Curcumin - A Novel Therapeutic Agent in the Prevention of Colorectal Cancer

Author(s): Manoj K. Gupta, Ramakrishna Vadde, Vemula Sarojamma*

Journal Name: Current Drug Metabolism

Volume 20 , Issue 12 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Colorectal cancer is the third important cause of cancer-associated deaths across the world. Hence, there is an urgent need for understanding the complete mechanism associated with colorectal cancer, which in turn can be utilized toward early detection as well as the treatment of colorectal cancer in humans. Though colorectal cancer is a complex process and chemotherapy is the first step toward the treatment of colorectal cancer, recently several studies suggested that dietary phytochemicals may also aid significantly in reducing colorectal cancer risk in human. However, only few phytochemicals, specifically curcumin derived from the rhizomes of Curcuma longa, have better chemotherapeutic property, which might be because of its ability to regulate the activity of key factors associated with the initiation, promotion, as well as progression of tumors.

Objectives: In the present review, the authors made an attempt to summarize the physiochemical properties of curcumin, which in turn prevent colorectal cancer via regulating numerous cell signaling as well as genetic pathways.

Conclusion: Accumulated evidence suggested that curcumin suppresses tumour/colon cancer in various ways, (a) restricting cell cycle progression, or stimulating apoptosis, (b) restricting angiogenesis, anti-apoptotic proteins expression, cell survival signaling pathways & their cross-communication and (c) regulating immune responses. The information discussed in the present review will be useful in the drug discovery process as well as the treatment and prevention of colorectal cancer in humans.

Keywords: Colorectal cancer, curcumin, anti-cancer, apoptosis, angiogenesis, Wnt signaling pathway.

[1]
Cooper, G.M. The Cell: A Molecular Approach. 2nd edition; Sunderland: Sinauer Associates, 2000.
[2]
Gupta, M.K.; Sarojamma, V.; Reddy, M.R.; Shaik, J.B.; Vadde, R. Computational biology: Towards early detection of pancreatic cancer. Crit. Rev. Oncog., 2019.
[http://dx.doi.org/10.1615/CritRevOncog.2019031335]
[3]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[4]
Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut, 2017, 66(4), 683-691.
[http://dx.doi.org/10.1136/gutjnl-2015-310912] [PMID: 26818619]
[5]
Gupta, M.K.; Behara, S.K.; Vadde, R. In silico analysis of differential gene expressions in biliary stricture and hepatic carcinoma. Gene, 2017, 597, 49-58.
[http://dx.doi.org/10.1016/j.gene.2016.10.032] [PMID: 27777109]
[6]
Gupta, M.K.; Behera, S.K.; Dehury, B.; Mahapatra, N. Identification and characterization of differentially expressed genes from human microglial cell samples infected with Japanese encephalitis virus. J. Vector Borne Dis., 2017, 54(2), 131-138.
[PMID: 28748833]
[7]
Gupta, M.K.; Vadde, R. Identification and characterization of differentially expressed genes in type 2 diabetes using in silico approach. Comput. Biol. Chem., 2019, 79, 24-35.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.01.010] [PMID: 30708140]
[8]
Gupta, M.K.; Vadde, R.; Gouda, G.; Donde, R.; Kumar, J.; Behera, L. Computational approach to understand molecular mechanism involved in BPH resistance in Bt- rice plant. J. Mol. Graph. Model., 2019, 88, 209-220.
[http://dx.doi.org/10.1016/j.jmgm.2019.01.018] [PMID: 30743158]
[9]
Ricciardiello, L.; Bazzoli, F.; Fogliano, V. Phytochemicals and colorectal cancer prevention-myth or reality? Nat. Rev. Gastroenterol. Hepatol., 2011, 8(10), 592-596.
[http://dx.doi.org/10.1038/nrgastro.2011.149] [PMID: 21894197]
[10]
Brenner, H.; Kloor, M.; Pox, C.P. Colorectal cancer. Lancet, 2014, 383(9927), 1490-1502.
[http://dx.doi.org/10.1016/S0140-6736(13)61649-9] [PMID: 24225001]
[11]
Jarvandi, S.; Davidson, N.O.; Schootman, M. Increased risk of colorectal cancer in type 2 diabetes is independent of diet quality. PLoS One, 2013, 8(9) e74616
[http://dx.doi.org/10.1371/journal.pone.0074616] [PMID: 24069323]
[12]
Grady, W.M. Genetic testing for high-risk colon cancer patients. Gastroenterology, 2003, 124(6), 1574-1594.
