Molecular Markers of Regulatory T Cells in Cancer Immunotherapy with Special Focus on Acute Myeloid Leukemia (AML) - A Systematic Review

Author(s): Parham Jabbarzadeh Kaboli, Lingling Zhang, Shixin Xiang, Jing Shen, Mingxing Li, Yueshui Zhao, Xu Wu, Qijie Zhao, Hanyu Zhang, Ling Lin, Jianhua Yin, Yuanlin Wu, Lin Wan, Tao Yi, Xiang Li, Chi Hin Cho, Jing Li*, Zhangang Xiao*, Qinglian Wen*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 28 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Abstract:

The next-generation immunotherapy can only be effective if researchers have an in-depth understanding of the function and regulation of Treg cells in antitumor immunity combined with the discovery of new immunity targets. This can enhance clinical efficacy of future and novel therapies and reduces any adverse reactions arising from the latter. This review discusses tumor treatment strategies using regulatory T (Treg) cell therapy in a Tumor Microenvironment (TME). It also discusses factors affecting TME instability as well as relevant treatments to prevent future immune disorders. It is prognosticated that PD-1 inhibitors are risky and their adverse effects should be taken into account when they are administered to treat Acute Myeloid Leukemia (AML), lung adenocarcinoma, and prostate adenocarcinoma. In contrast, Treg molecular markers FoxP3 and CD25 analyzed here have stronger expression in almost all kinds of cancers compared with normal people. However, CD25 inhibitors are more effective compared to FoxP3 inhibitors, especially in combination with TGF-β blockade, in predicting patient survival. According to the data obtained from the Cancer Genome Atlas, we then concentrate on AML immunotherapy and discuss different therapeutic strategies including anti-CD25/IL-2, anti-CTLA-4, anti-IDO, antityrosine kinase receptor, and anti-PI3K therapies and highlight the recent advances and clinical achievements in AML immunotherapy. In order to prognosticate the risk and adverse effects of key target inhibitors (namely against CTLA-4, FoxP3, CD25, and PD-1), we finally analyzed and compared the Cancer Genome Atlas derived from ten common cancers. This review shows that Treg cells are strongly increased in AML and the comparative review of key markers shows that Tregbased immunotherapy is not effective for all kinds of cancer. Therefore, blocking CD25(+)FoxP3(+) Treg cells is suggested in AML more than other kinds of cancer; meanwhile, Treg markers studied in other cancers have also great lessons for AML immunotherapy.

Keywords: Regulatory T cells, tumor microenvironment, cancer immunotherapy, CD25, FoxP3, PD-1, CTLA-4.

[1]
Zhang, H.; Kong, H.; Zeng, X.; Guo, L.; Sun, X.; He, S. Subsets of regulatory T cells and their roles in allergy. J. Transl. Med., 2014, 12, 125.
[http://dx.doi.org/10.1186/1479-5876-12-125] [PMID: 24886492]
[2]
Sakaguchi, S.; Sakaguchi, N.; Asano, M.; Itoh, M.; Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol., 1995, 155(3), 1151-1164.
[PMID: 7636184]
[3]
Lourenço, E.V.; La Cava, A. Natural regulatory T cells in autoimmunity. Autoimmunity, 2011, 44(1), 33-42.
[http://dx.doi.org/10.3109/08916931003782155] [PMID: 21091291]
[4]
Ellis, S.D.P.; McGovern, J.L.; van Maurik, A.; Howe, D.; Ehrenstein, M.R.; Notley, C.A. Induced CD8+FoxP3+ Treg cells in rheumatoid arthritis are modulated by p38 phosphorylation and monocytes expressing membrane tumor necrosis factor α and CD86. Arthritis Rheumatol., 2014, 66(10), 2694-2705.
[http://dx.doi.org/10.1002/art.38761] [PMID: 24980778]
[5]
Chakraborty, S.; Panda, A.K.; Bose, S.; Roy, D.; Kajal, K.; Guha, D.; Sa, G. Transcriptional regulation of FOXP3 requires integrated activation of both promoter and CNS regions in tumor-induced CD8+ Treg cells. Sci. Rep., 2017, 7(1), 1628.
[http://dx.doi.org/10.1038/s41598-017-01788-z] [PMID: 28487507]
[6]
Ohue, Y.; Nishikawa, H. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci., 2019, 110(7), 2080-2089.
[http://dx.doi.org/10.1111/cas.14069] [PMID: 31102428]
[7]
Charbonnier, L-M.; Chatila, T.A. Phenotypic and functional characterization of regulatory T cell populations In: Signaling Mechanisms Regulating T Cell Diversity and Function; Soboloff, J.; Kappes, D.J., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, 2018; pp. 105-118.
[8]
Li, W.; Geng, L.; Liu, X.; Gui, W.; Qi, H. Recombinant adiponectin alleviates abortion in mice by regulating Th17/Treg imbalance via p38MAPK-STAT5 pathway. Biol. Reprod., 2019, 100(4), 1008-1017.
[http://dx.doi.org/10.1093/biolre/ioy251] [PMID: 30496353]
[9]
Li, M.O.; Rudensky, A.Y. T cell receptor signalling in the control of regulatory T cell differentiation and function. Nat. Rev. Immunol., 2016, 16(4), 220-233.
[http://dx.doi.org/10.1038/nri.2016.26] [PMID: 27026074]
[10]
Chao, J.L.; Savage, P.A. Unlocking the Complexities of Tumor-Associated Regulatory T Cells. J. Immunol., 2018, 200(2), 415-421.
[http://dx.doi.org/10.4049/jimmunol.1701188] [PMID: 29311383]
[11]
Elkord, E. Thymus-Derived, Peripherally Derived, and in vitro-Induced T Regulatory Cells. Front. Immunol., 2014, 5, 17.
[http://dx.doi.org/10.3389/fimmu.2014.00017] [PMID: 24478778]
[12]
Met, Ö.; Jensen, K.M.; Chamberlain, C.A.; Donia, M.; Svane, I.M. Principles of adoptive T cell therapy in cancer. Semin. Immunopathol., 2019, 41(1), 49-58.
[http://dx.doi.org/10.1007/s00281-018-0703-z] [PMID: 30187086]
[13]
Silverman, E. Kymriah: A Sign of More Difficult Decisions To Come. Manag. Care, 2018, 27(5), 17.
[PMID: 29763402]
[14]
MacDonald, K.N.; Piret, J.M.; Levings, M.K. Methods to manufacture regulatory T cells for cell therapy. Clin. Exp. Immunol., 2019, 197(1), 52-63.
[http://dx.doi.org/10.1111/cei.13297] [PMID: 30913302]
[15]
Chiang, C.L-L.; Balint, K.; Coukos, G.; Kandalaft, L.E. Potential approaches for more successful dendritic cell-based immunotherapy. Expert Opin. Biol. Ther., 2015, 15(4), 569-582.
