Electrochemical Nano-biosensors as Novel Approach for the Detection of Lung Cancer-related MicroRNAs

Author(s): Roghayeh Sheervalilou, Omolbanin Shahraki, Leili Hasanifard, Milad Shirvaliloo, Sahar Mehranfar, Hajie Lotfi, Younes Pilehvar-Soltanahmadi, Zahra Bahmanpour, Sadaf Sarraf Zadeh, Ziba Nazarlou, Haleh Kangarlou, Habib Ghaznavi*, Nosratollah Zarghami*

Journal Name: Current Molecular Medicine

Volume 20 , Issue 1 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor


In both men and women around the world, lung cancer accounts as the principal cause of cancer-related death after breast cancer. Therefore, early detection of the disease is a cardinal step in improving prognosis and survival of patients. Today, the newly-defined microRNAs regulate about 30 to 60 percent of the gene expression. Changes in microRNA Profiles are linked to numerous health conditions, making them sophisticated biomarkers for timely, if not early, detection of cancer. Though evaluation of microRNAs in real samples has proved to be rather challenging, which is largely attributable to the unique characteristics of these molecules. Short length, sequence similarity, and low concentration stand among the factors that define microRNAs. Recently, diagnostic technologies with a focus on wide-scale point of care have recently garnered attention as great candidates for early diagnosis of cancer. Electrochemical nano-biosensors have recently garnered much attention as a molecular method, showing great potential in terms of sensitivity, specificity and reproducibility, and last but not least, adaptability to point-of-care testing. Application of nanoscale materials in electrochemical devices as promising as it is, brings multiplexing potential for conducting simultaneous evaluations on multiple cancer biomarkers. Thanks to their enthralling properties, these materials can be used to improve the efficiency of cancer diagnostics, offer more accurate predictions of prognosis, and monitor response to therapy in a more efficacious way. This article presents a concise overview of recent advances in the expeditiously evolving area of electrochemical biosensors for microRNA detection in lung cancer.

Keywords: Biomarker, Detection, Electrochemical, Lung Cancer, MicroRNA (miRNA), Nano-biosensor.