[http://dx.doi.org/10.1016/S0016-5085(03)00376-7] [PMID: 12761718]
[13]
Snyder, C.; Hampel, H. Hereditary colorectal cancer syndromes. Semin. Oncol. Nurs., 2019, 35(1), 58-78.
[http://dx.doi.org/10.1016/j.soncn.2018.12.011] [PMID: 30665732]
[14]
Palles, C.; Cazier, J-B.; Howarth, K.M.; Domingo, E.; Jones, A.M.; Broderick, P.; Kemp, Z.; Spain, S.L.; Guarino, E.; Salguero, I.; Sherborne, A.; Chubb, D.; Carvajal-Carmona, L.G.; Ma, Y.; Kaur, K.; Dobbins, S.; Barclay, E.; Gorman, M.; Martin, L.; Kovac, M.B.; Humphray, S.; Lucassen, A.; Holmes, C.C.; Bentley, D.; Donnelly, P.; Taylor, J.; Petridis, C.; Roylance, R.; Sawyer, E.J.; Kerr, D.J.; Clark, S.; Grimes, J.; Kearsey, S.E.; Thomas, H.J.; McVean, G.; Houlston, R.S.; Tomlinson, I. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat. Genet., 2013, 45(2), 136-144.
[http://dx.doi.org/10.1038/ng.2503] [PMID: 23263490]
[15]
Kuipers, E.J.; Grady, W.M.; Lieberman, D.; Seufferlein, T.; Sung, J.J.; Boelens, P.G.; van de Velde, C.J.H.; Watanabe, T. Colorectal cancer. Nat. Rev. Dis. Primers, 2015, 1, 15065.
[http://dx.doi.org/10.1038/nrdp.2015.65] [PMID: 27189416]
[16]
Goldstein, N.S. Serrated pathway and APC (conventional)-type colorectal polyps: molecular-morphologic correlations, genetic pathways, and implications for classification. Am. J. Clin. Pathol., 2006, 125(1), 146-153.
[http://dx.doi.org/10.1309/87BD0C6UCGUG236J] [PMID: 16483003]
[17]
Bettington, M.; Walker, N.; Clouston, A.; Brown, I.; Leggett, B.; Whitehall, V. The serrated pathway to colorectal carcinoma: Current concepts and challenges. Histopathology, 2013, 62(3), 367-386.
[http://dx.doi.org/10.1111/his.12055] [PMID: 23339363]
[18]
Bird, A. The essentials of DNA methylation. Cell, 1992, 70(1), 5-8.
[http://dx.doi.org/10.1016/0092-8674(92)90526-I] [PMID: 1377983]
[19]
Worthley, D.L.; Whitehall, V.L.J.; Buttenshaw, R.L.; Irahara, N.; Greco, S.A.; Ramsnes, I.; Mallitt, K-A.; Le Leu, R.K.; Winter, J.; Hu, Y.; Ogino, S.; Young, G.P.; Leggett, B.A. DNA methylation within the normal colorectal mucosa is associated with pathway-specific predisposition to cancer. Oncogene, 2010, 29(11), 1653-1662.
[http://dx.doi.org/10.1038/onc.2009.449] [PMID: 19966864]
[20]
Grady, W.M.; Pritchard, C.C. Molecular alterations and biomarkers in colorectal cancer. Toxicol. Pathol., 2014, 42(1), 124-139.
[http://dx.doi.org/10.1177/0192623313505155] [PMID: 24178577]
[21]
Grady, W.M.; Markowitz, S.D. The molecular pathogenesis of colorectal cancer and its potential application to colorectal cancer screening. Dig. Dis. Sci., 2015, 60(3), 762-772.
[http://dx.doi.org/10.1007/s10620-014-3444-4] [PMID: 25492499]
[22]
Zhou, Y.; Xia, L.; Wang, H.; Oyang, L.; Su, M.; Liu, Q.; Lin, J.; Tan, S.; Tian, Y.; Liao, Q.; Cao, D. Cancer stem cells in progression of colorectal cancer. Oncotarget, 2017, 9(70), 33403-33415.
[http://dx.doi.org/10.18632/oncotarget.23607] [PMID: 30279970]
[23]
Bostan, M.; Mihaila, M.; Hotnog, C.; Bleotu, C.; Anton, G.; Roman, V.; Brasoveanu, L.I. Modulation of Apoptosis in Colon Cancer Cells by Bioactive Compounds; Colorectal Cancer From Pathogenesis to Treatment. Rodrigo, L; Ed.; London: IntechOpen. 2016, pp. 1174-1446.
[http://dx.doi.org/10.5772/63382]
[24]
Kim, J.H. Chemotherapy for colorectal cancer in the elderly. World J. Gastroenterol., 2015, 21(17), 5158-5166.
