Relationship between SNP rs1764391 and Susceptibility, Risk Factors, Gene-environment Interactions of Acute Myocardial Infarction in Guangxi Han Chinese Population

Author(s): Jun Li, Rui Qin, Wei Wang*, Zhou Huang, Dong-Ling Huang, Tian Li, Fan Wang, Xiang-tao Zeng, Zhong-yi Sun, Xue-feng Liu, Feng Huang, Tao Guo.

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 1 , 2020

Become EABM
Become Reviewer

Abstract:

Background: Large-scale population studies showed that the SNP rs1764391 of Connexin37 gene also known as Cx37 gene may play a pivotal role in the occurrence and development of acute myocardial infarction (AMI). Published results, however, are highly controversial.

Objective: This study aimed to examine the association between SNP rs1764391 of Cx37 and diseasesusceptibility, several risk factors, and gene-environment interactions of AMI in Guangxi Han Chinese population.

Methods: In this study, 344 healthy controls and 344 AMI patients of Han Chinese population were enrolled. The TaqMan assay was implemented to identify genotypes of Cx37 and allele frequencies of SNP rs1764391 in both the AMI and control groups.

Results: Significant differences were detected in TT genotype frequencies of SNP rs1764391 between the AMI and control groups (P < 0.05). In the context of gender stratification, the result was also statistically different in women (P < 0.05). Each variable such as age, BMI, diabetes, high blood pressure, smoking and TC was a risk factor and correlated significantly (P < 0.05) with the development of AMI. HDL-C correlated negatively with the risk of AMI (P < 0.001). BMI, smoking or alcohol consumed interacts significantly (P < 0.017) with the presence of the SNP rs1764391 CC genotype.

Conclusion: Evidences were presented that Cx37 rs1764391 variation may contribute to the risk for AMI, especially in women and this genetic variant may prove to be a potential biomarker for AMI risk stratification and may prove to be a useful target for therapeutic intervention to further improve prognosis in high-risk patients.

Keywords: Guangxi Han Chinese population, acute myocardial infarction, clinical characteristics, connexin 37, single nucleotide polymorphism, allelle frequencies, risk factor, gene-environment interactions.

