Waste to Energy Conversion and Sustainable Recovery of Nutrients from Pee Power - Recent Advancements in Urine-Fed MFCs

Author(s): Natarajan Narayanan, Vasudevan Mangottiri*, Kiruba Narayanan

Journal Name: Mini-Reviews in Organic Chemistry

Volume 17 , Issue 7 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Microbial Fuel Cells (MFCs) offer a sustainable solution for alternative energy production by employing microorganisms as catalysts for direct conversion of chemical energy of feedstock into electricity. Electricity from urine (urine-tricity) using MFCs is a promising cost-effective technology capable of serving multipurpose benefits - generation of electricity, waste alleviation, resource recovery and disinfection. As an abundant waste product from human and animal origin with high nutritional values, urine is considered to be a potential source for extraction of alternative energy in the coming days. However, developments to improve power generation from urine-fed MFCs at reasonable scales still face many challenges such as non-availability of sustainable materials, cathodic limitations, and low power density. The aim of this paper was to critically evaluate the state-of-the-art research and developments in urine-fed MFCs over the past decade (2008-2018) in terms of their construction (material selection and configuration), modes of operation (batch, continuous, cascade, etc.) and performance (power generation, nutrient recovery and waste treatment). This review identifies the preference for sources of urine for MFC application from human beings, cows and elephants. Among these, human urine-fed MFCs offer a variety of applications to practice in the real-world scenario. One key observation is that, effective disinfection can be achieved by optimizing the operating conditions and MFC configurations without compromising on performance. In essence, this review demarcates the scope of enhancing the reuse potential of urine for renewable energy generation and simultaneously achieving resource recovery.

Keywords: Bioenergy, disinfection, microbial fuel cells, nutrient extraction, resource recovery, urine, waste to energy.