[http://dx.doi.org/10.3748/wjg.v21.i17.5158] [PMID: 25954089]
[25]
Saltz, L.B.; Kemeny, N.E. Adjuvant chemotherapy of colorectal cancer. Oncologist, 1996, 1(1 & 2), 22-29.
[PMID: 10387965]
[26]
Amin, A.R.M.R.; Kucuk, O.; Khuri, F.R.; Shin, D.M. Perspectives for cancer prevention with natural compounds. J. Clin. Oncol., 2009, 27(16), 2712-2725.
[http://dx.doi.org/10.1200/JCO.2008.20.6235]
[27]
Li, Y-H.; Niu, Y-B.; Sun, Y.; Zhang, F.; Liu, C-X.; Fan, L.; Mei, Q-B. Role of phytochemicals in colorectal cancer prevention. World J. Gastroenterol., 2015, 21(31), 9262-9272.
[http://dx.doi.org/10.3748/wjg.v21.i31.9262] [PMID: 26309353]
[28]
Singh, P.; Goyal, G.K. Dietary Lycopene: Its properties and anticarcinogenic effects. Compr. Rev. Food Sci. Food Saf., 2008, 7(3), 255-270.
[http://dx.doi.org/10.1111/j.1541-4337.2008.00044.x]
[29]
Das, T.; Sa, G.; Saha, B.; Das, K. Multifocal signal modulation therapy of cancer: Ancient weapon, modern targets. Mol. Cell. Biochem., 2010, 336(1-2), 85-95.
[http://dx.doi.org/10.1007/s11010-009-0269-0] [PMID: 19826768]
[30]
Gupta, M.K.; Vadde, R. Insights into the structure-function relationship of both wild and mutant zinc transporter ZnT8 in human: A computational structural biology approach. J. Biomol. Struct. Dyn., 2019, 1-15.
[http://dx.doi.org/10.1080/07391102.2019.1567391] [PMID: 30633652]
[31]
Gupta, M.K.; Vadde, R. In silico identification of natural product inhibitors for γ-secretase activating protein, a therapeutic target for Alzheimer’s Disease. J. Cell. Biochem., 2018.
[http://dx.doi.org/10.1002/jcb.28316] [PMID: 30565717]
[32]
Goel, A.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin as “Curecumin”: From kitchen to clinic. Biochem. Pharmacol., 2008, 75(4), 787-809.
[http://dx.doi.org/10.1016/j.bcp.2007.08.016] [PMID: 17900536]
[33]
Aggarwal, B.B.; Surh, Y-J.; Shishodia, S. The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease; New York City: Springer Science & Business Media, 2007.
[http://dx.doi.org/10.1007/978-0-387-46401-5]
[34]
Prasad, K.; Mantha, S.V.; Kalra, J.; Lee, P. Prevention of hypercholesterolemic atherosclerosis by garlic, an antixoidant. J. Cardiovasc. Pharmacol. Ther., 1997, 2(4), 309-320.
[http://dx.doi.org/10.1177/107424849700200409] [PMID: 10684472]
[35]
Bachmeier, B.E.; Killian, P.; Pfeffer, U.; Nerlich, A.G. Novel aspects for the application of curcumin in chemoprevention of various cancers. Front. Biosci. (Schol. Ed.), 2010, 2, 697-717.
[http://dx.doi.org/10.2741/s95] [PMID: 20036978]
[36]
Panda, A.K.; Chakraborty, D.; Sarkar, I.; Khan, T.; Sa, G. New insights into therapeutic activity and anticancer properties of curcumin. J. Exp. Pharmacol., 2017, 9, 31-45.
[http://dx.doi.org/10.2147/JEP.S70568] [PMID: 28435333]
[37]
Aggarwal, B.B.; Takada, Y.; Oommen, O.V. From chemoprevention to chemotherapy: Common targets and common goals. Expert Opin. Investig. Drugs, 2004, 13(10), 1327-1338.
[http://dx.doi.org/10.1517/13543784.13.10.1327] [PMID: 15461561]
[38]
Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J., 2013, 15(1), 195-218.
[http://dx.doi.org/10.1208/s12248-012-9432-8] [PMID: 23143785]
[39]
Sanidad, K.Z.; Sukamtoh, E.; Xiao, H.; McClements, D.J.; Zhang, G. Curcumin: Recent advances in the development of strategies to improve oral bioavailability. Annu. Rev. Food Sci. Technol., 2019, 10, 597-617.
