide complex-conjugated bacterial magnetic particles. Bioconjug. Chem., 2009, 20(2), 304-309.
[http://dx.doi.org/10.1021/bc800398d] [PMID: 19143499]
[69]
Gai, Q-Q.; Qu, F.; Liu, Z.J.; Dai, R.J.; Zhang, Y.K. Superparamagnetic lysozyme surface-imprinted polymer prepared by atom transfer radical polymerization and its application for protein separation. J. Chromatogr. A, 2010, 1217(31), 5035-5042.
[http://dx.doi.org/10.1016/j.chroma.2010.06.001] [PMID: 20580003]
[70]
Zhang, L.; Xue, H.; Gao, C.; Carr, L.; Wang, J.; Chu, B.; Jiang, S. Imaging and cell targeting characteristics of magnetic nanoparticles modified by a functionalizable zwitterionic polymer with adhesive 3,4-dihydroxyphenyl-l-alanine linkages. Biomaterials, 2010, 31(25), 6582-6588.
[http://dx.doi.org/10.1016/j.biomaterials.2010.05.018] [PMID: 20541254]
[71]
Kluchova, K.; Zboril, R.; Tucek, J.; Pecova, M.; Zajoncova, L.; Safarik, I.; Mashlan, M.; Markova, I.; Jancik, D.; Sebela, M.; Bartonkova, H.; Bellesi, V.; Novak, P.; Petridis, D. Superparamagnetic maghemite nanoparticles from solid-state synthesis - their functionalization towards peroral MRI contrast agent and magnetic carrier for trypsin immobilization. Biomaterials, 2009, 30(15), 2855-2863.
[http://dx.doi.org/10.1016/j.biomaterials.2009.02.023] [PMID: 19264355]
[72]
Hong, RY.; Feng, B.; Chen, L.L.; Liu, G.H.; Li, H.Z.; Zheng, Y.; Wei, D.G. Synthesis, characterization and MRI application of dextran-coated Fe3O4 magnetic nanoparticles. Biochem. Eng. J., 2008, 42(3), 290-300.
[http://dx.doi.org/10.1016/j.bej.2008.07.009]
[73]
Zhang, J.; Misra, R.D. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticle carrier and drug release response. Acta Biomater., 2007, 3(6), 838-850.
[http://dx.doi.org/10.1016/j.actbio.2007.05.011] [PMID: 17638599]
[74]
Purushotham, S.; Ramanujan, R.V. Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy. Acta Biomater., 2010, 6(2), 502-510.
[http://dx.doi.org/10.1016/j.actbio.2009.07.004] [PMID: 19596094]
[75]
Durán, J.D.G.; Arias, J.L.; Gallardo, V.; Delgado, A.V. Magnetic colloids as drug vehicles. J. Pharm. Sci., 2008, 97(8), 2948-2983.
[http://dx.doi.org/10.1002/jps.21249] [PMID: 18064669]
[76]
Tran, P.H-L.; Tran, T.T-D.; Vo, T.V. Polymer conjugate-based nanomaterials for drug delivery. J. Nanosci. Nanotechnol., 2014, 14(1), 815-827.
[http://dx.doi.org/10.1166/jnn.2014.8901] [PMID: 24730300]
[77]
Qiu, P.; Jensen, C.; Charity, N.; Towner, R.; Mao, C. Oil phase evaporation-induced self-assembly of hydrophobic nanoparticles into spherical clusters with controlled surface chemistry in an oil-in-water dispersion and comparison of behaviors of individual and clustered iron oxide nanoparticles. J. Am. Chem. Soc., 2010, 132(50), 17724-17732.
[http://dx.doi.org/10.1021/ja102138a] [PMID: 21117657]
[78]
Zhang, M.; Cheng, D.; He, X.; Chen, L.; Zhang, Y. Magnetic silica-coated sub-microspheres with immobilized metal ions for the selective removal of bovine hemoglobin from bovine blood. Chem. Asian J., 2010, 5(6), 1332-1340.
[http://dx.doi.org/10.1002/asia.200900463] [PMID: 20397183]
[79]
Shultz, M.D.; Reveles, J.U.; Khanna, S.N.; Carpenter, E.E. Reactive nature of dopamine as a surface functionalization agent in iron oxide nanoparticles. J. Am. Chem. Soc., 2007, 129(9), 2482-2487.
[http://dx.doi.org/10.1021/ja0651963] [PMID: 17290990]
[80]
Bagaria, H.G.; Ada, E.T.; Shamsuzzoha, M.; Nikles, D.E.; Johnson, D.T. Understanding mercapto ligand exchange on the surface of FePt nanoparticles. Langmuir, 2006, 22(18), 7732-7737.
