A Review on Visual Odometry Techniques for Mobile Robots: Types and Challenges

Author(s): Vikas Thapa, Abhishek Sharma, Beena Gairola, Amit K. Mondal, Vindhya Devalla, Ravi K. Patel*

Journal Name: Recent Advances in Electrical & Electronic Engineering
Formerly Recent Patents on Electrical & Electronic Engineering

Volume 13 , Issue 5 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


For autonomous navigation, tracking and obstacle avoidance, a mobile robot must have the knowledge of its position and localization over time. Among the available techniques for odometry, vision-based odometry is robust and economical technique. In addition, a combination of position estimation from odometry with interpretations of the surroundings using a mobile camera is effective. This paper presents an overview of current visual odometry approaches, applications, and challenges in mobile robots. The study offers a comparative analysis of different available techniques and algorithms associated with it, emphasizing on its efficiency and other feature extraction capability, applications and optimality of various techniques.

Keywords: Visual odometry, position estimation, error elimination, appearance-based approach, feature-based approach, hybrid approach.

J. Borenstein, and L. Feng, "Measurement and correction of systematic odometry errors in mobile robots", IEEE Trans. Robot. Autom., vol. 12, pp. 869-880, 1996.
Y. Kunii, G. Kovacs, and N. Hoshi, "Mobile robot navigation in natural environments using robust object tracking ", In: ; 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), .Edinburgh, UK, 2017, pp. 1747-1752.
D. Nistér, O. Naroditsky, and J. Bergen, "Visual odometry", Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on,. 2004, vol.1 pp. I-I..
D. Scaramuzza, and F. Fraundorfer, "Visual odometry [tutorial", IEEE Robot. Autom. Mag., vol. 18, pp. 80-92, 2011.
J. Seong, D. Jung, and W. Chung, "Odometry calibration for car-like mobile robots ", In: ; 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence..URAI, Jeju, South Korea , 2017,, ,pp. 889-890..
K. Ni, and F. Dellaert, "Stereo tracking and three-point/one-point algorithms-a robust approach in visual odometry, ", In: ; 2006 International Conference on Image Processing, 2006.Atlanta, GA, USA, 2006 pp. 2777-2780..
R. Munguia, and A. Grau, "Monocular SLAM for visual odometry ", In: ; 2007 IEEE International Symposium on Intelligent Signal Processing.Alcala de Henares, Spain, , 2007, pp. 1-6..
J. Campbell, R. Sukthankar, I. Nourbakhsh, and A. Pahwa, "A robust visual odometry and precipice detection system using consumer-grade monocular vision , In: ", Proceedings of the 2005 IEEE International Conference on.Barcelona, Spain, Spain; 2005, pp.3421-3427.,
R. Gonzalez, F. Rodriguez, J.L. Guzman, C. Pradalier, and R. Siegwart, "Combined visual odometry and visual compass for off-road mobile robots localization", Robotica, vol. 30, pp. 865-878, 2012.
D. Nistér, O. Naroditsky, and J. Bergen, "Visual odometry for ground vehicle applications", J. Field Robot., vol. 23, pp. 3-20, 2006.
N. Nourani-Vatani, J. Roberts, and M.V. Srinivasan, "Practical visual odometry for car-like vehicles", Robot. Automat., 2009. ICRA'09. IEEE International Conference on.Kobe, Japan, 2009,, pp. 3551-3557..
W. Chen, and T. Zhang, "An indoor mobile robot navigation technique using odometry and electronic compass", Int. J. Adv. Robot. Syst.,, vol. 14, 2017., . Avalaiable at: .
T. Takahashi, 2D localization of outdoor mobile robots using 3D laser range data., Carnegie Mellon University, 2007.
A. Howard, "Real-time stereo visual odometry for autono-mous ground vehicles", Intell. Robot. Syst., , pp. 3946-3952, . IROS 2008. IEEE/RSJ International Conference on, 2008..
A.S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox, and N. Roy, Visual odometry and mapping for au-tonomous flight using an RGB-D camera., Springer, 2017, pp. 235-252.
