Synergistic Antibacterial Efficacy of Biogenic Synthesized Silver Nanoparticles using Ajuga bractosa with Standard Antibiotics: A Study Against Bacterial Pathogens

Author(s): Sadia Nazer, Saiqa Andleeb*, Shaukat Ali, Nazia Gulzar, Tariq Iqbal, Muhammad A.R. Khan, Abida Raza

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 3 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Multi-drug resistance in bacterial pathogens is a major concern of today. Green synthesis technology is being used to cure infectious diseases.

Objectives: The aim of the current research was to analyze the antibacterial, antioxidant, and phytochemical screening of green synthesized silver nanoparticles using Ajuga bracteosa.

Methods: Extract of A. bracteosa was prepared by maceration technique. Silver nanoparticles were synthesized using A. bracteosa extract and were confirmed by UV-Vis spectrophotometer, Scanning Electron Microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The antibacterial, anti-biofilm, cell proliferation inhibition, TLC-Bioautography, TLC-Spot screening, antioxidant, and phytochemical screening were also investigated.

Results: UV-Vis spectrum and Scanning electron microscopy confirmed the synthesis of green nanoparticles at 400 nm with tube-like structures. FTIR spectrum showed that functional groups of nanoparticles have a role in capping and stability of AgNP. Agar well diffusion assay represented the maximum antibacterial effect of ABAgNPs against Escherichia coli, Klebsiella pneumoniae, Streptococcus pyogenes, Staphylococcus aureus, and Pseudomonas aeruginosa at 0.10 g/mL concentration compared to ABaqu. Two types of interactions among nanoparticles, aqueous extract, and antibiotics (Synergistic and additive) were recorded against tested pathogens. Crystal violet, MTT, TLC-bio-autography, and spot screening supported the findings of the antibacterial assay. Highest antioxidant potential effect in ABaqu was 14.62% (DPPH) and 13.64% (ABTS) while 4.85% (DPPH) and 4.86% (ABTS) was recorded in ABAgNPs. Presence of phytochemical constituents showed pharmacological importance.

Conclusion: It was concluded that green synthesis is an innovative technology in which natural products are conjugated with metallic particles and are used against infectious pathogens. The current research showed the significant use of green nanoparticles against etiological agents.

Keywords: Ajuga bracteosa, antibacterial effect, crystal violet assay, synergistic effect, nanoparticles, nanotechnology, minimum inhibitory concentration, phytochemical screening, TLC-Bioautography, TLC-Spot screening.

[1]
Ratnesh, R.K.; Mehata, M.S. Controlled synthesis and optical properties of tunable CdSe quantum dots and effect of pH. AIP Adv., 2015, 50, 97114.
[http://dx.doi.org/10.1063/1.4930586]
[2]
Malik, P.; Shankar, R.; Malik, V.; Sharma, N.; Mukherjee, T.K. Green chemistry based benign routes for nanoparticle synthesis. J. Nanoparticles. 2014.Article ID 302429, 14.
[http://dx.doi.org/10.1155/2014/302429]
[3]
Dhuper, S.; Panda, D.; Nayak, P.L. Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Mangifera indica. Nano Trends: J Nanotech App., 2012, 13(2), 16-22.
[4]
Narayanan, K.B.; Sakthivel, N. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci., 2010, 156(1-2), 1-13.
[http://dx.doi.org/10.1016/j.cis.2010.02.001] [PMID: 20181326]
[5]
Makarov, V.V.; Love, A.J.; Sinitsyna, O.V.; Makarova, S.S.; Yaminsky, I.V.; Taliansky, M.E.; Kalinina, N.O. “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae, 2014, 6(1), 35-44.
[http://dx.doi.org/10.32607/20758251-2014-6-1-35-44] [PMID: 24772325]
[6]
Niramathi, K.L.; Sudha, V. Lavanya and Brindha. P. Biosynthesis of silvernanoparticle using Alternan therasessilis (Linn) extract and their antimicrobial, antioxidant activities colloids surface B. Biointer, 2013, 102, 228-291.
[7]
Okeke, I.N.; Laxminarayan, R.; Bhutta, Z.A.; Duse, A.G.; Jenkins, P.; O’Brien, T.F.; Pablos-Mendez, A.; Klugman, K.P. Antimicrobial resistance in developing countries. Part I: Recent trends and current status. Lancet Infect. Dis., 2005, 5(8), 481-493.