[http://dx.doi.org/10.1146/annurev-food-032818-121738] [PMID: 30633561]
[40]
Lopresti, A.L. The problem of curcumin and its bioavailability: could its gastrointestinal influence contribute to its overall health-enhancing effects? Adv. Nutr., 2018, 9(1), 41-50.
[http://dx.doi.org/10.1093/advances/nmx011] [PMID: 29438458]
[41]
The, H.C.; Florez de Sessions, P.; Jie, S.; Pham Thanh, D.; Thompson, C.N.; Nguyen Ngoc Minh, C.; Chu, C.W.; Tran, T-A.; Thomson, N.R.; Thwaites, G.E.; Rabaa, M.A.; Hibberd, M.; Baker, S. Assessing gut microbiota perturbations during the early phase of infectious diarrhea in Vietnamese children. Gut Microbes, 2018, 9(1), 38-54.
[http://dx.doi.org/10.1080/19490976.2017.1361093] [PMID: 28767339]
[42]
Praharaj, A.B.; Goenka, R.K.; Dixit, S.; Gupta, M.K.; Kar, S.K.; Negi, S. Lacto-vegetarian diet and correlation of fasting blood sugar with lipids in population practicing sedentary lifestyle. Ecol. Food Nutr., 2017, 56(5), 351-363.
[http://dx.doi.org/10.1080/03670244.2017.1337570] [PMID: 28891681]
[43]
Velmurugan, G. Gut microbiota in toxicological risk assessment of drugs and chemicals: The need of hour. Gut Microbes, 2018, 9(5), 465-468.
[http://dx.doi.org/10.1080/19490976.2018.1445955] [PMID: 29509057]
[44]
Viennois, E.; Chassaing, B. First victim, later aggressor: How the intestinal microbiota drives the pro-inflammatory effects of dietary emulsifiers? Gut Microbes, 2018, 1-4, 289-291.
[http://dx.doi.org/10.1080/19490976.2017.1421885] [PMID: 29437527]
[45]
Zackular, J.P.; Skaar, E.P. The role of zinc and nutritional immunity in Clostridium difficile infection. Gut Microbes, 2018, 9(5), 469-476.
[http://dx.doi.org/10.1080/19490976.2018.1448354] [PMID: 29533126]
[46]
Li, Z.; Sun, Y.; Song, M.; Li, F.; Xiao, H. Gut microbiota dictate metabolic fate of curcumin in the colon. FASEB J, 2017, 31(1_supplement), 646.12-646.12.
[http://dx.doi.org/10.1096/fasebj.31.1_supplement.646.12.]
[47]
Tan, S.; Calani, L.; Bresciani, L.; Dall’asta, M.; Faccini, A.; Augustin, M.A.; Gras, S.L.; Del Rio, D. The degradation of curcuminoids in a human faecal fermentation model. Int. J. Food Sci. Nutr., 2015, 66(7), 790-796.
[http://dx.doi.org/10.3109/09637486.2015.1095865] [PMID: 26471074]
[48]
Burapan, S.; Kim, M.; Han, J. Curcuminoid demethylation as an alternative metabolism by human intestinal microbiota. J. Agric. Food Chem., 2017, 65(16), 3305-3310.
[http://dx.doi.org/10.1021/acs.jafc.7b00943] [PMID: 28401758]
[49]
Sa, G.; Das, T. Anti cancer effects of curcumin: Cycle of life and death. Cell Div., 2008, 3, 14.
[http://dx.doi.org/10.1186/1747-1028-3-14] [PMID: 18834508]
[50]
Choudhuri, T.; Pal, S.; Das, T.; Sa, G. Curcumin selectively induces apoptosis in deregulated cyclin D1-expressed cells at G2 phase of cell cycle in a p53-dependent manner. J. Biol. Chem., 2005, 280(20), 20059-20068.
[http://dx.doi.org/10.1074/jbc.M410670200] [PMID: 15738001]
[51]
William, B.M.; Goodrich, A.; Peng, C.; Li, S. Curcumin inhibits proliferation and induces apoptosis of leukemic cells expressing wild-type or T315I-BCR-ABL and prolongs survival of mice with acute lymphoblastic leukemia. Hematology, 2008, 13(6), 333-343.
[http://dx.doi.org/10.1179/102453308X343437] [PMID: 19055861]
[52]
Troselj, K.G.; Kujundzic, R.N. Curcumin in combined cancer therapy. Curr. Pharm. Des., 2014, 20(42), 6682-6696.