C. Wang, C. Zhao, and J. Yang, "Monocular odometry in country roads based on phase-derived optical flow and 4-DOF ego-motion model", Ind. Rob., vol. 38, no. 5, pp. 509-520, 2011.
R. Clark, S. Wang, H. Wen, A. Markham, and N. Trigoni, "Vinet: Visual-inertial odometry as a sequence-to-sequence learning problem", Thirty-First AAAI Conference on Artificial Intelligence, 2017.
F. Fraundorfer, D. Scaramuzza, and M. Pollefeys, "A constricted bundle adjustment parameterization for relative scale estimation in visual odometry", In: , 2010 IEEE In-ternational Conference on Robotics and Automation, Anchorage: AK, USA, 2010, pp. 1899-1904, .
N.D. Reddy, I. Abbasnejad, S. Reddy, A.K. Mondal, and V. Devalla, "Incremental real-time multibody VSLAM with tra-jectory optimization using stereo camera", In: ; 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), .Daejeon, South Korea, 2016, pp. 4505-4510..
G. Blanc, Y. Mezouar, and P. Martinet, "Indoor navigation of a wheeled mobile robot along visual routes", In: ; Proceedings of the 2005 IEEE international conference on robotics and automation.Barcelona, Spain, Spain, 2005, pp. 3354-3359..
A. Georgiev, and P.K. Allen, "Localization methods for a mobile robot in urban environments", IEEE Trans. Robot., vol. 20, pp. 851-864, 2004.
A. Howard, "Real-time stereo visual odometry for autonomous ground vehicles", In: , 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice, France, pp. 3946-3952, 2008..
M. Maimone, Y. Cheng, and L. Matthies, "Two years of visual odometry on the mars exploration rovers", J. Field Robot., vol. 24, pp. 169-186, 2007.
J. Campbell, R. Sukthankar, and I. Nourbakhsh, "Techniques for evaluating optical flow for visual odometry in extreme terrain", In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Sendai, Japan, 2004,, pp. 3704-3711. .
A. Lambert, P. Furgale, T.D. Barfoot, and J. Enright, "Field testing of visual odometry aided by a sun sensor and inclinometer", J. Field Robot., vol. 29, pp. 426-444, 2012.
M. Agrawal, and K. Konolige, "Real-time localization in out-door environments using stereo vision and inexpensive gps", In: , 18th International Conference on Pattern Recognition (ICPR’06). Hong Kong, China, 2006, pp. 1063-1068..
N. Sünderhauf, K. Konolige, S. Lacroix, and P. Protzel, Visual Odometry using Sparse Bundle Adjustment on an Autonomous Outdoor VehicleIn: Levi, Schanz, Lafrenz, Avrutin (Hrsg.), Tagungsband Autonome Mobile Systeme, 2005, Reihe Informatik aktuell, Springer Verlag,. S. pp. 157-163 .
M. Lhuillier, "Automatic structure and motion using a catadioptric camera", In: ; Proceedings of the 6th Workshop on Omnidirectional Vision, Camera Networks and Non-Classical Cameras.United States, 2005.,
E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd, "Real time localization and 3D reconstruction", In: 2006; IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06).New York, NY, USA, pp. 363-370..
J-P. Tardif, Y. Pavlidis, and K. Daniilidis, "Monocular visual odometry in urban environments using an omnidirectional camera", In: , IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice, France, 2008, pp. 2531-2538..
D. Scaramuzza, F. Fraundorfer, and R. Siegwart, "Real-time monocular visual odometry for on-road vehicles with 1-point ransac", Robotics and Automation, 2009. ICRA'09. IEEE International Conference on, 2009,. Kobe, Japan, 2009, pp. 4239-4299..
H.P. Moravec, Obstacle avoidance and navigation in the real world by a seeing robot rover., DTIC Document, 1980.
L. Matthies, and S. Shafer, "Error modeling in stereo navigation", IEEE J. Robot. Autom., vol. 3, pp. 239-248, 1987.
S. Lacroix, A. Mallet, R. Chatila, and L. Gallo, "Rover self localization in planetary-like environments", In: , 5th International Symposium on Artificial Intelligence, Robotics and Automation in Space (I-SAIRAS 99),. Noordwijk, The Netherlands, 1999, pp. 433..