[http://dx.doi.org/10.1517/14712598.2015.1000298] [PMID: 25553913]
[16]
Jeffery, H.C.; Braitch, M.K.; Brown, S.; Oo, Y.H. Clinical Potential of Regulatory T Cell Therapy in Liver Diseases: An Overview and Current Perspectives. Front. Immunol., 2016, 7, 334.
[http://dx.doi.org/10.3389/fimmu.2016.00334] [PMID: 27656181]
[17]
Salomon, B.L.; Leclerc, M.; Tosello, J.; Ronin, E.; Piaggio, E.; Cohen, J.L. Tumor Necrosis Factor α and Regulatory T Cells in Oncoimmunology. Front. Immunol., 2018, 9, 444.
[http://dx.doi.org/10.3389/fimmu.2018.00444] [PMID: 29593717]
[18]
Passat, T.; Touchefeu, Y.; Gervois, N.; Jarry, A.; Bossard, C.; Bennouna, J. [Physiopathological mechanisms of immune-related adverse events induced by anti-CTLA-4, anti-PD-1 and anti-PD-L1 antibodies in cancer treatment]. Bull. Cancer, 2018, 105(11), 1033-1041.
[http://dx.doi.org/10.1016/j.bulcan.2018.07.005] [PMID: 30244981]
[19]
De Kouchkovsky, I.; Abdul-Hay, M. ‘Acute myeloid leukemia: a comprehensive review and 2016 update’. Blood Cancer J., 2016, 6(7) e441
[http://dx.doi.org/10.1038/bcj.2016.50] [PMID: 27367478]
[20]
Corthay, A. How do regulatory T cells work? Scand. J. Immunol., 2009, 70(4), 326-336.
[http://dx.doi.org/10.1111/j.1365-3083.2009.02308.x] [PMID: 19751267]
[21]
Fisher, S.A.; Aston, W.J.; Chee, J.; Khong, A.; Cleaver, A.L.; Solin, J.N.; Ma, S.; Lesterhuis, W.J.; Dick, I.; Holt, R.A.; Creaney, J.; Boon, L.; Robinson, B.; Lake, R.A. Transient Treg depletion enhances therapeutic anti-cancer vaccination. Immun. Inflamm. Dis., 2016, 5(1), 16-28.
[http://dx.doi.org/10.1002/iid3.136] [PMID: 28250921]
[22]
Luo, J.; Song, J.; Zhang, H.; Zhang, F.; Liu, H.; Li, L.; Zhang, Z.; Chen, L.; Zhang, M.; Lin, D.; Lin, M.; Zhou, R. Melatonin mediated Foxp3-downregulation decreases cytokines production via the TLR2 and TLR4 pathways in H. pylori infected mice. Int. Immunopharmacol., 2018, 64, 116-122.
[http://dx.doi.org/10.1016/j.intimp.2018.08.034] [PMID: 30173051]
[23]
Khalife, E.; Khodadadi, A.; Talaeizadeh, A.; Rahimian, L.; Nemati, M.; Jafarzadeh, A. Overexpression of Regulatory T Cell-Related Markers (FOXP3, CTLA-4 and GITR) by Peripheral Blood Mononuclear Cells from Patients with Breast Cancer. Asian Pac. J. Cancer Prev., 2018, 19(11), 3019-3025.
[http://dx.doi.org/10.31557/APJCP.2018.19.11.3019] [PMID: 30484986]
[24]
Ying, L.; Yan, F.; Meng, Q.; Yu, L.; Yuan, X.; Gantier, M.P.; Williams, B.R.G.; Chan, D.W.; Shi, L.; Tu, Y.; Ni, P.; Wang, X.; Chen, W.; Zang, X.; Xu, D.; Hu, Y. PD-L1 expression is a prognostic factor in subgroups of gastric cancer patients stratified according to their levels of CD8 and FOXP3 immune markers. OncoImmunology, 2018, 7(6) e1433520
[http://dx.doi.org/10.1080/2162402X.2018.1433520] [PMID: 29872566]
[25]
Curiel, T.J.; Coukos, G.; Zou, L.; Alvarez, X.; Cheng, P.; Mottram, P.; Evdemon-Hogan, M.; Conejo-Garcia, J.R.; Zhang, L.; Burow, M.; Zhu, Y.; Wei, S.; Kryczek, I.; Daniel, B.; Gordon, A.; Myers, L.; Lackner, A.; Disis, M.L.; Knutson, K.L.; Chen, L.; Zou, W. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med., 2004, 10(9), 942-949.
[http://dx.doi.org/10.1038/nm1093] [PMID: 15322536]
[26]
Overacre-Delgoffe, A.E.; Vignali, D.A.A. Treg Fragility: A Prerequisite for Effective Antitumor Immunity? Cancer Immunol. Res., 2018, 6(8), 882-887.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0066] [PMID: 30068755]
[27]
Onizuka, S.; Tawara, I.; Shimizu, J.; Sakaguchi, S.; Fujita, T.; Nakayama, E. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res., 1999, 59(13), 3128-3133.
[PMID: 10397255]
[28]
Dannull, J.; Su, Z.; Rizzieri, D.; Yang, B.K.; Coleman, D.; Yancey, D.; Zhang, A.; Dahm, P.; Chao, N.; Gilboa, E.; Vieweg, J. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J. Clin. Invest., 2005, 115(12), 3623-3633.
[http://dx.doi.org/10.1172/JCI25947] [PMID: 16308572]
[29]
Ohkusu-Tsukada, K.; Toda, M.; Udono, H.; Kawakami, Y.; Takahashi, K. Targeted inhibition of IL-10-secreting CD25- Treg via p38 MAPK suppression in cancer immunotherapy. Eur. J. Immunol., 2010, 40(4), 1011-1021.
[http://dx.doi.org/10.1002/eji.200939513] [PMID: 20127675]
[30]
Zhang, J.; Dunk, C.E.; Shynlova, O.; Caniggia, I.; Lye, S.J. TGFb1 suppresses the activation of distinct dNK subpopulations in preeclampsia. EBioMedicine, 2019, 39, 531-539.
[http://dx.doi.org/10.1016/j.ebiom.2018.12.015] [PMID: 30579870]
[31]
Curiel, T.J. Tregs and rethinking cancer immunotherapy. J. Clin. Invest., 2007, 117(5), 1167-1174.
[http://dx.doi.org/10.1172/JCI31202] [PMID: 17476346]
[32]
Zou, W.; Regulatory, T. Regulatory T cells, tumour immunity and immunotherapy. Nat. Rev. Immunol., 2006, 6(4), 295-307.