Ieropoulos, I.; Greenman, J.; Melhuish, C. Urine utilisation by microbial fuel cells; energy fuel for the future. Phys. Chem. Chem. Phys., 2012, 14(1), 94-98.
[http://dx.doi.org/10.1039/C1CP23213D] [PMID: 22071787]
You, J.; Greenman, J.; Melhuish, C.; Ieropoulos, I. Electricity generation and struvite recovery from human urine using microbial fuel cells. J. Chem. Technol. Biotechnol., 2016, 91(3), 647-654.
Larsen, T.A.; Gujer, W. Separate management of anthropogenic nutrient solutions (human urine). Water Sci. Technol., 1996, 34, 87-94.
Bhattarai, K.K.; Taiganides, E.P.; Yap, B.C. Struvite deposits in pipes and aerators. Biol. Wastes, 1989, 30, 133-147.
Fattah, K.P. Assessing struvite formation potential at wastewater treatment plants. Int. J. Environ. Sci. Dev., 2012, 3, 548-552.
Ieropoulos, I.A.; Greenman, J.; Melhuish, C. Miniature microbial fuel cells and stacks for urine utilisation. Int. J. Hydrogen Energy, 2013, 38, 492-496.
Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Microbial fuel cells: From fundamentals to applications. A review. J. Power Sources, 2017, 356, 225-244.
[http://dx.doi.org/10.1016/j.jpowsour.2017.03.109] [PMID: 28717261]
Zang, G.L.; Sheng, G.P.; Li, W.W.; Tong, Z.H.; Zeng, R.J.; Shi, C.; Yu, H.Q. Nutrient removal and energy production in a urine treatment process using magnesium ammonium phosphate precipitation and a microbial fuel cell technique. Phys. Chem. Chem. Phys., 2012, 14(6), 1978-1984.
[http://dx.doi.org/10.1039/c2cp23402e] [PMID: 22234416]
Xu, W.; Zhang, H.; Li, G.; Wu, Z. A urine/Cr(VI) fuel cell - Electrical power from processing heavy metal and human urine. J. Electroanal. Chem. (Lausanne Switz.), 2016, 764, 38-44.
Kuntke, P.; Smiech, K.M.; Bruning, H.; Zeeman, G.; Saakes, M.; Sleutels, T.H.J.A.; Hamelers, H.V.M.; Buisman, C.J.N. Ammonium recovery and energy production from urine by a microbial fuel cell. Water Res., 2012, 46(8), 2627-2636.
[http://dx.doi.org/10.1016/j.watres.2012.02.025] [PMID: 22406284]
Hernandez-Fernandez, F.J.; Perez de los Rios, A.; Salar-Garcia, M.J.; Ortiz-Martinez, V.M.; Lozano-Blanco, L.J.; Godinez, C.; Tomas-Alonso, F.; Quesada-Medina, J. Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment. Fuel Process. Technol., 2015, 138, 284-297.
Santoro, C.; Ieropoulos, I.; Greenman, J.; Cristiani, P.; Vadas, T.; Mackay, A.; Li, B. Current generation in membraneless single chamber microbial fuel cells (MFCs) treating urine. J. Power Sources, 2013, 238, 190-196.
Santoro, C.; Ieropoulos, I.; Greenman, J.; Cristian, P.; Vadas, T.; Mackay, A.; Li, B. Power generation and contaminant removal in Single Chamber Microbial Fuel Cells (SCMFCs) treating human urine. Int. J. Hydrogen Energy, 2013, 38(26), 11543-11551.
Jadhav, D.A.; Jain, S.C.; Ghangrekar, M.M. Cow’s urine as a yellow gold for bioelectricity generation in low cost clayware microbial fuel cell. Energy, 2016, 113, 76-84.
Merino-Jimenez, I.; Celorrio, V.; Fermin, D.J.; Greenman, J.; Ieropoulos, I. Enhanced MFC power production and struvite recovery by the addition of sea salts to urine. Water Res., 2017, 109, 46-53.
[http://dx.doi.org/10.1016/j.watres.2016.11.017]] [PMID: 27866103]
Merino-Jimenez, I.; Greenman, J.; Ieropoulos, I. Electricity and catholyte production from ceramic MFCs treating urine. Int. J. Hydrogen Energy, 2017, 42(3), 1791-1799.
[http://dx.doi.org/10.1016/j.ijhydene.2016.09.163]] [PMID: 28280287]
Gadja, I.; Greenman, J.; Melhuish, C.; Ieropoulos, I.A. Electricity and disinfectant production form wastewater: Microbial fuel cell as a self-powered electrolyser. Sci. Rep., 2017, 6, 25571.