[http://dx.doi.org/10.1021/la0601399] [PMID: 16922557]
[81]
Pan, X.; Guan, J.; Yoo, J.W.; Epstein, A.J.; Lee, L.J.; Lee, R.J. Cationic lipid-coated magnetic nanoparticles associated with transferrin for gene delivery. Int. J. Pharm., 2008, 358(1-2), 263-270.
[http://dx.doi.org/10.1016/j.ijpharm.2008.02.020] [PMID: 18384982]
[82]
Yang, H.Z.J.; Tian, Q.; Hu, H.; Fang, Y.; Wu, H. One-pot synthesis of amphiphilic superparamagnetic fept nanoparticles and magnetic resonance imaging in vitro. J. Magn. Magn. Mater., 2010, 322(8), 973-977.
[http://dx.doi.org/10.1016/j.jmmm.2009.11.039]
[83]
Lu, J.; Ma, S.; Sun, J.; Xia, C.; Liu, C.; Wang, Z.; Zhao, X.; Gao, F.; Gong, Q.; Song, B.; Shuai, X.; Ai, H.; Gu, Z. Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging. Biomaterials, 2009, 30(15), 2919-2928.
[http://dx.doi.org/10.1016/j.biomaterials.2009.02.001] [PMID: 19230966]
[84]
Kaiser, A.D.S.; Schmidt, A.M. Kinetic studies of surface-initiated atom transfer radical polymerization in the synthesis of magnetic fluids. J. Polym. Sci. A Polym. Chem., 2009, 47(24), 7012-7020.
[http://dx.doi.org/10.1002/pola.23740]
[85]
Gomaa, M.; Hifney, A.F.; Fawzy, M.A.; Abdel-Gawad, K.M. Use of seaweed and filamentous fungus derived polysaccharides in the development of alginate-chitosan edible films containing fucoidan: Study of moisture sorption, polyphenol release and antioxidant properties. Food Hydrocoll., 2018, 82, 239-247.
[http://dx.doi.org/10.1016/j.foodhyd.2018.03.056]
[86]
Tran, K.N.; Tran, P.H.L.; Vo, T.V.; Tran, T.T.D. Design of fucoidan functionalized - iron oxide nanoparticles for biomedical applications. Curr. Drug Deliv., 2016, 13(5), 774-783.
[http://dx.doi.org/10.2174/1567201812666151020100921] [PMID: 27138526]
[87]
Chiang, C-S.; Lin, Y-J.; Lee, R.; Lai, Y-H.; Cheng, H-W.; Hsieh, C-H.; Shyu, W-C.; Chen, S-Y. Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. Nat. Nanotechnol., 2018, 13(8), 746-754.
[http://dx.doi.org/10.1038/s41565-018-0146-7] [PMID: 29760523]
[88]
Soisuwan, S.; Lirdprapamongko, K.; Warisnoicharoen, W.; Svasti, J. Seaweed fucoidan-stabilized gold nanoparticles and their antitumor activities. PharmaNutrition, 2014, 2(3), 81.
[http://dx.doi.org/10.1016/j.phanu.2013.11.020]
[89]
Soisuwan, S.; Warisnoicharoen, W.; Lirdprapamongkol, K.; Svasti, J. Eco-friendly synthesis of fucoidan-stabilized gold nanoparticles. Am. J. Appl. Sci., 2010, 7(8), 1038-1042.
[http://dx.doi.org/10.3844/ajassp.2010.1038.1042]
[90]
Vijayakumar, S.; Vaseeharan, B.; Malaikozhundan, B.; Gobi, N.; Ravichandran, S.; Karthi, S.; Ashokkumar, B.; Sivakumar, N. A novel antimicrobial therapy for the control of Aeromonas hydrophila infection in aquaculture using marine polysaccharide coated gold nanoparticle. Microb. Pathog., 2017, 110, 140-151.
[http://dx.doi.org/10.1016/j.micpath.2017.06.029] [PMID: 28648622]
[91]
Manivasagan, P.; Bharathiraja, S.; Bui, N.Q.; Jang, B.; Oh, Y-O.; Lim, I.G.; Oh, J. Doxorubicin-loaded fucoidan capped gold nanoparticles for drug delivery and photoacoustic imaging. Int. J. Biol. Macromol., 2016, 91, 578-588.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.007] [PMID: 27267570]
[92]
Manivasagan, P.; Bharathiraja, S.; Santha Moorthy, M.; Oh, Y-O.; Song, K.; Seo, H.; Oh, J. Anti-EGFR antibody conjugation of fucoidan-coated gold nanorods as novel photothermal ablation agents for cancer therapy. ACS Appl. Mater. Interfaces, 2017, 9(17), 14633-14646.
