Therapeutic Aptamers: Evolving to Find their Clinical Niche

Author(s): Shahid M. Nimjee*, Bruce A. Sullenger

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 25 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: The discovery that short oligonucleotides, termed aptamers, can fold into three-dimensional structures that allow them to selectively bind and inhibit the activity of pathogenic proteins is now over 25 years old. The invention of the SELEX methodology heralded in an era in which such nucleic acid-based ligands could be generated against a wide variety of therapeutic targets.

Results: A large number of aptamers have now been identified by combinatorial chemistry methods in the laboratory and moreover, an increasing number have been discovered in nature. The affinities and activities of such aptamers have often been compared to that of antibodies, yet only a few of these agents have made it into clinical studies compared to a large and increasing number of therapeutic antibodies. One therapeutic aptamer targeting VEGF has made it to market, while 3 others have advanced as far as phase III clinical trials.

Conclusion: In this manuscript, we hope the reader appreciates that the success of aptamers becoming a class of drugs is less about nucleic acid biochemistry and more about target validation and overall drug chemistry.

Keywords: Aptamer, DNA, RNA, therapeutic, clinical trial, ligonucleotides.

[1]
Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287), 818-822.
[http://dx.doi.org/10.1038/346818a0] [PMID: 1697402]
[2]
Cullen, B.R.; Greene, W.C. Regulatory pathways governing HIV-1 replication. Cell, 1989, 58(3), 423-426.
[http://dx.doi.org/10.1016/0092-8674(89)90420-0] [PMID: 2569361]
[3]
Burgert, H.G.; Ruzsics, Z.; Obermeier, S.; Hilgendorf, A.; Windheim, M.; Elsing, A. Subversion of host defense mechanisms by adenoviruses. Curr. Top. Microbiol. Immunol., 2002, 269, 273-318.
[http://dx.doi.org/10.1007/978-3-642-59421-2_16] [PMID: 12224514]
[4]
Sullenger, B.A.; Gallardo, H.F.; Ungers, G.E.; Gilboa, E. Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell, 1990, 63(3), 601-608.
[http://dx.doi.org/10.1016/0092-8674(90)90455-N] [PMID: 2225067]
[5]
Bielinska, A.; Shivdasani, R.A.; Zhang, L.Q.; Nabel, G.J. Regulation of gene expression with double-stranded phosphorothioate oligonucleotides. Science, 1990, 250(4983), 997-1000.
[http://dx.doi.org/10.1126/science.2237444] [PMID: 2237444]
[6]
Mandal, M.; Breaker, R.R. Gene regulation by riboswitches. Nat. Rev. Mol. Cell Biol., 2004, 5(6), 451-463.
[http://dx.doi.org/10.1038/nrm1403] [PMID: 15173824]
[7]
Cech, T.R.; Steitz, J.A. The noncoding RNA revolution trashing old rules to forge new ones. Cell, 2014, 157(1), 77-94.
[http://dx.doi.org/10.1016/j.cell.2014.03.008] [PMID: 24679528]
[8]
Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968), 505-510.
[http://dx.doi.org/10.1126/science.2200121] [PMID: 2200121]
[9]
Gold, L.; Polisky, B.; Uhlenbeck, O.; Yarus, M. Diversity of oligonucleotide functions. Annu. Rev. Biochem., 1995, 64, 763-797.
[http://dx.doi.org/10.1146/annurev.bi.64.070195.003555] [PMID: 7574500]
[10]
Nimjee, S.M.; Rusconi, C.P.; Sullenger, B.A. Aptamers: an emerging class of therapeutics. Annu. Rev. Med., 2005, 56, 555-583.
[http://dx.doi.org/10.1146/annurev.med.56.062904.144915] [PMID: 15660527]
[11]
Mehan, M.R.; Ostroff, R.; Wilcox, S.K.; Steele, F.; Schneider, D.; Jarvis, T.C.; Baird, G.S.; Gold, L.; Janjic, N. Highly multiplexed proteomic platform for biomarker discovery, diagnostics, and therapeutics. Adv. Exp. Med. Biol., 2013, 735, 283-300.