C.F. Olson, L.H. Matthies, H. Schoppers, and M.W. Maimone, "Robust stereo ego-motion for long distance navigation", In: , Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662)2000, . Hilton Head Island, SC, USA, 2000, pp. 453-458..
V. Vasco, A. Glover, and C. Bartolozzi, "Fast event-based Harris corner detection exploiting the advantages of event-driven cameras", In: ; 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Daejeon, South Korea, 2016, pp. 4144-4149..
D.G. Lowe, "Distinctive image features from scale-invariant keypoints", Int. J. Comput. Vis., vol. 60, pp. 91-110, 2004.
H. Bay, T. Tuytelaars, and L. Van Gool, "Surf: Speeded up robust features", In: , ECCV 2006: Computer Vision – ECCV, . 2006, pp. 404-417. .
A.C. Murillo, J.J. Guerrero, and C. Sagues, "Surf features for efficient robot localization with omnidirectional images", In: , Proceedings 2007 IEEE International Conference on Robotics and Automation , Rome, Italy , vol. 2007, pp. 3901-3907, .
M. Agrawal, K. Konolige, and M.R. Blas, "Censure: Center surround extremas for real time feature detection and matching", European Conference on Computer Vision. , 2008, pp. 102-115..
R. Siegwart, I.R. Nourbakhsh, and D. Scaramuzza, Introduction to autonomous mobile robots., MIT press, 2011.
F. Fraundorfer, and D. Scaramuzza, "Visual odometry: Part II: Matching, robustness, optimization, and applications", IEEE Robot. Autom. Mag., vol. 19, pp. 78-90, 2012.
R. Kawanishi, A. Yamashita, and T. Kaneko, "Construction of 3D environment model from an omni-directional image sequence", Proceedings of the 3rd Asia International Symposium on Mechatronics, TP1-3 (2), .2008, pp. 1-6. .
H. Stewenius, C. Engels, and D. Nistér, "Recent developments on direct relative orientation", ISPRS J. Photogramm. Remote Sens., vol. 60, pp. 284-294, 2006.
D. Nistér, "An efficient solution to the five-point relative pose problem", IEEE transactions on pattern analysis and machine intelligence,, vol. 26. 2004 , pp. 0756-777.
A. Sharma, R.K. Patel, V. Thapa, B. Gairola, B. Pandey, B.A. Epenetus, S. Choudhury, and A.K. Mondal, "Investigation on optimized relative localization of a mobile robot using regression analysis ", In: , 2016 International Conference on Robotics: Current Trends and Future Challenges (RCTFC). , 2016, pp. 1-6..
S. Poddar, R. Kottath, and V. Karar, "Evolution of visual odometry techniques", arXiv preprint arXiv:1804.11142 , 2018.
B.K. Horn, and B.G. Schunck, "Determining optical flow", Artif. Intell., vol. 17, pp. 185-203, 1981.
B.D. Lucas, and T. Kanade, "An iterative image registration technique with an application to stereo vision ", In: , Proceedings of the 7th International Joint Conference on Artificial Intelligence (IJCAI ’81), 1981.
M-S. Choi, and W-Y. Kim, "A novel two stage template matching method for rotation and illumination invariance", Pattern Recognit., vol. 35, pp. 119-129, 2002.
A. Goshtasby, S.H. Gage, and J.F. Bartholic, "A two-stage cross correlation approach to template matching", IEEE Trans. Pattern Anal. Mach. Intell., vol. 6, no. 3, pp. 374-378, 1984.
[http://dx.doi.org/10.1109/TPAMI.1984.4767532 PMID: 21869206]
J. Yoo, S.S. Hwang, S.D. Kim, M.S. Ki, and J. Cha, "Scale-invariant template matching using histogram of dominant gradients", Pattern Recognit., vol. 47, pp. 3006-3018, 2014.
A. Mahmood, and S. Khan, "Correlation-coefficient-based fast template matching through partial elimination", IEEE Trans. Image Process., vol. 21, no. 4, pp. 2099-2108, 2012.