[1]
Le Feuvre, C.; Jacqueminet, S.; Barthelemy, O. Myocardial ischemia: A silent epidemic in Type 2 diabetes patients. Future Cardiol., 2011, 7(2), 183-190.
[http://dx.doi.org/10.2217/fca.10.127] [PMID: 21453025]
[2]
Anderson, J.L.; Morrow, D.A. Acute myocardial infarction. N. Engl. J. Med., 2017, 376(21), 2053-2064.
[http://dx.doi.org/10.1056/NEJMra1606915] [PMID: 28538121]
[3]
Katritsis, D.G.; Gersh, B.J.; Camm, A.J. A clinical perspective on sudden cardiac death. Arrhythm. Electrophysiol. Rev., 2016, 5(3), 177-182.
[http://dx.doi.org/10.15420/aer.2016:11:2] [PMID: 28116082]
[4]
Nakatochi, M.; Ichihara, S.; Yamamoto, K.; Naruse, K.; Yokota, S.; Asano, H.; Matsubara, T.; Yokota, M. Epigenome-wide association of myocardial infarction with DNA methylation sites at loci related to cardiovascular disease. Clin. Epigenetics, 2017, 9, 54.
[http://dx.doi.org/10.1186/s13148-017-0353-3] [PMID: 28515798]
[5]
Mathers, C.D.; Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med., 2006, 3(11)e442
[http://dx.doi.org/10.1371/journal.pmed.0030442] [PMID: 17132052]
[6]
Xue-Juan, W.; Hao, W.; Cai-Ying, G.; Xin-Ying, L.; Hong-Yan, J.; Li, W.; Xiao-Ling, G.; Wan-Ying, L.; Wen-Juan, G.; Wan-Nian, L. Impact of an intelligent chronic disease management system on patients with type 2 diabetes mellitus in a Beijing community. BMC Health Serv. Res., 2018, 18(1), 821.
[http://dx.doi.org/10.1186/s12913-018-3610-z] [PMID: 30373577]
[7]
Eagle, K.A.; Ginsburg, G.S.; Musunuru, K.; Aird, W.C.; Balaban, R.S.; Bennett, S.K.; Blumenthal, R.S.; Coughlin, S.R.; Davidson, K.W.; Frohlich, E.D.; Greenland, P.; Jarvik, G.P.; Libby, P.; Pepine, C.J.; Ruskin, J.N.; Stillman, A.E.; Van Eyk, J.E.; Tolunay, H.E.; McDonald, C.L.; Smith, S.C., Jr Identifying patients at high risk of a cardiovascular event in the near future: Current status and future directions: Report of a national heart, lung, and blood institute working group. Circulation, 2010, 121(12), 1447-1454.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.904029] [PMID: 20351302]
[8]
Lind, C.; Enga, K.F.; Mathiesen, E.B.; Njølstad, I.; Brækkan, S.K.; Hansen, J.B. Family history of myocardial infarction and cause-specific risk of myocardial infarction and venous thromboembolism: the Tromsø Study. Circ Cardiovasc Genet, 2014, 7(5), 684-691.
[http://dx.doi.org/10.1161/CIRCGENETICS.114.000621] [PMID: 25087051]
[9]
Hawe, E.; Talmud, P.J.; Miller, G.J.; Humphries, S.E. Second Northwick Park Heart Study. Family history is a coronary heart disease risk factor in the Second Northwick Park Heart Study. Ann. Hum. Genet., 2003, 67(Pt 2), 97-106.
[http://dx.doi.org/10.1046/j.1469-1809.2003.00017.x] [PMID: 12675686]
[10]
De, R.; Bush, W.S.; Moore, J.H. Bioinformatics challenges in Genome-Wide Association Studies (GWAS). Methods Mol. Biol., 2014, 1168, 63-81.
[http://dx.doi.org/10.1007/978-1-4939-0847-9_5] [PMID: 24870131]
[11]
Wong, C.W.; Christen, T.; Roth, I.; Chadjichristos, C.E.; Derouette, J.P.; Foglia, B.F.; Chanson, M.; Goodenough, D.A.; Kwak, B.R. Connexin37 protects against atherosclerosis by regulating monocyte adhesion. Nat. Med., 2006, 12(8), 950-954.
[http://dx.doi.org/10.1038/nm1441] [PMID: 16862155]
[12]
Juo, S.H.; Liao, Y.C.; Lin, H.F.; Chen, P.L.; Lin, W.Y.; Lin, R.T. Lack of association between a functional genetic variant of connexin 37 and ischemic stroke in a Taiwanese population. Thromb. Res., 2012, 129(4), e65-e69.