[http://dx.doi.org/10.1007/978-1-4614-4118-2_20] [PMID: 23402035]
[12]
Kohn, D.B.; Bauer, G.; Rice, C.R.; Rothschild, J.C.; Carbonaro, D.A.; Valdez, P.; Hao, Ql.; Zhou, C.; Bahner, I.; Kearns, K.; Brody, K.; Fox, S.; Haden, E.; Wilson, K.; Salata, C.; Dolan, C.; Wetter, C.; Aguilar-Cordova, E.; Church, J. A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34(+) cells from the bone marrow of human immunodeficiency virus-1-infected children. Blood, 1999, 94(1), 368-371.
[http://dx.doi.org/10.1182/blood.V94.1.368.413a47_368_371] [PMID: 10381536]
[13]
Mann, M.J.; Whittemore, A.D.; Donaldson, M.C.; Belkin, M.; Conte, M.S.; Polak, J.F.; Orav, E.J.; Ehsan, A.; Dell’Acqua, G.; Dzau, V.J. Ex-vivo gene therapy of human vascular bypass grafts with E2F decoy: the PREVENT single-centre, randomised, controlled trial. Lancet, 1999, 354(9189), 1493-1498.
[http://dx.doi.org/10.1016/S0140-6736(99)09405-2] [PMID: 10551494]
[14]
DiGiusto, D.L.; Krishnan, A.; Li, L.; Li, H.; Li, S.; Rao, A.; Mi, S.; Yam, P.; Stinson, S.; Kalos, M.; Alvarnas, J.; Lacey, S.F.; Yee, J.K.; Li, M.; Couture, L.; Hsu, D.; Forman, S.J.; Rossi, J.J.; Zaia, J.A. RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci. Transl. Med., 2010, 2(36)36ra43
[http://dx.doi.org/10.1126/scitranslmed.3000931] [PMID: 20555022]
[15]
Chung, J.; Scherer, L.J.; Gu, A.; Gardner, A.M.; Torres-Coronado, M.; Epps, E.W.; Digiusto, D.L.; Rossi, J.J. Optimized lentiviral vectors for HIV gene therapy: multiplexed expression of small RNAs and inclusion of MGMT(P140K) drug resistance gene. Mol. Ther., 2014, 22(5), 952-963.
[http://dx.doi.org/10.1038/mt.2014.32] [PMID: 24576853]
[16]
Morishita, R.; Gibbons, G.H.; Horiuchi, M.; Ellison, K.E.; Nakama, M.; Zhang, L.; Kaneda, Y.; Ogihara, T.; Dzau, V.J. A gene therapy strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle proliferation in vivo. Proc. Natl. Acad. Sci. USA, 1995, 92(13), 5855-5859.
[http://dx.doi.org/10.1073/pnas.92.13.5855] [PMID: 7597041]
[17]
Alexander, J.H.; Hafley, G.; Harrington, R.A.; Peterson, E.D.; Ferguson, T.B., Jr; Lorenz, T.J.; Goyal, A.; Gibson, M.; Mack, M.J.; Gennevois, D.; Califf, R.M.; Kouchoukos, N.T. PREVENT IV Investigators. Efficacy and safety of edifoligide, an E2F transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery: PREVENT IV: a randomized controlled trial. JAMA, 2005, 294(19), 2446-2454.
[http://dx.doi.org/10.1001/jama.294.19.2446] [PMID: 16287955]
[18]
Conte, M.S.; Bandyk, D.F.; Clowes, A.W.; Moneta, G.L.; Seely, L.; Lorenz, T.J.; Namini, H.; Hamdan, A.D.; Roddy, S.P.; Belkin, M.; Berceli, S.A.; DeMasi, R.J.; Samson, R.H.; Berman, S.S. PREVENT III Investigators Results of PREVENT III: a multicenter, randomized trial of edifoligide for the prevention of vein graft failure in lower extremity bypass surgery. J. Vasc. Surg., 2006, 43(4), 742-751.
[http://dx.doi.org/10.1016/j.jvs.2005.12.058] [PMID: 16616230]
[19]
Suzuki, J.; Tezuka, D.; Morishita, R.; Isobe, M. An initial case of suppressed restenosis with nuclear factor-kappa B decoy transfection after percutaneous coronary intervention. J. Gene Med., 2009, 11(1), 89-91.