[http://dx.doi.org/10.1038/nri1806] [PMID: 16557261]
[33]
Jones, M.B.; Alvarez, C.A.; Johnson, J.L.; Zhou, J.Y.; Morris, N.; Cobb, B.A. CD45Rb-low effector T cells require IL-4 to induce IL-10 in FoxP3 Tregs and to protect mice from inflammation. PLoS One, 2019, 14(5) e0216893
[http://dx.doi.org/10.1371/journal.pone.0216893] [PMID: 31120919]
[34]
Kumar, P.; Saini, S.; Prabhakar, B.S. Cancer Immunotherapy with Check Point Inhibitor Can Cause Autoimmune Adverse Events Due to Loss of Treg Homeostasis. Semin. Cancer Biol., 2020, 64, 29-35.
[http://dx.doi.org/10.1016/j.semcancer.2019.01.006] [PMID: 30716481]
[35]
Apolo, A.B.; Infante, J.R.; Balmanoukian, A.; Patel, M.R.; Wang, D.; Kelly, K.; Mega, A.E.; Britten, C.D.; Ravaud, A.; Mita, A.C.; Safran, H.; Stinchcombe, T.E.; Srdanov, M.; Gelb, A.B.; Schlichting, M.; Chin, K.; Gulley, J.L. Avelumab, an Anti-Programmed Death-Ligand 1 Antibody, In Patients With Refractory Metastatic Urothelial Carcinoma: Results From a Multicenter, Phase Ib Study. J. Clin. Oncol., 2017, 35(19), 2117-2124.
[http://dx.doi.org/10.1200/JCO.2016.71.6795] [PMID: 28375787]
[36]
Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; Akerley, W.; van den Eertwegh, A.J.; Lutzky, J.; Lorigan, P.; Vaubel, J.M.; Linette, G.P.; Hogg, D.; Ottensmeier, C.H.; Lebbé, C.; Peschel, C.; Quirt, I.; Clark, J.I.; Wolchok, J.D.; Weber, J.S.; Tian, J.; Yellin, M.J.; Nichol, G.M.; Hoos, A.; Urba, W.J. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med., 2010, 363(8), 711-723.
[http://dx.doi.org/10.1056/NEJMoa1003466] [PMID: 20525992]
[37]
Leach, D.R.; Krummel, M.F.; Allison, J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science, 1996, 271(5256), 1734-1736.
[http://dx.doi.org/10.1126/science.271.5256.1734] [PMID: 8596936]
[38]
Shimizu, J.; Yamazaki, S.; Takahashi, T.; Ishida, Y.; Sakaguchi, S. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat. Immunol., 2002, 3(2), 135-142.
[http://dx.doi.org/10.1038/ni759] [PMID: 11812990]
[39]
McHugh, R.S.; Whitters, M.J.; Piccirillo, C.A.; Young, D.A.; Shevach, E.M.; Collins, M.; Byrne, M.C. CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity, 2002, 16(2), 311-323.
[http://dx.doi.org/10.1016/S1074-7613(02)00280-7] [PMID: 11869690]
[40]
Vence, L.; Bucktrout, S. L.; Fernandez Curbelo, I.; Blando, J.; Smith, B. M.; Mahne, A. E.; Lin, J. C.; Park, T.; Sai, T.; Pascua, E.; Chaparro-Riggers, J.; Sharma, P. Characterization and comparison of GITR expression in solid tumors. Clin Cancer Res., 2019, 25(21), 6501-6510.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-0289] [PMID: 31358539]
[41]
van Beek, A.A.; Zhou, G.; Doukas, M.; Boor, P.P.C.; Noordam, L.; Mancham, S.; Campos Carrascosa, L.; van der Heide-Mulder, M.; Polak, W.G.; Ijzermans, J.N.M.; Pan, Q.; Heirman, C.; Mahne, A.; Bucktrout, S.L.; Bruno, M.J.; Sprengers, D.; Kwekkeboom, J. GITR ligation enhances functionality of tumor-infiltrating T cells in hepatocellular carcinoma. Int. J. Cancer, 2019, 145(4), 1111-1124.
[http://dx.doi.org/10.1002/ijc.32181] [PMID: 30719701]
[42]
Zhang, X.; Guo, M.; Yang, J.; Zheng, Y.; Xiao, Y.; Liu, W.; Ren, F. Increased Expression of GARP in Papillary Thyroid Carcinoma. Endocr. Pathol., 2019, 30(1), 1-7.
[http://dx.doi.org/10.1007/s12022-018-9557-0] [PMID: 30443770]
[43]
Zimmer, N.; Kim, E.; Sprang, B.; Leukel, P.; Khafaji, F.; Ringel, F.; Sommer, C.; Tuettenberg, J.; Tuettenberg, A.; Tu-ettenberg, A. GARP as an Immune Regulatory Molecule in the Tumor Microenvironment of Glioblastoma Multiforme. Int. J. Mol. Sci., 2019, 20(15) E3676
[http://dx.doi.org/10.3390/ijms20153676] [PMID: 31357555]
[44]
Oh, E.; Choi, I-K.; Hong, J.; Yun, C-O. Oncolytic adenovirus coexpressing interleukin-12 and decorin overcomes Treg-mediated immunosuppression inducing potent antitumor effects in a weakly immunogenic tumor model. Oncotarget, 2017, 8(3), 4730-4746.
[http://dx.doi.org/10.18632/oncotarget.13972] [PMID: 28002796]
[45]
Eriksson, E.; Wenthe, J.; Irenaeus, S.; Loskog, A.; Ullenhag, G. Gemcitabine reduces MDSCs, tregs and TGFβ-1 while restoring the teff/treg ratio in patients with pancreatic cancer. J. Transl. Med., 2016, 14(1), 282.
[http://dx.doi.org/10.1186/s12967-016-1037-z] [PMID: 27687804]
[46]
Whiteside, T.L.; Mandapathil, M.; Szczepanski, M.; Szajnik, M. Mechanisms of tumor escape from the immune system: adenosine-producing Treg, exosomes and tumor-associated TLRs. Bull. Cancer, 2011, 98(2), E25-E31.
[http://dx.doi.org/10.1684/bdc.2010.1294] [PMID: 21339097]
[47]
de Leve, S.; Wirsdörfer, F.; Jendrossek, V. Targeting the Immunomodulatory CD73/Adenosine System to Improve the Therapeutic Gain of Radiotherapy. Front. Immunol., 2019, 10, 698.
[http://dx.doi.org/10.3389/fimmu.2019.00698] [PMID: 31024543]
[48]
Sek, K.; Mølck, C.; Stewart, G.D.; Kats, L.; Darcy, P.K.; Beavis, P.A. Targeting Adenosine Receptor Signaling in Cancer Immunotherapy. Int. J. Mol. Sci., 2018, 19(12), 3837.