[http://dx.doi.org/10.2174/1381612820666140826154601] [PMID: 25341940]
[53]
Tan, T-W.; Tsai, H-R.; Lu, H-F.; Lin, H-L.; Tsou, M-F.; Lin, Y-T.; Tsai, H-Y.; Chen, Y-F.; Chung, J-G. Curcumin-induced cell cycle arrest and apoptosis in human acute promyelocytic leukemia HL-60 cells via MMP changes and caspase-3 activation. Anticancer Res., 2006, 26(6B), 4361-4371.
[PMID: 17201156]
[54]
Pan, M-H.; Chang, W-L.; Lin-Shiau, S-Y.; Ho, C-T.; Lin, J-K. Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells. J. Agric. Food Chem., 2001, 49(3), 1464-1474.
[http://dx.doi.org/10.1021/jf001129v] [PMID: 11312881]
[55]
Skommer, J.; Wlodkowic, D.; Pelkonen, J. Cellular foundation of curcumin-induced apoptosis in follicular lymphoma cell lines. Exp. Hematol., 2006, 34(4), 463-474.
[http://dx.doi.org/10.1016/j.exphem.2005.12.015] [PMID: 16569593]
[56]
Tian, F.; Song, M.; Xu, P-R.; Liu, H-T.; Xue, L-X. Curcumin promotes apoptosis of esophageal squamous carcinoma cell lines through inhibition of NF-kappaB signaling pathway. Chin. J. Cancer, 2008, 27(6), 566-570.
[PMID: 18570726]
[57]
Swamy, M.V.; Citineni, B.; Patlolla, J.M.R.; Mohammed, A.; Zhang, Y.; Rao, C.V. Prevention and treatment of pancreatic cancer by curcumin in combination with omega-3 fatty acids. Nutr. Cancer, 2008, 60(Suppl. 1), 81-89.
[http://dx.doi.org/10.1080/01635580802416703] [PMID: 19003584]
[58]
Choudhuri, T.; Pal, S.; Agwarwal, M.L.; Das, T.; Sa, G. Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett., 2002, 512(1-3), 334-340.
[http://dx.doi.org/10.1016/S0014-5793(02)02292-5] [PMID: 11852106]
[59]
Lin, S-S.; Huang, H-P.; Yang, J-S.; Wu, J-Y.; Hsia, T-C.; Lin, C.C.; Lin, C.W.; Kuo, C.L.; Gibson Wood, W.; Chung, J.G. DNA damage and endoplasmic reticulum stress mediated curcumin-induced cell cycle arrest and apoptosis in human lung carcinoma A-549 cells through the activation caspases cascade- and mitochondrial-dependent pathway. Cancer Lett., 2008, 272(1), 77-90.
[http://dx.doi.org/10.1016/j.canlet.2008.06.031] [PMID: 18701210]
[60]
Huang, A-C.; Lin, S-Y.; Su, C-C.; Lin, S-S.; Ho, C-C.; Hsia, T-C.; Chiu, T-H.; Yu, C-S.; Ip, S-W.; Lin, T-P.; Chung, J.G. Effects of curcumin on N-bis(2-hydroxypropyl) nitrosamine (DHPN)-induced lung and liver tumorigenesis in BALB/c mice in vivo. In Vivo, 2008, 22(6), 781-785.
[PMID: 19181006]
[61]
Perkins, S.; Verschoyle, R.D.; Hill, K.; Parveen, I.; Threadgill, M.D.; Sharma, R.A.; Williams, M.L.; Steward, W.P.; Gescher, A.J. Chemopreventive efficacy and pharmacokinetics of curcumin in the min/+ mouse, a model of familial adenomatous polyposis. Cancer Epidemiol. Biomarkers Prev., 2002, 11(6), 535-540.
[PMID: 12050094]
[62]
Chen, H.; Zhang, Z.S.; Zhang, Y.L.; Zhou, D.Y. Curcumin inhibits cell proliferation by interfering with the cell cycle and inducing apoptosis in colon carcinoma cells. Anticancer Res., 1999, 19(5A), 3675-3680.
[PMID: 10625938]
[63]
Sandur, S.K.; Pandey, M.K.; Sung, B.; Ahn, K.S.; Murakami, A.; Sethi, G.; Limtrakul, P.; Badmaev, V.; Aggarwal, B.B. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis, 2007, 28(8), 1765-1773.
[http://dx.doi.org/10.1093/carcin/bgm123] [PMID: 17522064]
[64]
Scott, D.W.; Loo, G. Curcumin-induced GADD153 gene up-regulation in human colon cancer cells. Carcinogenesis, 2004, 25(11), 2155-2164.