[http://dx.doi.org/10.1021/acsami.7b00294] [PMID: 28398713]
[93]
Manivasagan, P.; Hoang, G.; Santha Moorthy, M.; Mondal, S.; Minh Doan, V.H.; Kim, H.; Vy Phan, T.T.; Nguyen, T.P.; Oh, J. Chitosan/fucoidan multilayer coating of gold nanorods as highly efficient near-infrared photothermal agents for cancer therapy. Carbohydr. Polym., 2019, 211, 360-369.
[http://dx.doi.org/10.1016/j.carbpol.2019.01.010] [PMID: 30824100]
[94]
Jokerst, J.V.; Thangaraj, M.; Kempen, P.J.; Sinclair, R.; Gambhir, S.S. Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods. ACS Nano, 2012, 6(7), 5920-5930.
[http://dx.doi.org/10.1021/nn302042y] [PMID: 22681633]
[95]
Wang, C-H.; Chang, C-W.; Peng, C-A. Gold nanorod stabilized by thiolated chitosan as photothermal absorber for cancer cell treatment. J. Nanopart. Res., 2011, 13(7), 2749-2758.
[96]
Liu, Y.; Ashton, J.R.; Moding, E.J.; Yuan, H.; Register, J.K.; Fales, A.M.; Choi, J.; Whitley, M.J.; Zhao, X.; Qi, Y.; Ma, Y.; Vaidyanathan, G.; Zalutsky, M.R.; Kirsch, D.G.; Badea, C.T.; Vo-Dinh, T. A plasmonic gold nanostar theranostic probe for in vivo tumor imaging and photothermal therapy. Theranostics, 2015, 5(9), 946-960.
[http://dx.doi.org/10.7150/thno.11974] [PMID: 26155311]
[97]
Sau, T.K.; Murphy, C.J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir, 2004, 20(15), 6414-6420.
[http://dx.doi.org/10.1021/la049463z] [PMID: 15248731]
[98]
Liao, J.; Li, W.; Peng, J.; Yang, Q.; Li, H.; Wei, Y.; Zhang, X.; Qian, Z. Combined cancer photothermal-chemotherapy based on doxorubicin/gold nanorod-loaded polymersomes. Theranostics, 2015, 5(4), 345-356.
[http://dx.doi.org/10.7150/thno.10731] [PMID: 25699095]
[99]
Liu, Y.; Xu, M.; Chen, Q.; Guan, G.; Hu, W.; Zhao, X.; Qiao, M.; Hu, H.; Liang, Y.; Zhu, H.; Chen, D. Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser. Int. J. Nanomedicine, 2015, 10, 4747-4761.
[http://dx.doi.org/10.2147/IJN.S82940] [PMID: 26251596]
[100]
Kim, K-J.; Lee, O-H.; Lee, B-Y. Fucoidan, a sulfated polysaccharide, inhibits adipogenesis through the mitogen-activated protein kinase pathway in 3T3-L1 preadipocytes. Life Sci., 2010, 86(21-22), 791-797.
[http://dx.doi.org/10.1016/j.lfs.2010.03.010] [PMID: 20346961]
[101]
Helander, I.M.; Nurmiaho-Lassila, E.L.; Ahvenainen, R.; Rhoades, J.; Roller, S. Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria. Int. J. Food Microbiol., 2001, 71(2-3), 235-244.
[http://dx.doi.org/10.1016/S0168-1605(01)00609-2] [PMID: 11789941]
[102]
Lemarchand, C.; Gref, R.; Couvreur, P. Polysaccharide-decorated nanoparticles. Eur. J. Pharm. Biopharm., 2004, 58(2), 327-341.
[http://dx.doi.org/10.1016/j.ejpb.2004.02.016] [PMID: 15296959]
[103]
Bertholon, I.; Vauthier, C.; Labarre, D. Complement activation by core-shell poly(isobutylcyanoacrylate)-polysaccharide nanoparticles: influences of surface morphology, length, and type of polysaccharide. Pharm. Res., 2006, 23(6), 1313-1323.
[http://dx.doi.org/10.1007/s11095-006-0069-0] [PMID: 16715369]
[104]
de Martimprey, H.; Vauthier, C.; Malvy, C.; Couvreur, P. Polymer nanocarriers for the delivery of small fragments of nucleic acids: oligonucleotides and siRNA. Eur. J. Pharm. Biopharm., 2009, 71(3), 490-504.