[http://dx.doi.org/10.3390/ijms19123837] [PMID: 30513816]
[49]
Deaglio, S.; Dwyer, K.M.; Gao, W.; Friedman, D.; Usheva, A.; Erat, A.; Chen, J-F.; Enjyoji, K.; Linden, J.; Oukka, M.; Kuchroo, V.K.; Strom, T.B.; Robson, S.C. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med., 2007, 204(6), 1257-1265.
[http://dx.doi.org/10.1084/jem.20062512] [PMID: 17502665]
[50]
Mandapathil, M.; Szczepanski, M.; Harasymczuk, M.; Ren, J.; Cheng, D.; Jackson, E.K.; Gorelik, E.; Johnson, J.; Lang, S.; Whiteside, T.L. CD26 expression and adenosine deaminase activity in regulatory T cells (Treg) and CD4(+) T effector cells in patients with head and neck squamous cell carcinoma. OncoImmunology, 2012, 1(5), 659-669.
[http://dx.doi.org/10.4161/onci.20387] [PMID: 22934258]
[51]
Salgado, F.J.; Pérez-Díaz, A.; Villanueva, N.M.; Lamas, O.; Arias, P.; Nogueira, M. CD26: a negative selection marker for human Treg cells. Cytometry A, 2012, 81(10), 843-855.
[http://dx.doi.org/10.1002/cyto.a.22117] [PMID: 22949266]
[52]
Mandapathil, M.; Hilldorfer, B.; Szczepanski, M.J.; Czystowska, M.; Szajnik, M.; Ren, J.; Lang, S.; Jackson, E.K.; Gorelik, E.; Whiteside, T.L. Generation and accumulation of immunosuppressive adenosine by human CD4+CD25highFOXP3+ regulatory T cells. J. Biol. Chem., 2010, 285(10), 7176-7186.
[http://dx.doi.org/10.1074/jbc.M109.047423] [PMID: 19858205]
[53]
Pedros, C.; Canonigo-Balancio, A.J.; Kong, K-F.; Altman, A. Requirement of Treg-intrinsic CTLA4/PKCη signaling pathway for suppressing tumor immunity. JCI Insight, 2017, 2(23) e95692
[http://dx.doi.org/10.1172/jci.insight.95692] [PMID: 29212947]
[54]
Albu, D.I.; Wang, Z.; Huang, K-C.; Wu, J.; Twine, N.; Leacu, S.; Ingersoll, C.; Parent, L.; Lee, W.; Liu, D.; Wright-Michaud, R.; Kumar, N.; Kuznetsov, G.; Chen, Q.; Zheng, W.; Nomoto, K.; Woodall-Jappe, M.; Bao, X. EP4 Antagonism by E7046 diminishes Myeloid immunosuppression and synergizes with Treg-reducing IL-2-Diphtheria toxin fusion protein in restoring anti-tumor immunity. OncoImmunology, 2017, 6(8) e1338239
[http://dx.doi.org/10.1080/2162402X.2017.1338239] [PMID: 28920002]
[55]
Komatsu, N.; Okamoto, K.; Sawa, S.; Nakashima, T.; Oh-hora, M.; Kodama, T.; Tanaka, S.; Bluestone, J.A.; Takayanagi, H. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med., 2014, 20(1), 62-68.
[http://dx.doi.org/10.1038/nm.3432] [PMID: 24362934]
[56]
Cheekatla, S. S.; Tripathi, D.; Venkatasubramanian, S.; Paidipally, P.; Welch, E.; Tvinnereim, A. R.; Nurieva, R.; Vankayalapati, R. IL-21 receptor signaling is essential for optimal CD4(+) T Cell function and control of mycobacterium tuberculosis infection in mice. J. Immunol., 2017, 199(8), 2815-2822.
[http://dx.doi.org/10.4049/jimmunol.1601231] [PMID: 28855309]
[57]
Venkatasubramanian, S.; Cheekatla, S.; Paidipally, P.; Tripathi, D.; Welch, E.; Tvinnereim, A.R.; Nurieva, R.; Vankayalapati, R. IL-21-dependent expansion of memory-like NK cells enhances protective immune responses against Mycobacterium tuberculosis. Mucosal Immunol., 2017, 10(4), 1031-1042.
[http://dx.doi.org/10.1038/mi.2016.105] [PMID: 27924822]
[58]
Korn, T.; Bettelli, E.; Gao, W.; Awasthi, A.; Jäger, A.; Strom, T.B.; Oukka, M.; Kuchroo, V.K. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature, 2007, 448(7152), 484-487.
[http://dx.doi.org/10.1038/nature05970] [PMID: 17581588]
[59]
Ye, J.; Qiu, J.; Bostick, J.W.; Ueda, A.; Schjerven, H.; Li, S.; Jobin, C.; Chen, Z.E.; Zhou, L. The Aryl Hydrocarbon Receptor Preferentially Marks and Promotes Gut Regulatory T Cells. Cell Rep., 2017, 21(8), 2277-2290.
[http://dx.doi.org/10.1016/j.celrep.2017.10.114] [PMID: 29166616]
[60]
Zhu, W.; Chen, X.; Yu, J.; Xiao, Y.; Li, Y.; Wan, S.; Su, W.; Liang, D. Baicalin modulates the Treg/Teff balance to alleviate uveitis by activating the aryl hydrocarbon receptor. Biochem. Pharmacol., 2018, 154, 18-27.
[http://dx.doi.org/10.1016/j.bcp.2018.04.006] [PMID: 29656117]
[61]
Wang, H.; Franco, F.; Ho, P-C. Metabolic Regulation of Tregs in Cancer: Opportunities for Immunotherapy. Trends Cancer, 2017, 3(8), 583-592.
[http://dx.doi.org/10.1016/j.trecan.2017.06.005] [PMID: 28780935]
[62]
Chaudhary, B.; Elkord, E. Regulatory t Cells in the Tumor Microenvironment and Cancer Progression: Role and Therapeutic Targeting. Vaccines (Basel), 2016, 4(3), 28.
[http://dx.doi.org/10.3390/vaccines4030028] [PMID: 27509527]
[63]
Wielandt, A.M.; Villarroel, C.; Hurtado, C.; Simian, D.; Zamorano, D.; Martínez, M.; Castro, M.; Vial, M.T.; Kronberg, U.; López-Kostner, F. [Characterization of patients with sporadic colorectal cancer following the new Consensus Molecular Subtypes (CMS)]. Rev. Med. Chil., 2017, 145(4), 419-430.
[http://dx.doi.org/10.4067/S0034-98872017000400001] [PMID: 28748988]
[64]
Ansell, S.M. Harnessing the power of the immune system in non-Hodgkin lymphoma: immunomodulators, checkpoint inhibitors, and beyond. Hematology (Am. Soc. Hematol. Educ. Program), 2017, 2017(1), 618-621.