[http://dx.doi.org/10.1093/carcin/bgh239] [PMID: 15271854]
[65]
Langner, E.; Lemieszek, M.K.; Rzeski, W. Lycopene, sulforaphane, quercetin, and curcumin applied together show improved antiproliferative potential in colon cancer cells in vitro. J. Food Biochem., 2019, 43(4)e12802
[http://dx.doi.org/10.1111/jfbc.12802] [PMID: 31353575]
[66]
Montgomery, A.; Adeyeni, T.; San, K.; Heuertz, R.M.; Ezekiel, U.R. Curcumin sensitizes silymarin to exert synergistic anticancer activity in colon cancer cells. J. Cancer, 2016, 7(10), 1250-1257.
[http://dx.doi.org/10.7150/jca.15690] [PMID: 27390600]
[67]
Sandur, S.K.; Deorukhkar, A.; Pandey, M.K.; Pabón, A.M.; Shentu, S.; Guha, S.; Aggarwal, B.B.; Krishnan, S. Curcumin modulates the radiosensitivity of colorectal cancer cells by suppressing constitutive and inducible nf-kb activity. Int. J. Radiat. Oncol. Biol. Phys., 2009, 75(2), 534-542.
[http://dx.doi.org/10.1016/j.ijrobp.2009.06.034] [PMID: 19735878]
[68]
Shpitz, B.; Giladi, N.; Sagiv, E.; Lev-Ari, S.; Liberman, E.; Kazanov, D.; Arber, N. Celecoxib and curcumin additively inhibit the growth of colorectal cancer in a rat model. Digestion, 2006, 74(3-4), 140-144.
[http://dx.doi.org/10.1159/000098655] [PMID: 17228149]
[69]
Patlolla, J.M.; Zhang, Y.; Citineni, B.; Khan, R.; Choi, C-I.; Rao, C. Augmentation of curcumin-induced colon cancer chemopreventive properties by piperine, and β-escin in the rat model and human colon cancer cell lines. Cancer Res., 2008, 68(9)(Suppl.), 471-471.
[70]
Gao, Y.; Li, Z.; Sun, M.; Li, H.; Guo, C.; Cui, J.; Li, A.; Cao, F.; Xi, Y.; Lou, H.; Zhai, G. Preparation, characterization, pharmacokinetics, and tissue distribution of curcumin nanosuspension with TPGS as stabilizer. Drug Dev. Ind. Pharm., 2010, 36(10), 1225-1234.
[http://dx.doi.org/10.3109/03639041003695139] [PMID: 20545506]
[71]
Chaurasia, S.; Chaubey, P.; Patel, R.R.; Kumar, N.; Mishra, B. Curcumin-polymeric nanoparticles against colon-26 tumor-bearing mice: Cytotoxicity, pharmacokinetic and anticancer efficacy studies. Drug Dev. Ind. Pharm., 2016, 42(5), 694-700.
[http://dx.doi.org/10.3109/03639045.2015.1064941] [PMID: 26165247]
[72]
Carroll, R.E.; Benya, R.V.; Turgeon, D.K.; Vareed, S.; Neuman, M.; Rodriguez, L.; Kakarala, M.; Carpenter, P.M.; McLaren, C.; Meyskens, F.L., Jr; Brenner, D.E. Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev. Res. (Phila.), 2011, 4(3), 354-364.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0098] [PMID: 21372035]
[73]
Garcea, G.; Berry, D.P.; Jones, D.J.L.; Singh, R.; Dennison, A.R.; Farmer, P.B.; Sharma, R.A.; Steward, W.P.; Gescher, A.J. Consumption of the putative chemopreventive agent curcumin by cancer patients: Assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol. Biomarkers Prev., 2005, 14(1), 120-125.
[PMID: 15668484]
[74]
Patel, B.B.; Gupta, D.; Elliott, A.A.; Sengupta, V.; Yu, Y.; Majumdar, A.P.N. Curcumin targets FOLFOX-surviving colon cancer cells via inhibition of EGFRs and IGF-1R. Anticancer Res., 2010, 30(2), 319-325.
[PMID: 20332435]
[75]
Song, G.; Mao, Y.B.; Cai, Q.F.; Yao, L.M.; Ouyang, G.L.; Bao, S.D. Curcumin induces human HT-29 colon adenocarcinoma cell apoptosis by activating p53 and regulating apoptosis-related protein expression. Braz. J. Med. Biol. Res., 2005, 38(12), 1791-1798.
[http://dx.doi.org/10.1590/S0100-879X2005001200007] [PMID: 16302093]
[76]
Yin, J.; Wang, L.; Wang, Y.; Shen, H.; Wang, X.; Wu, L. Curcumin reverses oxaliplatin resistance in human colorectal cancer via regulation of TGF-β/Smad2/3 signaling pathway. OncoTargets Ther., 2019, 12, 3893-3903.