Ieoropoulos, I.; Pasternak, G.; Greenman, J. Urine disinfection and in situ pathogen killing using a microbial fuel cell cascade system. Plos One, 2017, 12(5), 1-12.
Salar-Garcia, M.J. Ortiz-Martinez; Gadja, I.; Greenman, J. Electricity production from human urine in ceramic microbial fuel cells with alternative non-fluorinated polymer binders for cathode construction. Sep. Purif. Tech., 2017.
Gajda, I.; Greenman, J.; Santoro, C.; Serov, A.; Atanassov, P.; Melhuish, C.; Ieropoulos, I.A. Multi-functional microbial fuel cells for power, treatment and electro-osmotic purification of urine. J. Chem. Technol. Biotechnol., 2019, 94(7), 2098-2106.
[http://dx.doi.org/10.1002/jctb.5792] [PMID: 31423040]
Gnana Kumar, G.; Kirubaharan, C.J.; Yoo, D.J.; Kim, A.R. Graphene/poly(3,4-ethylenedioxythiophene)/Fe3O4 nanocomposite - An efficient oxygen reduction catalyst for the continuous electricity production from wastewater treatment microbial fuel cells. Int. J. Hydrogen Energy, 2016, 41(30), 13208-13219.
Chouler, J.; Padgett, G.A.; Cameron, P.J.; Preuss, K.; Titirici, M.M.; Ieropoulos, I.; Di Lorenzo, M. Towards effective small scale microbial fuel cells for energy generation from urine. Electrochim. Acta, 2016, 20(192), 89-98.
Karthikeyan, C.; Sathishkumar, Y.; Lee, Y.S.; Kim, A.R.; Yoo, D.J.; Kumar, G.G. The Influence of Chitosan Substrate and Its Nanometric Form Toward the Green Power Generation in Sediment Microbial Fuel Cell. J. Nanosci. Nanotechnol., 2017, 17(1), 558-563.
[http://dx.doi.org/10.1166/jnn.2017.12090] [PMID: 29630144]
Walter, X.A.; Stinchcombe, A.; Greenman, J.; Ieropoulos, I. Urine transduction to usable energy: A modular MFC approach for smartphone and remote system charging. Appl. Energy, 2017, 192, 575-581.
Deng, X.; Gao, K.; Addy, M.; Chen, P.; Li, D.; Zhang, R.; Ruan, R. Growing Chlorella vulgaris on mixed wastewaters for biodiesel feedstock production and nutrient removal. J. Chem. Technol. Biotechnol., 2018, 93(9), 2748-2757.
Walter, X.A.; Merino-Jiménez, I.; Greenman, J.; Ieropoulos, I. PEE POWER® urinal II - Urinal scale-up with microbial fuel cell scale-down for improved lighting. J. Power Sources, 2018, 392, 150-158.
[http://dx.doi.org/10.1016/j.jpowsour.2018.02.047] [PMID: 30018464]
Zhou, Y.; Tang, L.; Liu, Z.; Hou, J.; Chen, W.; Li, Y.; Sang, L. A node anode fabricated by three-dimensional printing for use in urine-powered microbial fuel cell. Biochem. Engg. J., 2017, 124(5), 36-43.
Li, X.; Wang, X.; Zhao, Q.; Wan, L.; Li, Y.; Zhou, Q. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells. Biosens. Bioelectron., 2016, 85, 135-141.
[http://dx.doi.org/10.1016/j.bios.2016.05.001] [PMID: 27162144]
Zhang, C.; Liang, P.; Yang, X.; Jiang, Y.; Bian, Y.; Chen, C.; Zhang, X.; Huang, X. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell. Biosens. Bioelectron., 2016, 81, 32-38.
[http://dx.doi.org/10.1016/j.bios.2016.02.051] [PMID: 26918615]
Zhang, Y.P.; Sun, J.; Hu, Y.Y.; Li, S.Z.; Xu, Q. Bio-cathode materials evaluation in microbial fuel cells: A comparison of graphite felt, carbon paper and stainless steel mesh materials. Int. J. Hydrogen Energy, 2012, 37(22), 16935-16942.
Hou, J.X.; Liu, Z.L.; Zhang, P.Y. The experimental study of graphene modified microbial fuel cell anode. J. Eng. Thermophys., 2013, 34(7), 1319-1322.
Yang, X.S.; Ma, X.X.; Wang, K.; Wu, D.; Lei, Z.C.; Feng, C.H. Eighteen-month assessment of 3D graphene oxide aerogel-modified 3D graphite fiber brush electrode as a high-performance microbial fuel cell anode. Electrochim. Acta, 2016, 210, 846-853.
Hou, J.X.; Liu, Z.L.; Yang, S.Q.; Zhou, Y. Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells. J. Power Sources, 2014, 258, 204-209.