[http://dx.doi.org/10.1016/S1473-3099(05)70189-4] [PMID: 16048717]
[8]
Khalil, K.A.; Fouad, H.; Elsarnagawy, T.; Almajhdi, F.N. Preparation and characterization of electrospun PLGA/silver composite nanofibers for biomedical applications. Int. J. Electrochem. Sci., 2013, 8, 3483-3493.
[9]
Krishnaraj, C.; Jagan, E.G.; Rajasekar, S.; Selvakumar, P.; Kalaichelvan, P.T.; Mohan, N. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B Biointerfaces, 2010, 76(1), 50-56.
[http://dx.doi.org/10.1016/j.colsurfb.2009.10.008] [PMID: 19896347]
[10]
Aryam, V. Comparative assessment of relative antioxidant activity of sequential leaf extract of Cassia accidentials and C. tora. Pharmacol. Online, 2011, 1, 529-543.
[11]
Gupta, V.K.; Sharma, S.K. In vitro antioxidant activities of aqueous extract of Ficus bangalensis Linn root. Int. Biol. Chem., 2010, 4(3), 134-140.
[12]
Ranjitham, A.M.; Suja, R.; Caroling, G.; Tiwari, S. In vitro evaluation of antioxidant, antimicrobial, anticancer activities and characterisation of Brassica oleracea. Var. Bortrytis. L synthesized silver nanoparticles. Int. J. Pharm. Pharm. Sci., 2013, 5(4), 239-251.
[13]
Kulkarni, N.; Muddapur, U. Biosynthesis of metal nanoparticles: A review. J. Nanotechnol., 2014, 1-8.
[http://dx.doi.org/10.1155/2014/510246]
[14]
Swarnalatha, Y.; Krishnan, D.; Rajasekar, S.P.V. Antibacterial activity of biogenic silver nanoparticles from Sphaeranthus amaranthoides. Int. J. Pharm. Pharm. Sci., 2013, 5(4), 594-596.
[15]
Khare, C.P. Indian Medicinal Plants - An Illustrated Dictionary. 1st Indian Reprin Springer (India); Pvt. Ltd.: New Delhi, India, 2007.
[16]
Kayani, W.K.; Dilshad, E.; Ahmed, T.; Ismail, H.; Mirza, B. Evaluation of Ajuga bracteosa for antioxidant, anti-inflammatory, analgesic, antidepressant and anticoagulant activities. BMC Complement. Altern. Med., 2016, 16, 375.
[http://dx.doi.org/10.1186/s12906-016-1363-y] [PMID: 27677846]
[17]
Ghufran, M.A.; Qureshi, R.A.; Batool, A.; Kondratyuk, T.P.; Guilford, J.M.; Marler, L.E. Evaluation of selected indigenous medicinal plants from the western Himalayas for cytotoxicity and as potential cancer chemopreventive agents. Pharm. Biol., 2009, 47, 533-538.
[http://dx.doi.org/10.1080/13880200902873847]
[18]
Vohra, A.; Kaur, H. Chemical investigation of medicinal plant Ajuga bracteosa. J. Nat. Prod. Plant Resour, 2011, 1, 37-45.
[19]
Shad, A.A.; Zeeshan, M.; Fazal, H.; Shah, H.U.; Ahmed, S.; Abeer, H.; Abd-Allah, E.F.; Ullah, R.; Afridi, H.; Tariq, A.; Adnan, M.A. Physio-chemical evaluation and biological activity of Ajuga bracteosa Wall and Viola odoroto. Linn. Afr. J. Tradit. Complement. Altern. Med., 2016, 13(2), 40-46.
[http://dx.doi.org/10.4314/ajtcam.v13i2.5]
[20]
Akriti, P.; Jadona, M.; Katarea, Y.K.; Singoura, P.K.; Rajakb, H.; Chaurasiyaa, P.K.; Patila, U.K. Pawara. R.S. Ajuga bracteosa wall: A review on its ethnopharmacological and phytochemical studies. Pelagia Research Library. Pharm. Sin., 2011, 2(2), 1-10.