[http://dx.doi.org/10.1182/asheducation-2017.1.618] [PMID: 29222312]
[65]
Kageyama, Y.; Miwa, H.; Arakawa, R.; Tawara, I.; Ohishi, K.; Masuya, M.; Nakase, K.; Katayama, N. Expression of CD25 fluctuates in the leukemia-initiating cell population of CD25-positive AML. PLoS One, 2018, 13(12) e0209295
[http://dx.doi.org/10.1371/journal.pone.0209295] [PMID: 30550585]
[66]
Gedaly, R.; De Stefano, F.; Turcios, L.; Hill, M.; Hidalgo, G.; Mitov, M.I.; Alstott, M.C.; Butterfield, D.A.; Mitchell, H.C.; Hart, J.; Al-Attar, A.; Jennings, C.D.; Marti, F. mTOR Inhibitor Everolimus in Regulatory T Cell Expansion for Clinical Application in Transplantation. Transplantation, 2019, 103(4), 705-715.
[http://dx.doi.org/10.1097/TP.0000000000002495] [PMID: 30451741]
[67]
Guo, Z.; Wang, A.; Zhang, W.; Levit, M.; Gao, Q.; Barberis, C.; Tabart, M.; Zhang, J.; Hoffmann, D.; Wiederschain, D.; Rocnik, J.; Sun, F.; Murtie, J.; Lengauer, C.; Gross, S.; Zhang, B.; Cheng, H.; Patel, V.; Schio, L.; Adrian, F.; Dorsch, M.; Garcia-Echeverria, C.; Huang, S.M. PIM inhibitors target CD25-positive AML cells through concomitant suppression of STAT5 activation and degradation of MYC oncogene. Blood, 2014, 124(11), 1777-1789.
[http://dx.doi.org/10.1182/blood-2014-01-551234] [PMID: 25006129]
[68]
Cerny, J.; Yu, H.; Ramanathan, M.; Raffel, G.D.; Walsh, W.V.; Fortier, N.; Shanahan, L.; O’Rourke, E.; Bednarik, J.; Barton, B. Expression of CD25 independently predicts early treatment failure of acute myeloid leukaemia (AML). Br. J. Haematol., 2013, 160(2), 262-266.
[http://dx.doi.org/10.1111/bjh.12109] [PMID: 23116454]
[69]
Du, W.; He, J.; Zhou, W.; Shu, S.; Li, J.; Liu, W.; Deng, Y.; Lu, C.; Lin, S.; Ma, Y.; He, Y.; Zheng, J.; Zhu, J.; Bai, L.; Li, X.; Yao, J.; Hu, D.; Gu, S.; Li, H.; Guo, A.; Huang, S.; Feng, X.; Hu, D. High IL2RA mRNA expression is an independent adverse prognostic biomarker in core binding factor and intermediate-risk acute myeloid leukemia. J. Transl. Med., 2019, 17(1), 191.
[http://dx.doi.org/10.1186/s12967-019-1926-z] [PMID: 31171000]
[70]
Yabushita, T.; Satake, H.; Maruoka, H.; Morita, M.; Katoh, D.; Shimomura, Y.; Yoshioka, S.; Morimoto, T.; Ishikawa, T. Expression of multiple leukemic stem cell markers is associated with poor prognosis in de novo acute myeloid leukemia. Leuk. Lymphoma, 2018, 59(9), 2144-2151.
[http://dx.doi.org/10.1080/10428194.2017.1410888] [PMID: 29251166]
[71]
Arandi, N.; Ramzi, M.; Safaei, F.; Monabati, A. Overexpression of indoleamine 2,3-dioxygenase correlates with regulatory T cell phenotype in acute myeloid leukemia patients with normal karyotype. Blood Res., 2018, 53(4), 294-298.
[http://dx.doi.org/10.5045/br.2018.53.4.294] [PMID: 30588466]
[72]
Li, J.; Meinhardt, A.; Roehrich, M-E.; Golshayan, D.; Dudler, J.; Pagnotta, M.; Trucco, M.; Vassalli, G. Indoleamine 2,3-dioxygenase gene transfer prolongs cardiac allograft survival. Am. J. Physiol. Heart Circ. Physiol., 2007, 293(6), H3415-H3423.
[http://dx.doi.org/10.1152/ajpheart.00532.2007] [PMID: 17933973]
[73]
Zhang, Y.; Zhang, G.; Liu, Y.; Chen, R.; Zhao, D.; McAlister, V.; Mele, T.; Liu, K.; Zheng, X. GDF15 Regulates Malat-1 Circular RNA and Inactivates NFκB Signaling Leading to Immune Tolerogenic DCs for Preventing Alloimmune Rejection in Heart Transplantation. Front. Immunol., 2018, 9, 2407.
[http://dx.doi.org/10.3389/fimmu.2018.02407] [PMID: 30425709]
[74]
Jabbarzadeh Kaboli, P.; Leong, M.P-Y.; Ismail, P.; Ling, KH. Antitumor effects of berberine against EGFR, ERK1/2, P38 and AKT in MDA-MB231 and MCF-7 breast cancer cells using molecular modelling and in vitro study. Pharmacol. Rep., 2019, 71(1), 13-23.
[http://dx.doi.org/10.1016/j.pharep.2018.07.005] [PMID: 30343043]
[75]
Verma, P.; Verma, R.; Nair, R.R.; Budhwar, S.; Khanna, A.; Agrawal, N.R.; Sinha, R.; Birendra, R.; Rajender, S.; Singh, K. Altered crosstalk of estradiol and progesterone with Myeloid-derived suppressor cells and Th1/Th2 cytokines in early miscarriage is associated with early breakdown of maternal-fetal tolerance. Am. J. Reprod. Immunol., 2019, 81(2) e13081
[http://dx.doi.org/10.1111/aji.13081] [PMID: 30589483]
[76]
Soliman, H.H.; Jackson, E.; Neuger, T.; Dees, E.C.; Harvey, R.D.; Han, H.; Ismail-Khan, R.; Minton, S.; Vahanian, N.N.; Link, C.; Sullivan, D.M.; Antonia, S. A first in man phase I trial of the oral immunomodulator, indoximod, combined with docetaxel in patients with metastatic solid tumors. Oncotarget, 2014, 5(18), 8136-8146.
[http://dx.doi.org/10.18632/oncotarget.2357] [PMID: 25327557]
[77]
Park, J-H.; Ko, J.S.; Shin, Y.; Cho, J.Y.; Oh, H.A.; Bothwell, A.L.M.; Lee, S-K. Intranuclear interactomic inhibition of FoxP3 suppresses functions of Treg cells. Biochem. Biophys. Res. Commun., 2014, 451(1), 1-7.