[http://dx.doi.org/10.1002/jgm.1266] [PMID: 19003802]
[20]
Sen, M.; Thomas, S.M.; Kim, S.; Yeh, J.I.; Ferris, R.L.; Johnson, J.T.; Duvvuri, U.; Lee, J.; Sahu, N.; Joyce, S.; Freilino, M.L.; Shi, H.; Li, C.; Ly, D.; Rapireddy, S.; Etter, J.P.; Li, P.K.; Wang, L.; Chiosea, S.; Seethala, R.R.; Gooding, W.E.; Chen, X.; Kaminski, N.; Pandit, K.; Johnson, D.E.; Grandis, J.R. First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: implications for cancer therapy. Cancer Discov., 2012, 2(8), 694-705.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0191] [PMID: 22719020]
[21]
Zhang, Q.; Hossain, D.M.; Duttagupta, P.; Moreira, D.; Zhao, X.; Won, H.; Buettner, R.; Nechaev, S.; Majka, M.; Zhang, B.; Cai, Q.; Swiderski, P.; Kuo, Y.H.; Forman, S.; Marcucci, G.; Kortylewski, M. Serum-resistant CpG-STAT3 decoy for targeting survival and immune checkpoint signaling in acute myeloid leukemia. Blood, 2016, 127(13), 1687-1700.
[http://dx.doi.org/10.1182/blood-2015-08-665604] [PMID: 26796361]
[22]
Kotula, J.W.; Sun, J.; Li, M.; Pratico, E.D.; Fereshteh, M.P.; Ahrens, D.P.; Sullenger, B.A.; Kovacs, J.J. Targeted disruption of β-arrestin 2-mediated signaling pathways by aptamer chimeras leads to inhibition of leukemic cell growth. PLoS One, 2014, 9(4)e9344
[http://dx.doi.org/10.1371/journal.pone.0093441] [PMID: 24736311]
[23]
Beigelman, L.; McSwiggen, J.A.; Draper, K.G.; Gonzalez, C.; Jensen, K.; Karpeisky, A.M.; Modak, A.S.; Matulic-Adamic, J.; DiRenzo, A.B.; Haeberli, P. Chemical modification of hammerhead ribozymes. Catalytic activity and nuclease resistance. J. Biol. Chem., 1995, 270(43), 25702-25708.
[http://dx.doi.org/10.1074/jbc.270.43.25702] [PMID: 7592749]
[24]
Jellinek, D.; Green, L.S.; Bell, C.; Lynott, C.K.; Gill, N.; Vargeese, C.; Kirschenheuter, G.; McGee, D.P.; Abesinghe, P.; Pieken, W.A. Potent 2′-amino-2′-deoxypyrimidine RNA inhibitors of basic fibroblast growth factor. Biochemistry, 1995, 34(36), 11363-11372.
[http://dx.doi.org/10.1021/bi00036a009] [PMID: 7547864]
[25]
Tucker, C.E.; Chen, L.S.; Judkins, M.B.; Farmer, J.A.; Gill, S.C.; Drolet, D.W. Detection and plasma pharmacokinetics of an anti-vascular endothelial growth factor oligonucleotide-aptamer (NX1838) in rhesus monkeys. J. Chromatogr. B Biomed. Sci. Appl., 1999, 732(1), 203-212.
[http://dx.doi.org/10.1016/S0378-4347(99)00285-6] [PMID: 10517237]
[26]
Willis, M.C.; Collins, B.D.; Zhang, T.; Green, L.S.; Sebesta, D.P.; Bell, C.; Kellogg, E.; Gill, S.C.; Magallanez, A.; Knauer, S.; Bendele, R.A.; Gill, P.S.; Janjić, N.; Collins, B. Liposome-anchored vascular endothelial growth factor aptamers. Bioconjug. Chem., 1998, 9(5), 573-582.
[http://dx.doi.org/10.1021/bc980002x] [PMID: 9736491]
[27]
Drolet, D.W.; Green, L.S.; Gold, L.; Janjic, N. Fit for the eye: aptamers in ocular disorders. Nucleic Acid Ther., 2016, 26(3), 127-146.
[http://dx.doi.org/10.1089/nat.2015.0573] [PMID: 26757406]
[28]
Ruckman, J.; Green, L.S.; Beeson, J.; Waugh, S.; Gillette, W.L.; Henninger, D.D.; Claesson-Welsh, L.; Janjić, N. 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J. Biol. Chem., 1998, 273(32), 20556-20567.
[http://dx.doi.org/10.1074/jbc.273.32.20556] [PMID: 9685413]
[29]
Eyetech Study GroupPreclinical and phase 1A clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration. Retina, 2002, 22(2), 143-152.