[21]
Rojas, J.J.; Ochoa, V.J.; Ocampo, S.A.; Muñoz, J.F. Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: A possible alternative in the treatment of non-nosocomial infections. BMC Complement. Altern. Med., 2006, 6, 2.
[http://dx.doi.org/10.1186/1472-6882-6-2] [PMID: 16483385]
[22]
Valgas, C.; de Souza, S.M.; Smânia, E.F.A.; Smânia, A., Jr Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol., 2007, 38(2), 369-380.
[http://dx.doi.org/10.1590/S1517-83822007000200034]
[23]
Rios, J.L.; Recio, M.C.; Villar, A. Screening methods for natural products with antimicrobial activity: A review of the literature. J. Ethnopharmacol., 1988, 23(2-3), 127-149.
[http://dx.doi.org/10.1016/0378-8741(88)90001-3] [PMID: 3057288]
[24]
Seeley, H.W.; Vandemark, P.J.; Lee, J.J. Microbes in action, A laboratory Manual of Microbiology; W. H. Freeman and Co.: New York, 2001, pp. 57-130.
[25]
Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol., 1999, 86(6), 985-990.
[http://dx.doi.org/10.1046/j.1365-2672.1999.00780.x] [PMID: 10438227]
[26]
Walter, M.V.; Vennes, J.W. Occurrence of multiple-antibiotic-resistant enteric bacteria in domestic sewage and oxidation lagoons. Appl. Environ. Microbiol., 1985, 50(4), 930-933.
[PMID: 4083887]
[27]
Ericsson, H.M.; Sherris, J.C. Antibiotic sensitivity testing. Reportof an international collaborative study. Acta Pathol. Microbiol Scand. B Microbiol. Immunol.,, 1971, 217(Suppl. 217), 217-1.
[PMID: 4325956]
[28]
O’Toole, G.A. Microtiter dish biofilm formation assay. J. Vis. Exp., 2011, (47), 2437-2437.
[PMID: 21307833]
[29]
Gerlier, D.; Thomasset, N. Use of MTT colorimetric assay to measure cell activation. J. Immunol. Methods, 1986, 94(1-2), 57-63.
[http://dx.doi.org/10.1016/0022-1759(86)90215-2] [PMID: 3782817]
[30]
Teanpaisan, R.; Senapong, R.; Puripattanavong, J. In vitro antimicrobial and antibiofilm activity of Artocarpus lakoocha (Moraceae) Extract against some oral pathogens. Trop. J. Pharm. Res., 2014, 13(7), 1149-1155.
[http://dx.doi.org/10.4314/tjpr.v13i7.20]
[31]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]
[32]
You, W.C.; Brown, L.M.; Zhang, L.; Li, J.Y.; Jin, M.L.; Chang, Y.S.; Ma, J.L.; Pan, K.F.; Liu, W.D.; Hu, Y.; Crystal-Mansour, S.; Pee, D.; Blot, W.J.; Fraumeni, J.F., Jr; Xu, G.W.; Gail, M.H. Randomized double-blind factorial trial of three treatments to reduce the prevalence of precancerous gastric lesions. J. Natl. Cancer Inst., 2006, 98(14), 974-983.
[http://dx.doi.org/10.1093/jnci/djj264] [PMID: 16849680]
[33]
Mukerjee, T.; Bhalla, N.; Singh, G.; Aulakh, H.C. Herbal drugs for urinary stones. Literat. Appraisal Indian Drugs, 1984, 21(6), 224-228.
[34]
Paudel, A. Phytochemical and biological screening of Rhododendron campanulatum. [dissertation]. Nepal Tribhuvan University. 2005.
[35]
Wagner, H.; Bladt, S. Plant drug analysis-A thin layer chromatography atlas; 2nd ed. New Dehli: Thompson press Ltd.. , 2004.
[36]
Slusarenko, A.J.; Longland, A.C.; Whitehead, I.M. Convenient, sensitive and rapid assay for antibacterial activity of phytoalexins. Bot. Helv., 1998, 99(2), 203-207.
[37]
Joshi, C.; Mathur, P.; Khare, S.K. Degradation of phorbol esters by Pseudomonas aeruginosa PseA during solid-state fermentation of deoiled Jatropha curcas seed cake. Bioresour. Technol., 2011, 102(7), 4815-4819.