[http://dx.doi.org/10.1016/j.bbrc.2014.06.141] [PMID: 25044110]
[78]
Fan, K.; Yang, C.; Fan, Z.; Huang, Q.; Zhang, Y.; Cheng, H.; Jin, K.; Lu, Y.; Wang, Z.; Luo, G.; Yu, X.; Liu, C. MUC16 C terminal-induced secretion of tumor-derived IL-6 contributes to tumor-associated Treg enrichment in pancreatic cancer. Cancer Lett., 2018, 418, 167-175.
[http://dx.doi.org/10.1016/j.canlet.2018.01.017] [PMID: 29337110]
[79]
Wakamatsu, E.; Omori, H.; Kawano, A.; Ogawa, S.; Abe, R. Strong TCR stimulation promotes the stabilization of Foxp3 expression in regulatory T cells induced in vitro through increasing the demethylation of Foxp3 CNS2. Biochem. Biophys. Res. Commun., 2018, 503(4), 2597-2602.
[http://dx.doi.org/10.1016/j.bbrc.2018.07.021] [PMID: 30007439]
[80]
Kim, M.S.; Lee, A.; Cho, D.; Kim, T.S. AIMP1 regulates TCR signaling and induces differentiation of regulatory T cells by interfering with lipid raft association. Biochem. Biophys. Res. Commun., 2019, 514(3), 875-880.
[http://dx.doi.org/10.1016/j.bbrc.2019.05.040] [PMID: 31084930]
[81]
Chellappa, S.; Kushekhar, K.; Munthe, L.A.; Tjønnfjord, G.E.; Aandahl, E.M.; Okkenhaug, K.; Taskén, K. The PI3K p110δ Isoform Inhibitor Idelalisib Preferentially Inhibits Human Regulatory T Cell Function. J. Immunol., 2019, 202(5), 1397-1405.
[http://dx.doi.org/10.4049/jimmunol.1701703] [PMID: 30692213]
[82]
Han, Y.; Dong, Y.; Yang, Q.; Xu, W.; Jiang, S.; Yu, Z.; Yu, K.; Zhang, S. Acute Myeloid Leukemia Cells Express ICOS Ligand to Promote the Expansion of Regulatory T Cells. Front. Immunol., 2018, 9, 2227.
[http://dx.doi.org/10.3389/fimmu.2018.02227] [PMID: 30319662]
[83]
Szczepanski, M. J.; Szajnik, M.; Czystowska, M.; Mandapathil, M.; Strauss, L.; Welsh, A.; Foon, K. A.; Whiteside, T. L.; Boyiadzis, M. Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clin. Canc. Res., 2009, 15(10), 3325-3332.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-3010] [PMID: 19417016]
[84]
Edwards, D.K. V; Watanabe-Smith, K.; Rofelty, A.; Damnernsawad, A.; Laderas, T.; Lamble, A.; Lind, E.F.; Kaempf, A.; Mori, M.; Rosenberg, M.; d’Almeida, A.; Long, N.; Agarwal, A.; Sweeney, D.T.; Loriaux, M.; McWeeney, S.K.; Tyner, J.W. CSF1R inhibitors exhibit antitumor activity in acute myeloid leukemia by blocking paracrine signals from support cells. Blood, 2019, 133(6), 588-599.
[http://dx.doi.org/10.1182/blood-2018-03-838946] [PMID: 30425048]
[85]
Gyori, D.; Lim, E.L.; Grant, F.M.; Spensberger, D.; Roychoudhuri, R.; Shuttleworth, S.J.; Okkenhaug, K.; Stephens, L.R.; Hawkins, P.T. Compensation between CSF1R+ macrophages and Foxp3+ Treg cells drives resistance to tumor immunotherapy. JCI Insight, 2018, 3(11) e120631
[http://dx.doi.org/10.1172/jci.insight.120631] [PMID: 29875321]
[86]
Sander, F.E.; Nilsson, M.; Rydström, A.; Aurelius, J.; Riise, R.E.; Movitz, C.; Bernson, E.; Kiffin, R.; Ståhlberg, A.; Brune, M.; Foà, R.; Hellstrand, K.; Thorén, F.B.; Martner, A. Role of regulatory T cells in acute myeloid leukemia patients undergoing relapse-preventive immunotherapy. Cancer Immunol. Immunother., 2017, 66(11), 1473-1484.
[http://dx.doi.org/10.1007/s00262-017-2040-9] [PMID: 28721449]
[87]
Ingram, W.; Kordasti, S.; Chan, L.; Barber, L.D.; Tye, G.J.; Hardwick, N.; Mufti, G.J.; Farzaneh, F. Human CD80/IL2 lentivirus transduced acute myeloid leukaemia cells enhance cytolytic activity in vitro in spite of an increase in regulatory CD4+ T cells in a subset of cultures. Cancer Immunol. Immunother., 2009, 58(10), 1679-1690.
[http://dx.doi.org/10.1007/s00262-009-0679-6] [PMID: 19283381]
[88]
Ge, W.; Ma, X.; Li, X.; Wang, Y.; Li, C.; Meng, H.; Liu, X.; Yu, Z.; You, S.; Qiu, L. B7-H1 up-regulation on dendritic-like leukemia cells suppresses T cell immune function through modulation of IL-10/IL-12 production and generation of Treg cells. Leuk. Res., 2009, 33(7), 948-957.
[http://dx.doi.org/10.1016/j.leukres.2009.01.007] [PMID: 19233469]
[89]
Curti, A.; Pandolfi, S.; Valzasina, B.; Aluigi, M.; Isidori, A.; Ferri, E.; Salvestrini, V.; Bonanno, G.; Rutella, S.; Durelli, I.; Horenstein, A.L.; Fiore, F.; Massaia, M.; Colombo, M.P.; Baccarani, M.; Lemoli, R.M. Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25- into CD25+ T regulatory cells. Blood, 2007, 109(7), 2871-2877.
[http://dx.doi.org/10.1182/blood-2006-07-036863] [PMID: 17164341]
[90]
De Velasco, G.; Je, Y.; Bossé, D.; Awad, M.M.; Ott, P.A.; Moreira, R.B.; Schutz, F.; Bellmunt, J.; Sonpavde, G.P.; Hodi, F.S.; Choueiri, T.K. Comprehensive Meta-analysis of Key Immune-Related Adverse Events from CTLA-4 and PD-1/PD-L1 Inhibitors in Cancer Patients. Cancer Immunol. Res., 2017, 5(4), 312-318.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0237] [PMID: 28246107]
[91]
Du, X.; Liu, M.; Su, J.; Zhang, P.; Tang, F.; Ye, P.; Devenport, M.; Wang, X.; Zhang, Y.; Liu, Y.; Zheng, P. Uncoupling therapeutic from immunotherapy-related adverse effects for safer and effective anti-CTLA-4 antibodies in CTLA4 humanized mice. Cell Res., 2018, 28(4), 433-447.