[http://dx.doi.org/10.1097/00006982-200204000-00002] [PMID: 11927845]
[30]
Eyetech Study GroupAnti-vascular endothelial growth factor therapy for subfoveal choroidal neovascularization secondary to age-related macular degeneration: phase II study results. Ophthalmology, 2003, 110(5), 979-986.
[http://dx.doi.org/10.1016/S0161-6420(03)00085-X] [PMID: 12750101]
[31]
Gragoudas, E.S.; Adamis, A.P.; Cunningham, E.T., Jr; Feinsod, M.; Guyer, D.R. VEGF Inhibition Study in Ocular Neovascularization Clinical Trial GroupPegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med., 2004, 351(27), 2805-2816.
[http://dx.doi.org/10.1056/NEJMoa042760] [PMID: 15625332]
[32]
Rosenfeld, P.J.; Brown, D.M.; Heier, J.S.; Boyer, D.S.; Kaiser, P.K.; Chung, C.Y.; Kim, R.Y. MARINA Study GroupRanibizumab for neovascular age-related macular degeneration. N. Engl. J. Med., 2006, 355(14), 1419-1431.
[http://dx.doi.org/10.1056/NEJMoa054481] [PMID: 17021318]
[33]
Ferrara, N.; Gerber, H-P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med., 2003, 9(6), 669-676.
[http://dx.doi.org/10.1038/nm0603-669] [PMID: 12778165]
[34]
Dunn, E.N.; Hariprasad, S.M.; Sheth, V.S. An Overview of the fovista and rinucumab trials and the fate of anti-pdgf medications. Ophthalmic Surg. Lasers Imaging Retina, 2017, 48(2), 100-104.
[http://dx.doi.org/10.3928/23258160-20170130-02] [PMID: 28195611]
[35]
Rusconi, C.P.; Scardino, E.; Layzer, J.; Pitoc, G.A.; Ortel, T.L.; Monroe, D.; Sullenger, B.A. RNA aptamers as reversible antagonists of coagulation factor IXa. Nature, 2002, 419(6902), 90-94.
[http://dx.doi.org/10.1038/nature00963] [PMID: 12214238]
[36]
Dyke, C.K.; Steinhubl, S.R.; Kleiman, N.S.; Cannon, R.O.; Aberle, L.G.; Lin, M.; Myles, S.K.; Melloni, C.; Harrington, R.A.; Alexander, J.H.; Becker, R.C.; Rusconi, C.P. First-in-human experience of an antidote-controlled anticoagulant using RNA aptamer technology: a phase 1a pharmacodynamic evaluation of a drug-antidote pair for the controlled regulation of factor IXa activity. Circulation, 2006, 114(23), 2490-2497.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.668434] [PMID: 17101847]
[37]
Rusconi, C.P.; Roberts, J.D.; Pitoc, G.A.; Nimjee, S.M.; White, R.R.; Quick, G., Jr; Scardino, E.; Fay, W.P.; Sullenger, B.A. Antidote-mediated control of an anticoagulant aptamer in vivo. Nat. Biotechnol., 2004, 22(11), 1423-1428.
[http://dx.doi.org/10.1038/nbt1023] [PMID: 15502817]
[38]
Nimjee, S.M.; Keys, J.R.; Pitoc, G.A.; Quick, G.; Rusconi, C.P.; Sullenger, B.A. A novel antidote-controlled anticoagulant reduces thrombin generation and inflammation and improves cardiac function in cardiopulmonary bypass surgery. Mol. Ther., 2006, 14(3), 408-415.
[http://dx.doi.org/10.1016/j.ymthe.2006.04.006] [PMID: 16765093]
[39]
Vavalle, J.P.; Rusconi, C.P.; Zelenkofske, S.; Wargin, W.A.; Alexander, J.H.; Becker, R.C. A phase 1 ascending dose study of a subcutaneously administered factor IXa inhibitor and its active control agent. J. Thromb. Haemost., 2012, 10(7), 1303-1311.