[http://dx.doi.org/10.1016/j.biortech.2011.01.039] [PMID: 21316957]
[38]
Lacaille-Dubois, M.A. Bioactive saponins from plants: Recent Development. Handbook of Medicinal plants; Yaniv, Z; Bacherach, U., Ed.; Harworth Press: India, 2007.
[39]
Hafeez, K.; Andleeb, S.; Ghousa, T.; Mustafa, R.G.; Naseer, A.; Shafique, I.; Akhter, K. Phytochemical screening, alpha-glucosidase inhibition, antibacterial and antioxidant potential of Ajuga bracteosa Extracts. Curr. Pharm. Biotechnol., 2017, 18(4), 336-342.
[http://dx.doi.org/10.2174/1389201018666170313095033] [PMID: 28294059]
[40]
Saxena, A.; Tripathi, R.M.; Singh, R.P. Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Dig. J. Nanomater. Biostruct., 2010, 5, 427-432.
[41]
Khandelwal, N.; Singh, A.; Jain, D.; Upadhyay, M.K.; Verma, H.N. Green synthesis of silver nanoparticles using Argimone maxicana leaf extract and evaluation of their activity. Dig. J. Nanomater. Biostruct., 2010, 5, 483-489.
[42]
Ashok, K.D. Rapid and green synthesis of silver nanoparticles using the leaf extracts of Parthenium hysterophorus: A novel biological approachInt. Res. J. Pharm., 2012, 3(2), 169-171.
[43]
Ahmad, A.; Mukherjee, P.; Senapati, S.; Mandal, D.; Khan, M.I.; Kumar, R.; Sastry, M. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces, 2003, 28, 313-318.
[http://dx.doi.org/10.1016/S0927-7765(02)00174-1]
[44]
Donda, M.R.; Kudle, K.R.; Alwala, J.; Miryala, A.; Sreedhar, B.; Rudra, M.P. Synthesis of silver nanoparticles using extracts of Securinega leucopyrus and evaluation of its antibacterial activity. Int. J. Curr. Sci., 2013, 7, 1-8.
[http://dx.doi.org/www.currentsciencejournal.info/issuespdf/Pratabrudra.pdf]
[45]
Vilchis-Nestor, A.R.; Sanchez-Mendieta, V.; Camacho-López, M.A.; Gómez-Espinosa, R.M.; Camacho-López, M.A.; Arenas-Alatorre, J.A. Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Mater. Lett., 2008, 62, 3103-3105.
[http://dx.doi.org/10.1016/j.matlet.2008.01.138]
[46]
Sarkar, R.; Kumbhakar, P.; Mitra, A.K. Green synthesis of silver nanoparticles and its optical properties. Dig. J. Nanomater. Biostruct., 2010, 5(2), 491-496.
[47]
Zaheer, Z. Rafiuddin, Silver nanoparticles to self-assembled films: green synthesis and characterization. Colloids Surf. B Biointerfaces, 2012, 90, 48-52.
[http://dx.doi.org/10.1016/j.colsurfb.2011.09.037] [PMID: 22055624]
[48]
Raut, B.A.; Karekar, R.N.; Puranik, D.M. Spatial distribution and diurnal variation of cumuliform clouds during Indian Summer Monsoon. J. Geophys. Res., 2009, 114, 0148-0227.
[http://dx.doi.org/10.1029/2008JD011153]
[49]
Vivek, K.; Bajpa, I. AjaySharma, K. Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens. Food Control, 2013, 32, 582-590.
[http://dx.doi.org/10.1016/j.foodcont.2013.01.032]
[50]
Savithramma, N.; Rao, M.L.; Devi, P.S. Evaluation of antibacterial efficacy of biologically synthesized silver nanoparticles using stem barks of Boswellia ovalifoliolata Bal. and Henry and Shorea tumbuggaia Roxb. J. Boil. Sci., 2011, 11(1), 39-45.
[http://dx.doi.org/10.3923/jbs.2011.39.45]
[51]
Kanchana, A.; Devarajan, S.; Rathakrishnan, A.S. Green synthesis and characterization of palladium nanoparticles and its conjugates from Solanum trilobatum leaf extract. Nano-Micro Lett., 2010, 169-176.