[http://dx.doi.org/10.1016/j.thromres.2011.12.040] [PMID: 22305353]
[13]
Boerma, M.; Forsberg, L.; Van Zeijl, L.; Morgenstern, R.; De Faire, U.; Lemne, C.; Erlinge, D.; Thulin, T.; Hong, Y.; Cotgreave, I.A. A genetic polymorphism in connexin 37 as a prognostic marker for atherosclerotic plaque development. J. Intern. Med., 1999, 246(2), 211-218.
[http://dx.doi.org/10.1046/j.1365-2796.1999.00564.x] [PMID: 10447790]
[14]
Yeh, H.I.; Chou, Y.; Liu, H.F.; Chang, S.C.; Tsai, C.H. Connexin37 gene polymorphism and coronary artery disease in Taiwan. Int. J. Cardiol., 2001, 81(2-3), 251-255.
[http://dx.doi.org/10.1016/S0167-5273(01)00574-5] [PMID: 11744143]
[15]
Wong, C.W.; Christen, T.; Pfenniger, A.; James, R.W.; Kwak, B.R. Do allelic variants of the connexin37 1019 gene polymorphism differentially predict for coronary artery disease and myocardial infarction? Atherosclerosis, 2007, 191(2), 355-361.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.03.031] [PMID: 16677656]
[16]
Yamada, Y.; Izawa, H.; Ichihara, S.; Takatsu, F.; Ishihara, H.; Hirayama, H.; Sone, T.; Tanaka, M.; Yokota, M. Prediction of the risk of myocardial infarction from polymorphisms in candidate genes. N. Engl. J. Med., 2002, 347(24), 1916-1923.
[http://dx.doi.org/10.1056/NEJMoa021445] [PMID: 12477941]
[17]
Lanfear, D.E.; Jones, P.G.; Marsh, S.; Cresci, S.; Spertus, J.A.; McLeod, H.L. Connexin37 (GJA4) genotype predicts survival after an acute coronary syndrome. Am. Heart J., 2007, 154(3), 561-566.
[http://dx.doi.org/10.1016/j.ahj.2007.04.059] [PMID: 17719307]
[18]
Listì, F.; Candore, G.; Lio, D.; Russo, M.; Colonna-Romano, G.; Caruso, M.; Hoffmann, E.; Caruso, C. Association between C1019T polymorphism of connexin37 and acute myocardial infarction: A study in patients from Sicily. Int. J. Cardiol., 2005, 102(2), 269-271.
[http://dx.doi.org/10.1016/j.ijcard.2004.05.031] [PMID: 15982495]
[19]
Seifi, M.; Fallah, S.; Ghasemi, A.; Aghajani, H.; Razaghi, M.; Danaei, N. Mutations of the connexin 37 and 40 gap-junction genes in patients with acute myocardial infarction. Clin. Lab., 2013, 59(3-4), 343-348.
[http://dx.doi.org/10.7754/Clin.Lab.2012.120305] [PMID: 23724624]
[20]
El Tahry, F.A.; Hashad, I.M.; Abdel Rahman, M.F.; Gad, M.Z. Polymorphisms in gap junction proteins and their role in predisposition of acute myocardial infarction in Egyptians. Curr. Pharm. Biotechnol., 2017, 18(8), 662-668.
[http://dx.doi.org/10.2174/1389201018666171002125432] [PMID: 28969560]
[21]
Horan, P.G.; Allen, A.R.; Patterson, C.C.; Spence, M.S.; McGlinchey, P.G.; McKeown, P.P. The connexin 37 gene polymorphism and coronary artery disease in Ireland. Heart, 2006, 92(3), 395-396.
[http://dx.doi.org/10.1136/hrt.2004.055665] [PMID: 16501201]
[22]
Hubacek, J.A.; Staněk, V.; Gebauerová, M.; Pilipčincová, A.; Poledne, R.; Aschermann, M.; Skalická, H.; Matoušková, J.; Kruger, A.; Pěnička, M.; Hrabáková, H.; Veselka, J.; Hájek, P.; Lánská, V.; Adámková, V.; Pit’ha, J. Lack of an association between connexin-37, stromelysin-1, plasminogen activator-inhibitor type 1 and lymphotoxin-alpha genes and acute coronary syndrome in Czech Caucasians. Exp. Clin. Cardiol., 2010, 15(3), e52-e56.
[PMID: 20959880]
[23]
Li, Y.Y.; Qian, Y.; Zhou, C.W. Lack of association between the connexin 37 C1019T gene polymorphism and coronary artery disease in a Chinese population: Meta-analysis of 2,206 subjects. Biomed. Rep., 2013, 1(3), 464-468.