[http://dx.doi.org/10.2147/OTT.S199601] [PMID: 31190888]
[77]
James, M.I.; Iwuji, C.; Irving, G.; Karmokar, A.; Higgins, J.A.; Griffin-Teal, N.; Thomas, A.; Greaves, P.; Cai, H.; Patel, S.R.; Morgan, B.; Dennison, A.; Metcalfe, M.; Garcea, G.; Lloyd, D.M.; Berry, D.P.; Steward, W.P.; Howells, L.M.; Brown, K. Curcumin inhibits cancer stem cell phenotypes in ex vivo models of colorectal liver metastases, and is clinically safe and tolerable in combination with FOLFOX chemotherapy. Cancer Lett., 2015, 364(2), 135-141.
[http://dx.doi.org/10.1016/j.canlet.2015.05.005] [PMID: 25979230]
[78]
McFadden, R-M.T.; Larmonier, C.B.; Shehab, K.W.; Midura-Kiela, M.; Ramalingam, R.; Harrison, C.A.; Besselsen, D.G.; Chase, J.H.; Caporaso, J.G.; Jobin, C.; Ghishan, F.K.; Kiela, P.R. The role of curcumin in modulating colonic microbiota during colitis and colon cancer prevention. Inflamm. Bowel Dis., 2015, 21(11), 2483-2494.
[http://dx.doi.org/10.1097/MIB.0000000000000522] [PMID: 26218141]
[79]
Cheng, A.L.; Hsu, C.H.; Lin, J.K.; Hsu, M.M.; Ho, Y.F.; Shen, T.S.; Ko, J.Y.; Lin, J.T.; Lin, B.R.; Ming-Shiang, W.; Yu, H.S.; Jee, S.H.; Chen, G.S.; Chen, T.M.; Chen, C.A.; Lai, M.K.; Pu, Y.S.; Pan, M.H.; Wang, Y.J.; Tsai, C.C.; Hsieh, C.Y. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res., 2001, 21(4B), 2895-2900.
[PMID: 11712783]
[80]
Sharma, R.A.; McLelland, H.R.; Hill, K.A.; Ireson, C.R.; Euden, S.A.; Manson, M.M.; Pirmohamed, M.; Marnett, L.J.; Gescher, A.J.; Steward, W.P. Pharmacodynamic and pharmacokinetic study of oral curcuma extract in patients with colorectal cancer. Clin. Cancer Res., 2001, 7(7), 1894-1900.
[PMID: 11448902]
[81]
Majumdar, A.P.N. Role of curcumin in preventing familial adenomatous polyposis. Dig. Med. Res., 2018, 1, 13.
[http://dx.doi.org/10.21037/dmr.2018.09.01] [PMID: 30381803]
[82]
Wojcik, M.; Krawczyk, M.; Wojcik, P.; Cypryk, K.; Wozniak, L.A. Molecular mechanisms underlying curcumin-mediated therapeutic effects in type 2 diabetes and cancer. Oxidat. Med. Cell. Long., 2018, 2018, Article ID 9698258.
[83]
Karunagaran, D.; Rashmi, R.; Kumar, T.R.S. Induction of apoptosis by curcumin and its implications for cancer therapy. Curr. Cancer Drug Targets, 2005, 5(2), 117-129.
[http://dx.doi.org/10.2174/1568009053202081] [PMID: 15810876]
[84]
Perrone, D.; Ardito, F.; Giannatempo, G.; Dioguardi, M.; Troiano, G.; Lo Russo, L.D.E.; Lillo, A.; Laino, L.; Lo Muzio, L. Biological and therapeutic activities, and anticancer properties of curcumin. Exp. Ther. Med., 2015, 10(5), 1615-1623.
[http://dx.doi.org/10.3892/etm.2015.2749] [PMID: 26640527]
[85]
Mukhopadhyay, A.; Bueso-Ramos, C.; Chatterjee, D.; Pantazis, P.; Aggarwal, B.B. Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene, 2001, 20(52), 7597-7609.
[http://dx.doi.org/10.1038/sj.onc.1204997] [PMID: 11753638]
[86]
Bush, J.A.; Cheung, K.J., Jr; Li, G. Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase-8 pathway independent of p53. Exp. Cell Res., 2001, 271(2), 305-314.
[http://dx.doi.org/10.1006/excr.2001.5381] [PMID: 11716543]
[87]
Tuorkey, M.J. Curcumin a potent cancer preventive agent: Mechanisms of cancer cell killing. Interv. Med. Appl. Sci., 2014, 6(4), 139-146.