[http://dx.doi.org/10.1109/TIP.2011.2171696 PMID: 21997266]
F. Zhao, Q. Huang, and W. Gao, "Image matching by mul-tiscale oriented corner correlation", Asian Conference on Computer Vision. , 2006, pp. 928-937..
F. Zhao, Q. Huang, and W. Gao, "Image matching by normalized cross-correlation", Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on, 2006,. 2006, pp. II-II..
N. Nourani‐Vatani, and P.V.K. Borges, "Correlation‐based visual odometry for ground vehicles", J. Field Robot., vol. 28, pp. 742-768, 2011.
A.E. Johnson, S.B. Goldberg, Y. Cheng, and L.H. Matthies, "Robust and efficient stereo feature tracking for visual odometry", Robot. Automat., 2008. ICRA 2008. IEEE International Conference on, 2008,. 2008pp. 39-46.
P. Kicman, and J. Narkiewicz, "Concept of integrated INS/visual system for autonomous mo-bile robot operation" Marine Navigation and Safety of Sea Transportation: Navigational Problems, vol. 35. 2013.. .
D. Scaramuzza, and R. Siegwart, "Appearance-guided monocular omnidirectional visual odometry for outdoor ground vehi-cles", IEEE Trans. Robot., vol. 24, pp. 1015-1026, 2008.
J. Zhang, and S. Singh, "Visuallidar odometry and mapping: Lowdrift, robust, and fast,” In: 2015 IEEE International Conference on Robotics and Automation..ICRA, 2015,, pp. 2174-2181.
FLIR, Available at: , https://www.flir.eu/iis/machine-vision/spherical-vision-systems
Microsoft, Available at:, https://www.microsoft.com/accessories/en-us/webcams
Z.E.D., Available at:, https://store.stereolabs.com/products/zed
H. Wang, K. Yuan, W. Zou, and Q. Zhou, "Visual odometry based on locally planar ground assumption", Information Acquisition, 2005 IEEE International Conference on, . 2005, pp. 6..
Q. Ke, and T. Kanade, "Transforming camera geometry to a virtual downward-looking camera: Robust ego-motion estimation and ground-layer detection", Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on, 2003, . 2003, pp. I-I..
J.J. Guerrero, R. Martinez‐Cantin, and C. Sagüés, "Visual map‐less navigation based on homographies", J. Field Robot., vol. 22, pp. 569-581, 2005.
B. Liang, and N. Pears, "Visual navigation using planar homographies", Robotics and Automation, 2002. Proceedings. ICRA'02. IEEE International Conference on, 2002, . 2002, pp. 205-210..
F. Dellaert, S.M. Seitz, C.E. Thorpe, and S. Thrun, "Structure from motion without correspondence", In Computer Vision and Pattern Recognition, Proceedings. IEEE Conference on, . 2000, pp. 557- 564..
K. Daniilidis, A. Makadia, and T. Bulow, "Image processing in catadioptric planes: Spatiotemporal derivatives and optical flow computation", Proceedings of the IEEE Workshop on Omnidirectional Vision 2002. Held in conjunction with ECCV'02, 2002, . 2002, pp. 3-10..
C. Rother, "A new approach to vanishing point detection in architectural environments", Image Vis. Comput., vol. 20, pp. 647-655, 2002.
J. Košecká, and W. Zhang, "Video compass", European conference on computer vision, . 2002, pp. 476-490..
J-C. Bazin, C. Demonceaux, P. Vasseur, and I. Kweon, "Rotation estimation and vanishing point extraction by omnidirectional vision in urban environment", Int. J. Robot. Res., vol. 31, pp. 63-81, 2012.
J. Zhang, M. Kaess, and S. Singh, "Real-time depth enhanced monocular odometry", 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. , 2014, pp. 4973-4980..
C. Forster, M. Pizzoli, and D. Scaramuzza, "SVO: Fast semi-direct monocular visual odometry", 2014 IEEE Interna-tional Conference on Robotics and Automation (ICRA), . 2014 pp. 15-22.
C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza, "SVO: Semidirect visual odometry for monocular and multicamera systems", IEEE Trans. Robot., vol. 33, pp. 249-265, 2016.