[http://dx.doi.org/10.3892/br.2013.90] [PMID: 24648969]
[24]
Zhao, L.; Li, Y.; Wu, D.; Ma, T.; Xia, S.Y.; Liu, Z. Cx37 C1019T polymorphism may contribute to the pathogenesis of coronary heart disease. Genet. Test. Mol. Biomarkers, 2014, 18(7), 497-504.
[http://dx.doi.org/10.1089/gtmb.2014.0034] [PMID: 24773516]
[25]
An epidemiological study of cardiovascular and cardiopulmonary disease risk factors in four populations in the People’s Republic of China. Baseline report from the P.R.C.-U.S.A. Collaborative Study. People’s Republic of China--United States Cardiovascular and Cardiopulmonary Epidemiology Research Group. Circulation, 1992, 85(3), 1083-1096.
[http://dx.doi.org/10.1161/01.CIR.85.3.1083] [PMID: 1537106]
[26]
Barnett, R.; Larson, G. A phenol-chloroform protocol for extracting DNA from ancient samples. Methods Mol. Biol., 2012, 840, 13-19.
[http://dx.doi.org/10.1007/978-1-61779-516-9_2] [PMID: 22237516]
[27]
Ali, M.E.; Hashim, U.; Mustafa, S.; Che, Man Y.B.; Dhahi, T.S.; Kashif, M.; Uddin, M.K.; Abd Hamid, S.B. Analysis of pork adulteration in commercial meatballs targeting porcine-specific mitochondrial cytochrome B gene by TaqMan probe real-time polymerase chain reaction. Meat Sci., 2012, 91(4), 454-459.
[http://dx.doi.org/10.1016/j.meatsci.2012.02.031] [PMID: 22444666]
[28]
Taylor, J. 2012 ESC Guidelines on acute myocardial infarction (STEMI). Eur. Heart J., 2012, 33(20), 2501-2502.
[PMID: 23065971]
[29]
International HapMap Consortium. The International HapMap Project. Nature, 2003, 426(6968), 789-796.
[http://dx.doi.org/10.1038/nature02168] [PMID: 14685227]
[30]
Ginsburg., G.S.; Willard., H.F.; Hubbard, C.A.; Topol, E.J. Essentials of Genomic and Personalized Medicine, 1st ed; Academic Press by Elsevier, 2010, pp. 289-302.
[31]
Richard, G.; Lin, J.P.; Smith, L.; Whyte, Y.M.; Itin, P.; Wollina, U.; Epstein, E., Jr; Hohl, D.; Giroux, J.M.; Charnas, L.; Bale, S.J.; DiGiovanna, J.J. Linkage studies in erythrokeratodermias: Fine mapping, genetic heterogeneity and analysis of candidate genes. J. Invest. Dermatol., 1997, 109(5), 666-671.
[http://dx.doi.org/10.1111/1523-1747.ep12337713] [PMID: 9347797]
[32]
Molica, F.; Meens, M.J.; Morel, S.; Kwak, B.R. Mutations in cardiovascular connexin genes. Biol. Cell, 2014, 106(9), 269-293.
[http://dx.doi.org/10.1111/boc.201400038] [PMID: 24966059]
[33]
Bruzzone, R.; White, T.W.; Paul, D.L. Connections with connexins: The molecular basis of direct intercellular signaling. Eur. J. Biochem., 1996, 238(1), 1-27.
[http://dx.doi.org/10.1111/j.1432-1033.1996.0001q.x] [PMID: 8665925]
[34]
Pfenniger, A.; Chanson, M.; Kwak, B.R. Connexins in atherosclerosis. Biochim. Biophys. Acta, 2013, 1828(1), 157-166.
[http://dx.doi.org/10.1016/j.bbamem.2012.05.011] [PMID: 22609170]
[35]
Kessler, T.; Erdmann, J.; Schunkert, H. Genetics of coronary artery disease and myocardial infarction--2013. Curr. Cardiol. Rep., 2013, 15(6), 368.
[http://dx.doi.org/10.1007/s11886-013-0368-0] [PMID: 23616109]
[36]
Saez, J.C.; Berthoud, V.M.; Branes, M.C.; Martinez, A.D.; Beyer, E.C. Plasma membrane channels formed by connexins: Their regulation and functions. Physiol. Rev., 2003, 83(4), 1359-1400.
[http://dx.doi.org/10.1152/physrev.00007.2003] [PMID: 14506308]
[37]
Guo, S.; Zhu, J.; Yang, Z.; Feng, J.; Li, K.; Wang, R.; Yang, X. Reduction of connexin 37 expression by RNA interference decreases atherosclerotic plaque formation. Mol. Med. Rep., 2015, 11(4), 2664-2670.