[http://dx.doi.org/10.1111/j.1538-7836.2012.04742.x] [PMID: 22500821]
[40]
Povsic, T.J.; Vavalle, J.P.; Aberle, L.H.; Kasprzak, J.D.; Cohen, M.G.; Mehran, R.; Bode, C.; Buller, C.E.; Montalescot, G.; Cornel, J.H.; Rynkiewicz, A.; Ring, M.E.; Zeymer, U.; Natarajan, M.; Delarche, N.; Zelenkofske, S.L.; Becker, R.C.; Alexander, J.H. A Phase 2, randomized, partially blinded, active-controlled study assessing the efficacy and safety of variable anticoagulation reversal using the REG1 system in patients with acute coronary syndromes: results of the RADAR trial. Eur. Heart J., 2012.
[http://dx.doi.org/10.1093/eurheartj/ehs232] [PMID: 22859796]
[41]
Lincoff, A.M.; Mehran, R.; Povsic, T.J.; Zelenkofske, S.L.; Huang, Z.; Armstrong, P.W.; Steg, P.G.; Bode, C.; Cohen, M.G.; Buller, C.; Laanmets, P.; Valgimigli, M.; Marandi, T.; Fridrich, V.; Cantor, W.J.; Merkely, B.; Lopez-Sendon, J.; Cornel, J.H.; Kasprzak, J.D.; Aschermann, M.; Guetta, V.; Morais, J.; Sinnaeve, P.R.; Huber, K.; Stables, R.; Sellers, M.A.; Borgman, M.; Glenn, L.; Levinson, A.I.; Lopes, R.D.; Hasselblad, V.; Becker, R.C.; Alexander, J.H. REGULATE-PCI Investigators. Effect of the REG1 anticoagulation system versus bivalirudin on outcomes after percutaneous coronary intervention (REGULATE-PCI): a randomised clinical trial. Lancet, 2016, 387(10016), 349-356.
[http://dx.doi.org/10.1016/S0140-6736(15)00515-2] [PMID: 26547100]
[42]
Ganson, N.J.; Povsic, T.J.; Sullenger, B.A.; Alexander, J.H.; Zelenkofske, S.L.; Sailstad, J.M.; Rusconi, C.P.; Hershfield, M.S. Pre-existing anti-polyethylene glycol antibody linked to first-exposure allergic reactions to pegnivacogin, a PEGylated RNA aptamer. J. Allergy Clin. Immunol., 2015, 137(5), 1610-1613.
[http://dx.doi.org/10.1016/j.jaci.2015.10.034.] [PMID: 26688515]
[43]
Nimjee, S.M.; Povsic, T.J.; Sullenger, B.A.; Becker, R.C. Translation and clinical development of antithrombotic aptamers. translation and clinical development of antithrombotic aptamers. Nucleic Acid Ther., 2016, 26(3), 147-155.
[http://dx.doi.org/10.1089/nat.2015.0581] [PMID: 26882082]
[44]
Nimjee, S.M.; White, R.R.; Becker, R.C.; Sullenger, B.A. Aptamers as Therapeutics. Annu. Rev. Pharmacol. Toxicol., 2017, 57, 61-79.
[http://dx.doi.org/10.1146/annurev-pharmtox-010716-104558] [PMID: 28061688]
[45]
Gilbert, J.C.; DeFeo-Fraulini, T.; Hutabarat, R.M.; Horvath, C.J.; Merlino, P.G.; Marsh, H.N.; Healy, J.M.; Boufakhreddine, S.; Holohan, T.V.; Schaub, R.G. First-in-human evaluation of anti von Willebrand factor therapeutic aptamer ARC1779 in healthy volunteers. Circulation, 2007, 116(23), 2678-2686.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.724864] [PMID: 18025536]
[46]
Markus, H.S.; McCollum, C.; Imray, C.; Goulder, M.A.; Gilbert, J.; King, A. The von Willebrand inhibitor ARC1779 reduces cerebral embolization after carotid endarterectomy: a randomized trial. Stroke, 2011, 42(8), 2149-2153.
[http://dx.doi.org/10.1161/STROKEAHA.111.616649] [PMID: 21700934]
[47]
Jilma, B.; Paulinska, P.; Jilma-Stohlawetz, P.; Gilbert, J.C.; Hutabarat, R.; Knöbl, P. A randomised pilot trial of the anti-von Willebrand factor aptamer ARC1779 in patients with type 2b von Willebrand disease. Thromb. Haemost., 2010, 104(3), 563-570.