[http://dx.doi.org/10.1038/s41422-018-0012-z] [PMID: 29463898]
[92]
Gambichler, T.; Schröter, U.; Höxtermann, S.; Susok, L.; Stockfleth, E.; Becker, J.C. A Brief Communication on Circulating PD-1-positive T-Regulatory Lymphocytes in Melanoma Patients Undergoing Adjuvant Immunotherapy With Nivolumab. J. Immunother., 2019, 42(7), 265-268.
[http://dx.doi.org/10.1097/CJI.0000000000000277] [PMID: 31145230]
[93]
Zappasodi, R.; Sirard, C.; Li, Y.; Budhu, S.; Abu-Akeel, M.; Liu, C.; Yang, X.; Zhong, H.; Newman, W.; Qi, J.; Wong, P.; Schaer, D.; Koon, H.; Velcheti, V.; Hellmann, M.D.; Postow, M.A.; Callahan, M.K.; Wolchok, J.D.; Merghoub, T. Rational design of anti-GITR-based combination immunotherapy. Nat. Med., 2019, 25(5), 759-766.
[http://dx.doi.org/10.1038/s41591-019-0420-8] [PMID: 31036879]
[94]
Wang, D.Y.; Salem, J-E.; Cohen, J.V.; Chandra, S.; Menzer, C.; Ye, F.; Zhao, S.; Das, S.; Beckermann, K.E.; Ha, L.; Rathmell, W.K.; Ancell, K.K.; Balko, J.M.; Bowman, C.; Davis, E.J.; Chism, D.D.; Horn, L.; Long, G.V.; Carlino, M.S.; Lebrun-Vignes, B.; Eroglu, Z.; Hassel, J.C.; Menzies, A.M.; Sosman, J.A.; Sullivan, R.J.; Moslehi, J.J.; Johnson, D.B. Fatal Toxic Effects Associated With Immune Checkpoint Inhibitors: A Systematic Review and Meta-analysis. JAMA Oncol., 2018, 4(12), 1721-1728.
[http://dx.doi.org/10.1001/jamaoncol.2018.3923] [PMID: 30242316]
[95]
Anquetil, C.; Salem, J-E.; Lebrun-Vignes, B.; Johnson, D.B.; Mammen, A.L.; Stenzel, W.; Léonard-Louis, S.; Benveniste, O.; Moslehi, J.J.; Allenbach, Y. Immune Checkpoint Inhibitor-Associated Myositis: expanding the spectrum of cardiac complications of the immunotherapy revolution. Circulation, 2018, 138(7), 743-745.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.035898] [PMID: 30359135]
[96]
Reynolds, K.L.; Guidon, A.C. Diagnosis and Management of Immune Checkpoint Inhibitor-Associated Neurologic Toxicity: Illustrative Case and Review of the Literature. Oncologist, 2019, 24(4), 435-443.
[http://dx.doi.org/10.1634/theoncologist.2018-0359] [PMID: 30482825]
[97]
Wright, J.J.; Salem, J-E.; Johnson, D.B.; Lebrun-Vignes, B.; Stamatouli, A.; Thomas, J.W.; Herold, K.C.; Moslehi, J.; Powers, A.C. Increased Reporting of Immune Checkpoint Inhibitor-Associated Diabetes. Diabetes Care, 2018, 41(12), e150-e151.
[http://dx.doi.org/10.2337/dc18-1465] [PMID: 30305348]
[98]
Berkowitz, J.L.; Janik, J.E.; Stewart, D.M.; Jaffe, E.S.; Stetler-Stevenson, M.; Shih, J.H.; Fleisher, T.A.; Turner, M.; Urquhart, N.E.; Wharfe, G.H.; Figg, W.D.; Peer, C.J.; Goldman, C.K.; Waldmann, T.A.; Morris, J.C. Safety, efficacy, and pharmacokinetics/pharmacodynamics of daclizumab (anti-CD25) in patients with adult T-cell leukemia/lymphoma. Clin. Immunol., 2014, 155(2), 176-187.
[http://dx.doi.org/10.1016/j.clim.2014.09.012] [PMID: 25267440]
[99]
Onda, M.; Kobayashi, K.; Pastan, I. Depletion of regulatory T cells in tumors with an anti-CD25 immunotoxin induces CD8 T cell-mediated systemic antitumor immunity. Proc. Natl. Acad. Sci. USA, 2019, 116(10), 4575-4582.
[http://dx.doi.org/10.1073/pnas.1820388116] [PMID: 30760587]
[100]
Pu, N.; Zhao, G.; Yin, H.; Li, J-A.; Nuerxiati, A.; Wang, D.; Xu, X.; Kuang, T.; Jin, D.; Lou, W.; Wu, W. CD25 and TGF-β blockade based on predictive integrated immune ratio inhibits tumor growth in pancreatic cancer. J. Transl. Med., 2018, 16(1), 294.
[http://dx.doi.org/10.1186/s12967-018-1673-6] [PMID: 30359281]
[101]
Pu, N.; Zhao, G.; Gao, S.; Cui, Y.; Xu, Y.; Lv, Y.; Nuerxiati, A.; Wu, W. Neutralizing TGF-β promotes anti-tumor immunity of dendritic cells against pancreatic cancer by regulating T lymphocytes. Cent. Eur. J. Immunol., 2018, 43(2), 123-131.
[http://dx.doi.org/10.5114/ceji.2018.77381] [PMID: 30135623]
[102]
Liu, G-F.; Li, G-J.; Zhao, H. Efficacy and Toxicity of Different Chemotherapy Regimens in the Treatment of Advanced or Metastatic Pancreatic Cancer: A Network Meta-Analysis. J. Cell. Biochem., 2018, 119(1), 511-523.
[http://dx.doi.org/10.1002/jcb.26210] [PMID: 28608558]
[103]
Kobayashi, S.; Ueno, M.; Hara, H.; Irie, K.; Goda, Y.; Moriya, S.; Tezuka, S.; Tanaka, M.; Okusaka, T.; Ohkawa, S.; Morimoto, M. Unexpected Side Effects of a High S-1 Dose: Subanalysis of a Phase III Trial Comparing Gemcitabine, S-1 and Combinatorial Treatments for Advanced Pancreatic Cancer. Oncology, 2016, 91(3), 117-126.
[http://dx.doi.org/10.1159/000446989] [PMID: 27303788]
[104]
Alexandre, J.; Moslehi, J.J.; Bersell, K.R.; Funck-Brentano, C.; Roden, D.M.; Salem, J-E. Anticancer drug-induced cardiac rhythm disorders: Current knowledge and basic underlying mechanisms. Pharmacol. Ther., 2018, 189, 89-103.