[http://dx.doi.org/10.3892/mmr.2014.3053] [PMID: 25483389]
[38]
Yeh, H.I.; Lai, Y.J.; Chang, H.M.; Ko, Y.S.; Severs, N.J.; Tsai, C.H. Multiple connexin expression in regenerating arterial endothelial gap junctions. Arterioscler. Thromb. Vasc. Biol., 2000, 20(7), 1753-1762.
[http://dx.doi.org/10.1161/01.ATV.20.7.1753] [PMID: 10894813]
[39]
Van Camp, G.; Coucke, P.; Speleman, F.; Van Roy, N.; Beyer, E.C.; Oostra, B.A.; Willems, P.J. The gene for human gap junction protein connexin37 (GJA4) maps to chromosome 1p35.1, in the vicinity of D1S195. Genomics, 1995, 30(2), 402-403.
[PMID: 8586454]
[40]
Stephens, J.W.; Humphries, S.E. The molecular genetics of cardiovascular disease: Clinical implications. J. Intern. Med., 2003, 253(2), 120-127.
[http://dx.doi.org/10.1046/j.1365-2796.2003.01104.x] [PMID: 12542551]
[41]
Mehta, P.K.; Wei, J.; Wenger, N.K. Ischemic heart disease in women: A focus on risk factors. Trends Cardiovasc. Med., 2015, 25(2), 140-151.
[http://dx.doi.org/10.1016/j.tcm.2014.10.005] [PMID: 25453985]
[42]
Weischer, M.; Bojesen, S.E.; Cawthon, R.M.; Freiberg, J.J.; Tybjærg-Hansen, A.; Nordestgaard, B.G. Short telomere length, myocardial infarction, ischemic heart disease, and early death. Arterioscler. Thromb. Vasc. Biol., 2012, 32(3), 822-829.
[http://dx.doi.org/10.1161/ATVBAHA.111.237271] [PMID: 22199369]
[43]
Zee, R.Y.; Michaud, S.E.; Germer, S.; Ridker, P.M. Association of shorter mean telomere length with risk of incident myocardial infarction: A prospective, nested case-control approach. Clin. Chim. Acta, 2009, 403(1-2), 139-141.
[http://dx.doi.org/10.1016/j.cca.2009.02.004] [PMID: 19217888]
[44]
Fyhrquist, F.; Saijonmaa, O.; Strandberg, T. The roles of senescence and telomere shortening in cardiovascular disease. Nat. Rev. Cardiol., 2013, 10(5), 274-283.
[http://dx.doi.org/10.1038/nrcardio.2013.30] [PMID: 23478256]
[45]
Maubaret, C.G.; Salpea, K.D.; Jain, A.; Cooper, J.A.; Hamsten, A.; Sanders, J.; Montgomery, H.; Neil, A.; Nair, D.; Humphries, S.E. HIFMECH consortium. Simon Broome Research Group. Telomeres are shorter in myocardial infarction patients compared to healthy subjects: correlation with environmental risk factors. J. Mol. Med. (Berl.), 2010, 88(8), 785-794.
[http://dx.doi.org/10.1007/s00109-010-0624-3] [PMID: 20383691]
[46]
Terry, D.F.; Nolan, V.G.; Andersen, S.L.; Perls, T.T.; Cawthon, R. Association of longer telomeres with better health in centenarians. J. Gerontol. A Biol. Sci. Med. Sci., 2008, 63(8), 809-812.
[http://dx.doi.org/10.1093/gerona/63.8.809] [PMID: 18772468]
[47]
Salpea, K.D.; Nicaud, V.; Tiret, L.; Talmud, P.J.; Humphries, S.E. EARS II group. The association of telomere length with paternal history of premature myocardial infarction in the European Atherosclerosis Research Study II. J. Mol. Med. (Berl.), 2008, 86(7), 815-824.
[http://dx.doi.org/10.1007/s00109-008-0347-x] [PMID: 18414821]
[48]
Brouilette, S.; Singh, R.K.; Thompson, J.R.; Goodall, A.H.; Samani, N.J. White cell telomere length and risk of premature myocardial infarction. Arterioscler. Thromb. Vasc. Biol., 2003, 23(5), 842-846.
[http://dx.doi.org/10.1161/01.ATV.0000067426.96344.32] [PMID: 12649083]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 1
Year: 2020
Page: [79 - 88]
Pages: 10
DOI: 10.2174/1389201019666191003150015

Article Metrics

PDF: 34
HTML: 4
EPUB: 1
PRC: 2