[http://dx.doi.org/10.1007/BF03353637]
[52]
Niraimathi, K.L.; Sudha, V.; Lavanya, R.; Brindha, P. Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids Surf. B Biointerfaces, 2013, 102, 288-291.
[http://dx.doi.org/10.1016/j.colsurfb.2012.08.041] [PMID: 23006568]
[53]
Prakash, P.; Gnanaprakasam, P.; Emmanuel, R.; Arokiyaraj, S.; Saravanan, M. Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf. B Biointerfaces, 2013, 108, 255-259.
[http://dx.doi.org/10.1016/j.colsurfb.2013.03.017] [PMID: 23563291]
[54]
Sathyavathi, R.; Krishna, M.B.; Rao, S.V.; Saritha, R.; Rao, D.N. Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv. Sci. Lett., 2010, 3, 138-143.
[http://dx.doi.org/10.1166/asl.2010.1099]
[55]
Gole, A.; Dash, C.; Ramachandran, V.V.; Sainkar, S.R.; Mandale, A.B.; Rao, M. Sastry. M. Pepsin-gold colloid conjugates: Preparation, characterization, and enzymatic activity. Langmuir, 2001, 17, 1674-1679.
[http://dx.doi.org/10.1021/la001164w]
[56]
Prasad, K.S.; Pathak, D.; Patel, A. Biogenic synthesis of silver nanoparticles using Nicotina tobaccum leaf extract and study of their antibacterial effect. Afr. J. Biotechnol., 2011, 10(41), 8122-8130.
[http://dx.doi.org/10.5897/AJB11.394]
[57]
Lynch, S.V.; Dixon, L.; Benoit, M.R.; Brodie, E.L.; Keyhan, M.; Hu, P.; Ackerley, D.F.; Andersen, G.L.; Matin, A. Role of the rapA gene in controlling antibiotic resistance of Escherichia coli biofilms. Antimicrob. Agents Chemother., 2007, 51(10), 3650-3658.
[http://dx.doi.org/10.1128/AAC.00601-07] [PMID: 17664315]
[58]
Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci., 2004, 275(1), 177-182.
[http://dx.doi.org/10.1016/j.jcis.2004.02.012] [PMID: 15158396]
[59]
Jan, S.A.; Shinwari, Z.K.; Zeb, A.; Khalil, A.T.; Sha, S.H. Ethnobotany and research trends in Trachyspermum ammi L. (Ajowan); A popular folklore remedy. Am.-Eurasian J. Agric. Environ. Sci., 2015, 15(1), 68-73.
[60]
Arokiyaraj, S.; Arasu, M.V.; Vincent, S.; Prakash, N.U.; Choi, S.H.; Oh, Y.K.; Choi, K.C.; Kim, K.H. Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L and its antibacterial and cytotoxic effects: An in vitro study. Int. J. Nanomedicine, 2014, 9, 379-388.
[http://dx.doi.org/10.2147/IJN.S53546] [PMID: 24426782]
[61]
Palanisamy, N.K.; Ferina, N.; Amirulhusni, A.N.; Mohd-Zain, Z.; Hussaini, J.; Ping, L.J.; Durairaj, R. Antibiofilm properties of chemically synthesized silver nanoparticles found against Pseudomonas aeruginosa. J. Nanobiotechnology, 2014, 12, 2.
[http://dx.doi.org/10.1186/1477-3155-12-2] [PMID: 24422704]
[62]
Rehman, N.U.; Begum, N.; Ali, L.; Al-Harrasi, A.; Abbas, G.; Ahmad, S.; Khan, A.L.; Shinwari, Z.K.; Hussain, J. Lipid peroxidation, antiglycation, cytotoxic, phytotoxic, antioxidant, antiplatelet and antimicrobial actitivties of Ajuga bracteosa against various pathogens. Pak. J. Bot., 2015, 47, 1195-1197.
[63]
Abhishek, M.; Satish, K.; Verma, R.; Purohit, V.; Gupta, V.K.; Dua, G.B.K.S.; Prasad, D.M.; Santosh, K.; Shivsaran, S. Evaluation of in vitro antimicrobial and antioxidant activities of peel and pulp of some citrus fruits; Biotechnol. Biotherapeut, 2011, pp. 2229-6824.