[http://dx.doi.org/10.1016/j.ejpb.2008.09.024] [PMID: 18977435]
[105]
Pinheiro, A.C.; Bourbon, A.I.; Cerqueira, M.A.; Maricato, É.; Nunes, C.; Coimbra, M.A.; Vicente, A.A. Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds. Carbohydr. Polym., 2015, 115, 1-9.
[http://dx.doi.org/10.1016/j.carbpol.2014.07.016] [PMID: 25439860]
[106]
Lira, M.C.B.; Santos-Magalhães, N.S.; Nicolas, V.; Marsaud, V.; Silva, M.P.C.; Ponchel, G.; Vauthier, C. Cytotoxicity and cellular uptake of newly synthesized fucoidan-coated nanoparticles. Eur. J. Pharm. Biopharm., 2011, 79(1), 162-170.
[http://dx.doi.org/10.1016/j.ejpb.2011.02.013] [PMID: 21349331]
[107]
Tran, T.T-D.; Tran, P.H-L.; Phan, M-N.; Van, T.V. Colon specific delivery of fucoidan by incorporation of acidifier in enteric coating polymer. Int J Pharma Biosci Technol, 2013, 1(3), 108-117.
[108]
Tran, T.T.D.; Ngo, D.K.P.; Vo, T.V.; Tran, P.H.L. Design of sustained release tablet containing fucoidan. Curr. Drug Deliv., 2015, 12(2), 231-237.
[http://dx.doi.org/10.2174/1567201811666141109210850] [PMID: 25382179]
[109]
Karuppusamy, S.; Hyejin, K.; Kang, H.W. Nanoengineered chlorin e6 conjugated with hydrogel for photodynamic therapy on cancer. Colloids Surf. B Biointerfaces, 2019, 181, 778-788.
[http://dx.doi.org/10.1016/j.colsurfb.2019.06.040] [PMID: 31238210]
[110]
Murphy, C.C.; Lee, S.J.C.; Gerber, D.E.; Cox, J.V.; Fullington, H.M.; Higashi, R.T. Patient and provider perspectives on delivery of oral cancer therapies. Patient Educ. Couns., 2019, 102(11), 2102-2109.
[http://dx.doi.org/10.1016/j.pec.2019.06.019] [PMID: 31239181]
[111]
Betker, J.L.; Angle, B.M.; Graner, M.W.; Anchordoquy, T.J. The potential of exosomes from cow milk for oral delivery. J. Pharm. Sci., 2019, 108(4), 1496-1505.
[http://dx.doi.org/10.1016/j.xphs.2018.11.022] [PMID: 30468828]
[112]
Sepantafar, M.; Maheronnaghsh, R.; Mohammadi, H.; Radmanesh, F.; Hasani-Sadrabadi, M.M.; Ebrahimi, M.; Baharvand, H. Engineered hydrogels in cancer therapy and diagnosis. Trends Biotechnol., 2017, 35(11), 1074-1087.
[http://dx.doi.org/10.1016/j.tibtech.2017.06.015] [PMID: 28734545]
[113]
Gavrina, A.I.; Shirmanova, M.V.; Aksenova, N.A.; Yuzhakova, D.V.; Snopova, L.B.; Solovieva, A.B.; Timashev, P.S.; Dudenkova, V.V.; Zagaynova, E.V. Photodynamic therapy of mouse tumor model using chlorin e6- polyvinyl alcohol complex. J. Photochem. Photobiol. B, 2018, 178, 614-622.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.12.016] [PMID: 29277008]
[114]
van Weelden, G.; Bobiński, M.; Okła, K.; van Weelden, W.J.; Romano, A.; Pijnenborg, J.M.A. Fucoidan structure and activity in relation to anti-cancer mechanisms. Mar. Drugs, 2019, 17(1), 32.
[http://dx.doi.org/10.3390/md17010032] [PMID: 30621045]
[115]
Hsu, H-Y.; Hwang, P-A. Clinical applications of fucoidan in translational medicine for adjuvant cancer therapy. Clin. Transl. Med., 2019, 8(1), 15-15.
[http://dx.doi.org/10.1186/s40169-019-0234-9] [PMID: 31041568]
[116]
Zheng, Y.; Liu, T.; Wang, Z.; Xu, Y.; Zhang, Q.; Luo, D. Low molecular weight fucoidan attenuates liver injury via SIRT1/AMPK/PGC1α axis in db/db mice. Int. J. Biol. Macromol., 2018, 112, 929-936.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.072] [PMID: 29447962]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 12
Year: 2019
Published on: 07 October, 2019
Page: [933 - 941]
Pages: 9
DOI: 10.2174/1389200220666191007154723
Price: $65

Article Metrics

PDF: 34
HTML: 4