[http://dx.doi.org/10.1160/TH10-01-0027] [PMID: 20589313]
[48]
Jilma-Stohlawetz, P.; Gilbert, J.C.; Gorczyca, M.E.; Knöbl, P.; Jilma, B. A dose ranging phase I/II trial of the von Willebrand factor inhibiting aptamer ARC1779 in patients with congenital thrombotic thrombocytopenic purpura. Thromb. Haemost., 2011, 106(3), 539-547.
[http://dx.doi.org/10.1160/TH11-02-0069] [PMID: 21833442]
[49]
Jilma-Stohlawetz, P.; Gorczyca, M.E.; Jilma, B.; Siller-Matula, J.; Gilbert, J.C.; Knöbl, P. Inhibition of von Willebrand factor by ARC1779 in patients with acute thrombotic thrombocytopenic purpura. Thromb. Haemost., 2011, 105(3), 545-552.
[http://dx.doi.org/10.1160/TH10-08-0520] [PMID: 21174003]
[50]
Jilma-Stohlawetz, P.; Knöbl, P.; Gilbert, J.C.; Jilma, B. The anti-von Willebrand factor aptamer ARC1779 increases von Willebrand factor levels and platelet counts in patients with type 2B von Willebrand disease. Thromb. Haemost., 2012, 108(2), 284-290.
[http://dx.doi.org/10.1160/TH11-12-0889] [PMID: 22740102]
[51]
Eulberg, D.; Klussmann, S. Spiegelmers: biostable aptamers. ChemBioChem, 2003, 4(10), 979-983.
[http://dx.doi.org/10.1002/cbic.200300663] [PMID: 14523914]
[52]
Vater, A.; Klussmann, S. Turning mirror-image oligonucleotides into drugs: the evolution of Spiegelmer® therapeutics. Drug Discov. Today, 2015, 20(1), 147-155.
[http://dx.doi.org/10.1016/j.drudis.2014.09.004] [PMID: 25236655]
[53]
Menne, J.; Eulberg, D.; Beyer, D.; Baumann, M.; Saudek, F.; Valkusz, Z.; Wiecek, A.; Haller, H. Emapticap Study, G., C-C motif-ligand 2 inhibition with emapticap pegol (NOX-E36) in type 2 diabetic patients with albuminuria. Nephrol. Dial. Transplant., 2016.
[http://dx.doi.org/10.1093/ndt/gfv459]
[54]
Bates, P.J.; Laber, D.A.; Miller, D.M.; Thomas, S.D.; Trent, J.O. Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp. Mol. Pathol., 2009, 86(3), 151-164.
[http://dx.doi.org/10.1016/j.yexmp.2009.01.004] [PMID: 19454272]
[55]
Rosenberg, J.E.; Bambury, R.M.; Van Allen, E.M.; Drabkin, H.A.; Lara, P.N., Jr; Harzstark, A.L.; Wagle, N.; Figlin, R.A.; Smith, G.W.; Garraway, L.A.; Choueiri, T.; Erlandsson, F.; Laber, D.A. A phase II trial of AS1411 (a novel nucleolin-targeted DNA aptamer) in metastatic renal cell carcinoma. Invest. New Drugs, 2014, 32(1), 178-187.
[http://dx.doi.org/10.1007/s10637-013-0045-6] [PMID: 24242861]
[56]
Hirota, M.; Murakami, I.; Ishikawa, Y.; Suzuki, T.; Sumida, S.; Ibaragi, S.; Kasai, H.; Horai, N.; Drolet, D.W.; Gupta, S.; Janjic, N.; Schneider, D.J. Chemically modified interleukin-6 aptamer inhibits development of collagen-induced arthritis in Cynomolgus monkeys. Nucleic Acid Ther., 2016, 26(1), 10-19.
[http://dx.doi.org/10.1089/nat.2015.0567] [PMID: 26579954]
[57]
Layzer, J.M.; Sullenger, B.A. Simultaneous generation of aptamers to multiple gamma-carboxyglutamic acid proteins from a focused aptamer library using DeSELEX and convergent selection. Oligonucleotides, 2007, 17(1), 1-11.
[http://dx.doi.org/10.1089/oli.2006.0059] [PMID: 17461758]
[58]
Ray, P.; Rialon-Guevara, K.L.; Veras, E.; Sullenger, B.A.; White, R.R. Comparing human pancreatic cell secretomes by in vitro aptamer selection identifies cyclophilin B as a candidate pancreatic cancer biomarker. J. Clin. Invest., 2012, 122(5), 1734-1741.