J. Delmerico, and D. Scaramuzza, "A benchmark comparison of monocular visual-inertial odometry algorithms for flying robots", 2018 IEEE International Conference on Robotics and Automation (ICRA). , 2018, pp. 2502-2509.
T. Schneider, M. Dymczyk, M. Fehr, K. Egger, S. Lynen, I. Gilitschenski, and R. Siegwart, "MAPLAB: An open framework for research in visual-inertial mapping and localization", IEEE Robot. Autom. Lett., vol. 3, pp. 1418-1425, 2018.
M. He, C. Zhu, Q. Huang, B. Ren, and J. Liu, "A review of monocular visual odometry", Vis. Comput., pp. 1-13, 2019.
S. Song, M. Chandraker, and C.C. Guest, “Parallel, real-time monocular visual odometry”, Robot. Automat. (ICRA),, 2013, pp. 4698-4705.
D. Barnes, W. Maddern, G. Pascoe, and I. Posner, "Driven to distraction: Self-supervised distractor learning for robust monocular visual odometry in urban environments", In: , 2018 IEEE International Conference on Robotics and Automation (ICRA). 2018, pp. 1894-1900..
C. Häne, T. Sattler, and M. Pollefeys, "Obstacle detection for self-driving cars using only monocular cameras and wheel odometry", In: , 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2015, pp. 5101-5108..
X. Gao, R. Wang, N. Demmel, and D. Cremers, "LDSO: Direct sparse odometry with loop closure", In: , 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). , 2018, pp. 2198-2204.
J. Montiel, J. Civera, and A.J. Davison, "Unified inverse depth parametrization for monocular SLAM", Analysis, vol. 9, p. 1, 2006.
M. Kaess, A. Ranganathan, and F. Dellaert, "iSAM: Incremental smoothing and mapping", IEEE Trans. Robot., vol. 24, pp. 1365-1378, 2008.
M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, "Robust visual inertial odometry using a direct EKF-based approach.".In: , 2015 IEEE/RSJ international conference on intelligent robots and systems.. IROS, 2015, pp. 298-304.
T. Qin, P. Li, and S. Shen, "Vins-mono: A robust and versa-tile monocular visual-inertial state estimator", IEEE Trans. Robot., vol. 34, pp. 1004-1020, 2018.
M. Bloesch, M. Burri, S. Omari, M. Hutter, and R. Siegwart, "Iterated extended Kalman filter based visual-inertial odome-try using direct photometric feedback", Int. J. Robot. Res., vol. 36, pp. 1053-1072, 2017.
B. Triggs, P.F. McLauchlan, R.I. Hartley, and A.W. Fitzgibbon, "Bundle adjustment-a modern synthesis", International workshop on vision algorithms, . pp. 298-372, 1999.
H. Li, and R. Hartley, "Five-point motion estimation made easy", Pattern Recognition, 2006. ICPR 2006. 18th International Conference on, 2006,. 2006, pp. 630-633.
J. Philip, "A non‐iterative algorithm for determining all essential matrices corresponding to five point Pairs", Photogramm. Rec., vol. 15, pp. 589-599, 1996.
R. Hartley, and A. Zisserman, "Multiple view geometry in computer vision", Robotica, vol. 23, pp. 271-271, 2005.
D. Nister, Automatic dense reconstruction from uncalibrated video sequences: Numerisk analys och datalogi, . 2001
P.H. Torr, and D.W. Murray, "The development and compar-ison of robust methods for estimating the fundamental matrix", Int. J. Comput. Vis., vol. 24, pp. 271-300, 1997.
H.C. Longuet-Higgins, "A computer algorithm for reconstructing a scene from two projections", Nature, vol. 293, pp. 133-135, 1981.
V. Usenko, J. Engel, J. Stückler, and D. Cremers, "Direct visual-inertial odometry with stereo cameras", In: , 2016 IEEE International Conference on Robotics and Automation (ICRA). , 2016, pp. 1885-1892.
C. Harris, and M. Stephens, "A combined corner and edge detector."Alvey Vision Confer-ence, 1988, p. 50.
C. Schmid, R. Mohr, and C. Bauckhage, "Evaluation of interest point detectors", Int. J. Comput. Vis., vol. 37, pp. 151-172, 2000.