Hou, J.; Liu, Z.; Li, Y.; Yang, S.; Zhou, Y. A comparative study of graphene-coated stainless steel fiber felt and carbon cloth as anodes in MFCs. Bioprocess Biosyst. Eng., 2015, 38(5), 881-888.
[http://dx.doi.org/10.1007/s00449-014-1332-0] [PMID: 25428842]
Tang, J.H.; Yuan, Y.; Liu, T.; Zhou, S.G. High-capacity carbon-coated titanium dioxide core-shell nanoparticles modified three dimensional anodes for improved energy output in microbial fuel cells. J. Power Sources, 2015, 274, 170-176.
Yong, Y.C.; Dong, X.C.; Chan-Park, M.B.; Song, H.; Chen, P. Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. ACS Nano, 2012, 6(3), 2394-2400.
[http://dx.doi.org/10.1021/nn204656d] [PMID: 22360743]
Wang, Z.J.; Zheng, Z.Y.; Zheng, S.Q.; Chen, S.L.; Zhao, F. Carbonized textile with free-standing threads as an efficient anode material for bioelectrochemical 13 systems. J. Power Sources, 2015, 287, 269-275.
Erbay, C.; Yang, G.; Figueiredo, P.D.; Sadr, R.; Yu, C.; Han, A. Three-dimensional porous carbon nanotube sponges for high-performance anodes of microbial fuel cells. J. Power Sources, 2015, 298, 177-183.
Seo, H.N.; Lee, W.J.; Hwang, T.S.; Park, D.H. Electricity generation coupled with wastewater treatment using a microbial fuel cell composed of a modified cathode with a ceramic membrane and cellulose acetate film. J. Microbiol. Biotechnol., 2009, 19(9), 1019-1027.
[http://dx.doi.org/10.4014/jmb.0812.663] [PMID: 19809261]
Behera, M.; Jana, P.S.; Ghangrekar, M.M. Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode. Bioresour. Technol., 2010, 101(4), 1183-1189.
[http://dx.doi.org/10.1016/j.biortech.2009.07.089] [PMID: 19800223]
Ajayi, F.F.; Weigele, P.R. A terracotta bio-battery. Bioresour. Technol., 2012, 116, 86-91.
[http://dx.doi.org/10.1016/j.biortech.2012.04.019] [PMID: 22609660]
Winfield, J.; Greenman, J.; Huson, D.; Ieropoulos, I. Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells. Bioprocess Biosyst. Eng., 2013, 36(12), 1913-1921.
[http://dx.doi.org/10.1007/s00449-013-0967-6] [PMID: 23728836]
Cheng, S.; Liu, H.; Logan, B.E. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (nafion and PTFE) in single chamber microbial fuel cells. Environ. Sci. Technol., 2006, 40(1), 364-369.
[http://dx.doi.org/10.1021/es0512071] [PMID: 16433373]
Shreeram, D.D.; Hassett, D.J.; Schaefer, D.W. Urine-powered microbial fuel cell using a hyperpiliated pilT mutant of Pseudomonas aeruginosa. J. Ind. Microbiol. Biotechnol., 2016, 43(1), 103-107.
[http://dx.doi.org/10.1007/s10295-015-1716-4] [PMID: 26660316]
Vignesh, H.; Rani, H.K. Generation of bioelectricity from waste water and cow’s urine. Indian J. Appl. Res., 2012, 1(7), 16-19.
Mali, B.M.; Gavimath, C.C.; Hooli, V.R.; Patil, A.B.; Gaddi, D.P.; Ternikar, C.R.; Ravishankera, B.E. Generation of bioelectricity using waste water. Int. J. Adv. Biotech. Res., 2012, 3(1), 537-540.
Hasan, W.; Ahmed, H.; Salim, K.M. Generation of electricity using cow urine. Int. J. Innov. Ap. Stud., 2014, 9(4), 1465-1471.
Gireeshan, M.G.; Vasuki, R.; Krishnakumar, T. High power production from elephant’s urine. Int. J. Pharm. Technol., 2014, 6, 6714-6718.
Chandrasekhar, K.; Kadier, A.; Kumar, G.; Nastro, R.A.; Jeevitha, V. Challenges in microbial fuel cell and future scope. In: Microbial Fuel Cell; Das, D., Ed.; Springer: London, 2018; pp. 483-499.
Logan, B.E.; Regan, J.M. Microbial fuel cells--challenges and applications. Environ. Sci. Technol., 2006, 40(17), 5172-5180.
[http://dx.doi.org/10.1021/es0627592] [PMID: 16999086]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 08 October, 2020
Page: [768 - 779]
Pages: 12
DOI: 10.2174/1570193X16666191004101739
Price: $65

Article Metrics

PDF: 39
PRC: 2