[http://dx.doi.org/10.1172/JCI62385] [PMID: 22484812]
[59]
Dua, P.; Kim, S.; Lee, D.K. Nucleic acid aptamers targeting cell-surface proteins. Methods, 2011, 54(2), 215-225.
[http://dx.doi.org/10.1016/j.ymeth.2011.02.002] [PMID: 21300154]
[60]
Wang, J.; Li, G. Aptamers against cell surface receptors: selection, modification and application. Curr. Med. Chem., 2011, 18(27), 4107-4116.
[http://dx.doi.org/10.2174/092986711797189628] [PMID: 21838694]
[61]
Magalhães, M.L.; Byrom, M.; Yan, A.; Kelly, L.; Li, N.; Furtado, R.; Palliser, D.; Ellington, A.D.; Levy, M. A general RNA motif for cellular transfection. Mol. Ther., 2012, 20(3), 616-624.
[http://dx.doi.org/10.1038/mt.2011.277] [PMID: 22233578]
[62]
Mi, J.; Liu, Y.; Rabbani, Z.N.; Yang, Z.; Urban, J.H.; Sullenger, B.A.; Clary, B.M. In vivo selection of tumor-targeting RNA motifs. Nat. Chem. Biol., 2010, 6(1), 22-24.
[http://dx.doi.org/10.1038/nchembio.277] [PMID: 19946274]
[63]
Mi, J.; Ray, P.; Liu, J.; Kuan, C.T.; Xu, J.; Hsu, D.; Sullenger, B.A.; White, R.R.; Clary, B.M. In vivo selection against human colorectal cancer xenografts identifies an aptamer that targets RNA helicase protein DHX9. Mol. Ther.Nucleic Acids,, 2016. 5e315
[64]
McNamara, J.O., II; Andrechek, E.R.; Wang, Y.; Viles, K.D.; Rempel, R.E.; Gilboa, E.; Sullenger, B.A.; Giangrande, P.H. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol., 2006, 24(8), 1005-1015.
[http://dx.doi.org/10.1038/nbt1223] [PMID: 16823371]
[65]
Zhou, J.; Rossi, J.J. Cell-specific aptamer-mediated targeted drug delivery. Oligonucleotides, 2011, 21(1), 1-10.
[http://dx.doi.org/10.1089/oli.2010.0264] [PMID: 21182455]
[66]
Dollins, C.M.; Nair, S.; Boczkowski, D.; Lee, J.; Layzer, J.M.; Gilboa, E.; Sullenger, B.A. Assembling OX40 aptamers on a molecular scaffold to create a receptor-activating aptamer. Chem. Biol., 2008, 15(7), 675-682.
[http://dx.doi.org/10.1016/j.chembiol.2008.05.016] [PMID: 18635004]
[67]
McNamara, J.O.; Kolonias, D.; Pastor, F.; Mittler, R.S.; Chen, L.; Giangrande, P.H.; Sullenger, B.; Gilboa, E. Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. J. Clin. Invest., 2008, 118(1), 376-386.
[http://dx.doi.org/10.1172/JCI33365] [PMID: 18060045]
[68]
Pastor, F.; Kolonias, D.; McNamara, J.O., II; Gilboa, E. Targeting 4-1BB costimulation to disseminated tumor lesions with bi-specific oligonucleotide aptamers. Mol. Ther., 2011, 19(10), 1878-1886.
[http://dx.doi.org/10.1038/mt.2011.145] [PMID: 21829171]
[69]
Powell Gray, B.; Kelly, L.; Ahrens, D.P.; Barry, A.P.; Kratschmer, C.; Levy, M.; Sullenger, B.A. Tunable cytotoxic aptamer-drug conjugates for the treatment of prostate cancer. Proc. Natl. Acad. Sci. USA, 2018, 115(18), 4761-4766.
[http://dx.doi.org/10.1073/pnas.1717705115] [PMID: 29666232]
[70]
Yan, A.C.; Levy, M. Aptamer-mediated delivery and cell targeting aptamers: room for improvement. Nucleic Acid Ther., 2018, 28(3), 194-199.
[http://dx.doi.org/10.1089/nat.2018.0732] [PMID: 29883295]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 25
Year: 2020
Published on: 22 July, 2020
Page: [4181 - 4193]
Pages: 13
DOI: 10.2174/0929867326666191001125101
Price: $65

Article Metrics

PDF: 21
HTML: 3