J. Martin, and J.L. Crowley, "Comparison of correlation techniques", In: ; International Conference on Intelligent Autonmous Systems.Karlsruhe, Germany, , 1995, pp. 86-93.
Y. Dufournaud, C. Schmid, and R. Horaud, "Matching images with different resolutions", Computer Vision and Pattern Recognition, 2000. In: Proceedings of IEEE Conference on, 2000,. 2000, pp. 612-618.
Y. Dufournaud, C. Schmid, and R. Horaud, "Image matching with scale adjustment", Comput. Vis. Image Underst., vol. 93, pp. 175-194, 2004.
I-K. Jung, "SLAM in 3D Environments with Stereovision",.PhD thesis, LAAS, Toulouse, , 2004
T. Lindeberg, and B.M. ter Haar Romeny, Linear scale-space I: Basic theory Geometry-Driven Diffusion in Computer Vision., Springer, 1994, pp. 1-38.
S. Se, D. Lowe, and J. Little, "Mobile robot localization and mapping with uncertainty using scale-invariant visual land-marks", Int. J. Robot. Res., vol. 21, pp. 735-758, 2002.
K. Mikolajczyk, and C. Schmid, "Performance evaluation of local descriptors", IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 10, pp. 1615-1630, 2005.
[http://dx.doi.org/10.1109/TPAMI.2005.188 PMID: 16237996]
N. Krombach, D. Droeschel, S. Houben, and S. Behnke, "Feature-based visual odometry prior for real-time semi-dense stereo SLAM", Robot. Auton. Syst., vol. 109, pp. 38-58, 2018.
N. Krombach, D. Droeschel, and S. Behnke, "Combining feature-based and direct methods for semi-dense real-time stereo visual odometry", In: , International Conference on Intelligent Autonomous Systems. , 2016 pp. 855-868
K. Mikolajczyk, and C. Schmid, "Scale & affine invariant interest point detectors", Int. J. Comput. Vis., vol. 60, pp. 63-86, 2004.
J. van de Weijer, T. Gevers, and A.D. Bagdanov, "Boosting color saliency in image feature detection", IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 1, pp. 150-156, 2006.
[http://dx.doi.org/10.1109/TPAMI.2006.3 PMID: 16402628]
P. Liu, L. Heng, T. Sattler, A. Geiger, and M. Pollefeys, "Direct visual odometry for a fisheye-stereo camera", In: , 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). , 2017, pp. 1746-1752.
B.M. Kitt, J. Rehder, A.D. Chambers, M. Schonbein, H. Lategahn, and S. Singh, "Monocular visual odometry using a planar road model to solve scale ambiguity", In: , Conference Paper, Proceedings of Proc. European Conference on Mobile Robots, August, 2011..
A. Cumani, "Feature localization refinement for improved visual odometry accuracy”", Inter. J. Circ. Syst. Sig. Process., vol. 5, pp. 151-158, 2011.
R. Giubilato, M. Pertile, and S. Debei, "A comparison of monocular and stereo visual Fast SLAM implementations" , In: , 2016 IEEE Metrology for Aerospace (Met-roAeroSpace) . , 2016, pp. 227-232.
C. Jaramillo, L. Yang, J.P. Muñoz, Y. Taguchi, and J. Xiao, "Visual odometry with a single-camera stereo omnidirectional system", Mach. Vis. Appl., vol. 30, no. 7-8, pp. 1145-1155, 2019.
A. Cumani, and A. Guiducci, "Fast stereo-based visual odometry for rover navigation", WSEAS Transactions on Circuits and Systems, vol. 7, pp. 648-657, 2008.
D. Valiente García, L. Fernández Rojo, A. Gil Aparicio, L. Payá Castelló, and O. Reinoso García, "Visual odometry through appearance-and feature-based method with omnidirectional images", J. Robot., 2012.
J.R. Fabian, and G.M. Clayton, “Adaptive visual odometry using RGBD cameras”, Adv. Intell. Mechatron. (AIM), . 2014, pp. 1533- 1538.
J. Fabian, and G.M. Clayton, "Error analysis for visual odometry on indoor, wheeled mobile robots with 3-d sensors", IEEE/ASME Trans. Mechatron., vol. 19, pp. 1896-1906, 2014.