[http://dx.doi.org/10.1556/IMAS.6.2014.4.1] [PMID: 25598986]
[88]
Salvioli, S.; Sikora, E.; Cooper, E.L.; Franceschi, C. Curcumin in cell death processes: A challenge for CAM of age-related pathologies. Evid. Based Complement. Alternat. Med., 2007, 4(2), 181-190.
[http://dx.doi.org/10.1093/ecam/nem043] [PMID: 17549234]
[89]
Yang, J-Y.; Zhong, X.; Yum, H-W.; Lee, H-J.; Kundu, J.K.; Na, H-K.; Surh, Y-J. Curcumin inhibits STAT3 signaling in the colon of dextran sulfate sodium-treated mice. J. Cancer Prev., 2013, 18(2), 186-191.
[http://dx.doi.org/10.15430/JCP.2013.18.2.186] [PMID: 25337545]
[90]
Vallianou, N.G.; Evangelopoulos, A.; Schizas, N.; Kazazis, C. Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res., 2015, 35(2), 645-651.
[PMID: 25667441]
[91]
Ptak, C.; Petronis, A. Epigenetics and complex disease: From etiology to new therapeutics. Annu. Rev. Pharmacol. Toxicol., 2008, 48, 257-276.
[http://dx.doi.org/10.1146/annurev.pharmtox.48.113006.094731] [PMID: 17883328]
[92]
Balasubramanyam, K.; Varier, R.A.; Altaf, M.; Swaminathan, V.; Siddappa, N.B.; Ranga, U.; Kundu, T.K. Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J. Biol. Chem., 2004, 279(49), 51163-51171.
[http://dx.doi.org/10.1074/jbc.M409024200] [PMID: 15383533]
[93]
Reuter, S.; Gupta, S.C.; Park, B.; Goel, A.; Aggarwal, B.B. Epigenetic changes induced by curcumin and other natural compounds. Genes Nutr., 2011, 6(2), 93-108.
[http://dx.doi.org/10.1007/s12263-011-0222-1] [PMID: 21516481]
[94]
Azad, G.K.; Singh, V.; Golla, U.; Tomar, R.S. Depletion of cellular iron by curcumin leads to alteration in histone acetylation and degradation of Sml1p in Saccharomyces cerevisiae. PLoS One, 2013, 8(3)e59003
[http://dx.doi.org/10.1371/journal.pone.0059003] [PMID: 23520547]
[95]
Yu, J.; Peng, Y.; Wu, L-C.; Xie, Z.; Deng, Y.; Hughes, T.; He, S.; Mo, X.; Chiu, M.; Wang, Q-E.; He, X.; Liu, S.; Grever, M.R.; Chan, K.K.; Liu, Z. Curcumin down-regulates DNA methyltransferase 1 and plays an anti-leukemic role in acute myeloid leukemia. PLoS One, 2013, 8(2)e55934
[http://dx.doi.org/10.1371/journal.pone.0055934] [PMID: 23457487]
[96]
Park, J.; Conteas, C.N. Anti-carcinogenic properties of curcumin on colorectal cancer. World J. Gastrointest. Oncol., 2010, 2(4), 169-176.
[http://dx.doi.org/10.4251/wjgo.v2.i4.169] [PMID: 21160593]
[97]
Pin, A-L.; Houle, F.; Huot, J. Recent advances in colorectal cancer research: The microenvironment impact. Cancer Microenviron., 2011, 4(2), 127-131.
[http://dx.doi.org/10.1007/s12307-011-0070-y] [PMID: 21710272]
[98]
Cruz-Correa, M.; Shoskes, D.A.; Sanchez, P.; Zhao, R.; Hylind, L.M.; Wexner, S.D.; Giardiello, F.M. Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis. Clin. Gastroenterol. Hepatol., 2006, 4(8), 1035-1038.
[http://dx.doi.org/10.1016/j.cgh.2006.03.020] [PMID: 16757216]
[99]
Fadus, M.C.; Lau, C.; Bikhchandani, J.; Lynch, H.T. Curcumin: An age-old anti-inflammatory and anti-neoplastic agent. J. Tradit. Complement. Med., 2016, 7(3), 339-346.
[http://dx.doi.org/10.1016/j.jtcme.2016.08.002] [PMID: 28725630]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 12
Year: 2019
Published on: 20 January, 2020
Page: [977 - 987]
Pages: 11
DOI: 10.2174/1389200220666191007153238
Price: $65

Article Metrics

PDF: 34
HTML: 4