[http://dx.doi.org/10.1016/j.pharmthera.2018.04.009] [PMID: 29698683]
[105]
Maleki Vareki, S.; Chen, D.; Di Cresce, C.; Ferguson, P.J.; Figueredo, R.; Pampillo, M.; Rytelewski, M.; Vincent, M.; Min, W.; Zheng, X.; Koropatnick, J. IDO Downregulation Induces Sensitivity to Pemetrexed, Gemcitabine, FK866, and Methoxyamine in Human Cancer Cells. PLoS One, 2015, 10(11) e0143435
[http://dx.doi.org/10.1371/journal.pone.0143435] [PMID: 26579709]
[106]
Dill, E.A.; Dillon, P.M.; Bullock, T.N.; Mills, A.M. IDO expression in breast cancer: an assessment of 281 primary and metastatic cases with comparison to PD-L1. Mod. Pathol., 2018, 31(10), 1513-1522.
[http://dx.doi.org/10.1038/s41379-018-0061-3] [PMID: 29802358]
[107]
Vermeersch, E.; Liénart, S.; Collignon, A.; Lucas, S.; Gallimore, A.; Gysemans, C.; Unutmaz, D.; Vanhoorelbeke, K.; De Meyer, S.F.; Maes, W.; Deckmyn, H. Deletion of GARP on mouse regulatory T cells is not sufficient to inhibit the growth of transplanted tumors. Cell. Immunol., 2018, 332, 129-133.
[http://dx.doi.org/10.1016/j.cellimm.2018.07.011] [PMID: 30093071]
[108]
Jin, H.; Zhang, J.; Shen, K.; Hao, J.; Feng, Y.; Yuan, C.; Zhu, Y.; Ma, X. Efficacy and safety of perioperative appliance of sunitinib in patients with metastatic or advanced renal cell carcinoma: A systematic review and meta-analysis. Medicine (Baltimore), 2019, 98(20) e15424
[http://dx.doi.org/10.1097/MD.0000000000015424] [PMID: 31096438]
[109]
Sandhu, H.; Cooper, S.; Hussain, A.; Mee, C.; Maddock, H. Attenuation of Sunitinib-induced cardiotoxicity through the A3 adenosine receptor activation. Eur. J. Pharmacol., 2017, 814, 95-105.
[http://dx.doi.org/10.1016/j.ejphar.2017.08.011] [PMID: 28811127]
[110]
Šeparović, R.; Pavlović, M.; Silovski, T.; Silovski, H.; Tečić Vuger, A. Uncommon Side Effects of Sunitinib Therapy in a Patient with Metastatic Renal Cell Cancer: Case Report. Acta Clin. Croat., 2018, 57(3), 577-580.
[PMID: 31168192]
[111]
Zhao, B.; Zhao, H.; Zhao, J. Risk of fatal adverse events in cancer patients treated with sunitinib. Crit. Rev. Oncol. Hematol., 2019, 137, 115-122.
[http://dx.doi.org/10.1016/j.critrevonc.2019.03.007] [PMID: 31014507]
[112]
Gibney, G. T.; Kudchadkar, R. R.; DeConti, R. C.; Thebeau, M. S.; Czupryn, M. P.; Tetteh, L.; Eysmans, C.; Richards, A.; Schell, M. J.; Fisher, K. J. Safety, correlative markers, and clinical results of adjuvant nivolumab in combinationwith vaccine in resected high-risk metastatic melanoma. Clin. Canc. Res., 2015, 21(4), 712-720.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2468] [PMID: 25524312]
[113]
Rooney, C.M. Can Treg elimination enhance NK cell therapy for AML? Blood, 2014, 123(25), 3848-3849.
[http://dx.doi.org/10.1182/blood-2014-05-570291] [PMID: 24948620]
[114]
Wang, M.; Zhang, C.; Tian, T.; Zhang, T.; Wang, R.; Han, F.; Zhong, C.; Hua, M.; Ma, D. Increased Regulatory T Cells in Peripheral Blood of Acute Myeloid Leukemia Patients Rely on Tumor Necrosis Factor (TNF)-α-TNF Receptor-2 Pathway. Front. Immunol., 2018, 9, 1274.
[http://dx.doi.org/10.3389/fimmu.2018.01274] [PMID: 29922294]
[115]
Xue, T.; Liu, P.; Zhou, Y.; Liu, K.; Yang, L.; Moritz, R.L.; Yan, W.; Xu, L.X. Interleukin-6 Induced “Acute” Phenotypic Microenvironment Promotes Th1 Anti-Tumor Immunity in Cryo-Thermal Therapy Revealed By Shotgun and Parallel Reaction Monitoring Proteomics. Theranostics, 2016, 6(6), 773-794.
[http://dx.doi.org/10.7150/thno.14394] [PMID: 27162549]
[116]
Lissoni, P. Therapy implications of the role of interleukin-2 in cancer. Expert Rev. Clin. Immunol., 2017, 13(5), 491-498.
[http://dx.doi.org/10.1080/1744666X.2017.1245146] [PMID: 27782752]
[117]
Li, Strick-Marchand, H.; Lim , A. I.; Ren, J Masse-Ranson, G.; Li, D.; Jouvion, G.; Rogge, L.; Lucas, S.; Li, B.; Jouvion, G.; Rogge, L.; Lucas, S.; Li, B.; Santo, J.P.D. Regulatory T cells control toxicity in a humanized model of IL-2 therapy. Nature, 1762, 8(1), 1762.
[http://dx.doi.org/10.1038/s41467-017-01570-9] [PMID: 29176694]
[118]
Mouw, K.W.; Goldberg, M.S.; Konstantinopoulos, P.A.; D’Andrea, A.D. DNA Damage and Repair Biomarkers of Immunotherapy Response. Cancer Discov., 2017, 7(7), 675-693.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0226] [PMID: 28630051]
[119]
Ramachandran, M.; Dimberg, A.; Essand, M. The cancer-immunity cycle as rational design for synthetic cancer drugs: Novel DC vaccines and CAR T-cells. Semin. Cancer Biol., 2017, 45, 23-35.
[http://dx.doi.org/10.1016/j.semcancer.2017.02.010] [PMID: 28257957]
[120]
Sanmamed, M.F.; Chen, L. A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization. Cell, 2018, 175(2), 313-326.
[http://dx.doi.org/10.1016/j.cell.2018.09.035] [PMID: 30290139]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 28
Year: 2020
Published on: 06 August, 2020
Page: [4673 - 4698]
Pages: 26
DOI: 10.2174/0929867326666191004164041
Price: $65

Article Metrics

PDF: 42
HTML: 3