Z. Fang, and Y. Zhang, "Experimental evaluation of RGBD visual odometry methods", Int. J. Adv. Robot. Syst., vol. 12, p. 26, 2015.
E. Guizzo, How google’s self-driving car works., vol. 18. IEEE Spectrum Online, 2011.
J-L. Blanco, F-A. Moreno, and J. Gonzalez, "A collection of outdoor robotic datasets with centimeter-accuracy ground truth", Auton. Robots, vol. 27, p. 327, 2009.
J-L. Blanco-Claraco, F-Á. Moreno-Dueñas, and J. González-Jiménez, "The Málaga urban dataset: High-rate stereo and Li-DAR in a realistic urban scenario", Int. J. Robot. Res., vol. 33, pp. 207-214, 2014.
M. Smith, I. Baldwin, W. Churchill, R. Paul, and P. Newman, "The new college vision and laser data set", Int. J. Robot. Res., vol. 28, pp. 595-599, 2009.
A. Geiger, J. Ziegler, and C. Stiller, "Stereoscan: Dense 3D reconstruction in real-time", In: , 2011 IEEE Intelligent Vehicles Symposium (IV). , 2011, pp. 963-968.
A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, "Vision meets robotics: The KITTI dataset", Int. J. Robot. Res., vol. 32, pp. 1231-1237, 2013.
H. Alismail, B. Browning, and M.B. Dias, "Evaluating pose estimation methods for stereo visual odometry on robots", In: , The 11th Int’l Conf. on Intelligent Autonomous Systems (IAS-11), . 2010, pp. 2.
M. Warren, D. McKinnon, H. He, A. Glover, M. Shiel, and B. Upcroft, "Large scale monocular vision-only mapping from a fixed-wings UAS." Field and Service Robot. , pp. 495-509. 2014
M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M.W. Achtelik, and R. Siegwart, "The EuRoC micro aerial vehicle datasets", Int. J. Robot. Res., vol. 35, pp. 1157-1163, 2016.
W. Maddern, G. Pascoe, C. Linegar, and P. Newman, "1 year, 1000 km: The Oxford RobotCar dataset", Int. J. Robot. Res., vol. 36, pp. 3-15, 2017.
P. Bergmann, R. Wang, and D. Cremers, "Online photometric calibration of auto exposure video for realtime visual odome-try and SLAM", IEEE Robot. Autom. Lett., vol. 3, pp. 627-634, 2017.
J. Engel, V. Usenko, and D. Cremers, "A photometrically calibrated benchmark for monocular visual odometry", arXiv preprint arXiv:1607.02555, , 2016.
D. Caruso, J. Engel, and D. Cremers, "Large-scale direct slam for omnidirectional cameras", In: , 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). , 2015, pp. 141-148.
E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck, and D. Scaramuzza, "The event-camera dataset and simulator: Event-based data for pose estimation, visual odometry, and SLAM", Int. J. Robot. Res., vol. 36, pp. 142-149, 2017.
G. Pandey, J.R. McBride, and R.M. Eustice, "Ford campus vision and lidar data set", Int. J. Robot. Res., vol. 30, pp. 1543-1552, 2011.
T. Hinzmann, T. Stastny, G. Conte, P. Doherty, P. Rudol, M. Wzorek, E. Galceran, R. Siegwart, and I. Gilitschenski, "Collaborative 3D reconstruction using heterogeneous UAVs: System and experiments", In: , International Symposium on Experimental Robotics. , 2016, pp. 43-56,
A.L. Majdik, C. Till, and D. Scaramuzza, "The Zurich urban micro aerial vehicle dataset", Int. J. Robot. Res., vol. 36, pp. 269-273, 2017.
D. Schubert, T. Goll, N. Demmel, V. Usenko, J. Stückler, and D. Cremers, “The TUM VI benchmark for evaluating visualinertial odometry,”. In: , 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, . , IROS, 2018, pp. 1680-1687.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 22 September, 2020
Page: [618 - 631]
Pages: 14
DOI: 10.2174/2352096512666191004142546
Price: $25

Article Metrics

PDF: 15