[64]
Blecher, K.; Nasir, A.; Friedman, A. The growing role of nanotechnology in combating infectious disease. Virulence, 2011, 2(5), 395-401.
[http://dx.doi.org/10.4161/viru.2.5.17035] [PMID: 21921677]
[65]
Huh, A.J.; Kwon, Y.J. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release, 2011, 156(2), 128-145.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.002] [PMID: 21763369]
[66]
Pelgrift, R.Y.; Friedman, A.J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1803-1815.
[http://dx.doi.org/10.1016/j.addr.2013.07.011] [PMID: 23892192]
[67]
Matsumura, Y.; Yoshikata, K.; Kunisaki, S.; Tsuchido, T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol., 2003, 69(7), 4278-4281.
[http://dx.doi.org/10.1128/AEM.69.7.4278-4281.2003] [PMID: 12839814]
[68]
Li, P.; Li, J.; Wu, C.; Wu, Q.; Li, J. Synergistic antibacterial effects of b-lactam antibiotic combined with silver nanoparticles. Nanotechnology, 2005, 16, 1912-1917.
[http://dx.doi.org/10.1088/0957-4484/16/9/082]
[69]
Khurana, R.; Schaefer, J.L.; Archer, L.A.; Coates, G.W. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: A new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc., 2014, 136(20), 7395-7402.
[http://dx.doi.org/10.1021/ja502133j] [PMID: 24754503]
[70]
Shahverdi, A.R.; Fakhimi, A.; Shahverdi, H.R.; Minaian, S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine (Lond.), 2007, 3(2), 168-171.
[http://dx.doi.org/10.1016/j.nano.2007.02.001] [PMID: 17468052]
[71]
Oke, J.M.; Hamburger, M.O. Screening of some Nigerian medicinal plants for antioxidant activity using 2, 2 diphenyl picryl hydrazyl radical. Afr. J. Biomed. Res., 2002, 5, 77-79.
[72]
Shrivastava, S.; Bera, T.; Roy, A.; Singh, G.; Ramachandrarao, P.; Dash, D. Characterisation of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, 2007, 18, 1-9.
[http://dx.doi.org/10.1088/0957-4484/18/22/225103]
[73]
Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C-Y.; Kim, Y.K.; Lee, Y.S.; Jeong, D.H.; Cho, M.H. Antimicrobial effects of silver nanoparticles. Nanomedicine (Lond.), 2007, 3(1), 95-101.
[http://dx.doi.org/10.1016/j.nano.2006.12.001] [PMID: 17379174]
[74]
Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci., 2008, 4(2), 89-96.
[PMID: 23675073]
[75]
Fan, Y.; Lee, T.V.; Xu, D.; Chen, Z.; Lamblin, A.F.; Steller, H.; Bergmann, A. Dual roles of Drosophila p53 in cell death and cell differentiation. Cell Death Differ., 2010, 17(6), 912-921.
[http://dx.doi.org/10.1038/cdd.2009.182] [PMID: 19960025]
[76]
Siddhuraju, P. Antioxidant activity of polyphenolic compounds extracted from defatted raw and dry heated Tamarindus indica seed coat. Lebensm. Wiss. Technol., 2007, 40, 982-990.
[http://dx.doi.org/10.1016/j.lwt.2006.07.010]
[77]
Cui, Y.; Liu, H.; Zhou, M.; Duan, Y.; Li, N.; Gong, X.; Hu, R.; Hong, M.; Hong, F. Signaling pathway of inflammatory responses in the mouse liver caused by TiO2 nanoparticles. J. Biomed. Mater. Res. A, 2011, 96(1), 221-229.
[http://dx.doi.org/10.1002/jbm.a.32976] [PMID: 21105171]
[78]
Bashir, S.; Khan, B.M.; Babar, M.; Andleeb, S.; Hafeez, M.; Ali, S.; Khan, M.F. Assessment of bioautography and spot screening of TLC of green tea (Camellia) plant extracts as antibacterial and antioxidant agents; Indian J. Pharma. Sci, 2014, pp. 364-370.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 3
Year: 2020
Published on: 16 March, 2020
Page: [206 - 218]
Pages: 13
DOI: 10.2174/1389201020666191001123219
Price: $65

Article Metrics

PDF: 17
HTML: 2