Xue X, Liu Y, Wang Y, et al. MiR-21 and MiR-155 promote non-small cell lung cancer progression by downregulating SOCS1, SOCS6, and PTEN. Oncotarget 2016; 7(51): 84508-19.
[http://dx.doi.org/10.18632/oncotarget.13022] [PMID: 27811366]
Rivera MP, Mehta AC. American College of Chest Physicians Initial diagnosis of lung cancer: ACCP evidencebased clinical practice guidelines (2nd edition) Chest. 2007. 132(3) (Suppl.): 131S-48S.
[http://dx.doi.org/10.1378/chest.07-1357] [PMID: 17873165]
Ferlay J, Shin H, Bray F. Cancer incidence and mortality worldwide: IARC Cancer Base No. Int J Cancer 2013.
Torre LA, Siegel RL, Jemal A. Lung cancer statistics Lung cancer and personalized medicine. Springer 2016; pp. 1-19.
Thun M, Peto R, Boreham J, Lopez AD. Stages of the cigarette epidemic on entering its second century. Tob Control 2012; 21(2): 96-101.
[http://dx.doi.org/10.1136/tobaccocontrol-2011-050294] [PMID: 22345230]
Gompelmann D, Eberhardt R, Herth FJ. Advanced malignant lung disease: what the specialist can offer. Respiration 2011; 82(2): 111-23.
[http://dx.doi.org/10.1159/000329703] [PMID: 21778793]
Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin 2013; 63(1): 11-30.
[http://dx.doi.org/10.3322/caac.21166] [PMID: 23335087]
Zhang Y, Yang D, Weng L, Wang L. Early lung cancer diagnosis by biosensors. Int J Mol Sci 2013; 14(8): 15479-509.
[http://dx.doi.org/10.3390/ijms140815479] [PMID: 23892596]
Zhong L, Coe SP, Stromberg AJ, Khattar NH, Jett JR, Hirschowitz EA. Profiling tumor-associated antibodies for early detection of non-small cell lung cancer. J Thorac Oncol 2006; 1(6): 513-9.
[http://dx.doi.org/10.1097/01243894-200607000-00003] [PMID: 17409910]
Paci M, Maramotti S, Bellesia E, et al. Circulating plasma DNA as diagnostic biomarker in non-small cell lung cancer. Lung Cancer 2009; 64(1): 92-7.
[http://dx.doi.org/10.1016/j.lungcan.2008.07.012] [PMID: 18804892]
Sequist LV, Nagrath S, Toner M, Haber DA, Lynch TJ. The CTC-chip: an exciting new tool to detect circulating tumor cells in lung cancer patients. J Thorac Oncol 2009; 4(3): 281-3.
[http://dx.doi.org/10.1097/JTO.0b013e3181989565] [PMID: 19247082]
Arya SK, Bhansali S. Lung cancer and its early detection using biomarker-based biosensors. Chem Rev 2011; 111(11): 6783-809.
[http://dx.doi.org/10.1021/cr100420s] [PMID: 21774490]
Altintas Z, Tothill I. Biomarkers and biosensors for the early diagnosis of lung cancer. Sens Actuators B Chem 2013; 188: 988-98.
Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6(11): 857-66.
[http://dx.doi.org/10.1038/nrc1997] [PMID: 17060945]
Sheervalilou R, Khamaneh AM, Sharifi A, et al. Using miR-10b, miR-1 and miR-30a expression profiles of bronchoalveolar lavage and sputum for early detection of non-small cell lung cancer. Biomed Pharmacother 2017; 88: 1173-82.
Markou A, Sourvinou I, Vorkas PA, Yousef GM, Lianidou E. Clinical evaluation of microRNA expression profiling in non small cell lung cancer. Lung Cancer 2013; 81(3): 388-96.
[http://dx.doi.org/10.1016/j.lungcan.2013.05.007] [PMID: 23756108]
Sheervalilou R, Shirvaliloo S, Fekri Aval S, et al. A new insight on reciprocal relationship between microRNA expression and epigenetic modifications in human lung cancer. Tumour Biol 2017; 39(5)1010428317695032
[http://dx.doi.org/10.1177/1010428317695032] [PMID: 28468581]
Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 2014; 20(8): 460-9.
[http://dx.doi.org/10.1016/j.molmed.2014.06.005] [PMID: 25027972]
Campuzano S, Pedrero M, Pingarrón JM. Electrochemical genosensors for the detection of cancer-related miRNAs. Anal Bioanal Chem 2014; 406(1): 27-33.
[http://dx.doi.org/10.1007/s00216-013-7459-z] [PMID: 24247551]
Wei F, Lillehoj PB, Ho C-M. DNA diagnostics: nanotechnology-enhanced electrochemical detection of nucleic acids. Pediatr Res 2010; 67(5): 458-68.
[http://dx.doi.org/10.1203/PDR.0b013e3181d361c3] [PMID: 20075759]
Proctor RN. Tobacco and the global lung cancer epidemic. Nat Rev Cancer 2001; 1(1): 82-6.
[http://dx.doi.org/10.1038/35094091] [PMID: 11900255]
Rivera MP, Mehta AC. American College of Chest Physicians. In: Initial diagnosis of lung cancer: ACCP evidence based clinical practice guidelines. 2nd. Chest. 2007. 132(1): pp. (2)131-48.
Katlic MR, Facktor MA, Berry SA, McKinley KE, Bothe A Jr, Steele GD Jr. ProvenCare lung cancer: a multi-institutional improvement collaborative. CA Cancer J Clin 2011; 61(6): 382-96.
[http://dx.doi.org/10.3322/caac.20119] [PMID: 21748730]
Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin 2014; 64(1): 9-29.
[http://dx.doi.org/10.3322/caac.21208] [PMID: 24399786]
Huang Y, Hu Q, Deng Z, et al. MicroRNAs in body fluids as biomarkers for non-small cell lung cancer: a systematic review Technol cancer Res 2014. 13(3): 277-87.
Collins LG, Haines C, Perkel R, Enck RE. Lung cancer: diagnosis and management. Am Fam Physician 2007; 75(1): 56-63.
[PMID: 17225705]
Shah PL, Singh S, Bower M, Livni N, Padley S, Nicholson AG. The role of transbronchial fine needle aspiration in an integrated care pathway for the assessment of patients with suspected lung cancer. J Thorac Oncol 2006; 1(4): 324-7.
[http://dx.doi.org/10.1097/01243894-200605000-00010] [PMID: 17409878]
Travis WD, Brambilla E, Noguchi M, et al. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 2011; 6(2): 244-85.
[http://dx.doi.org/10.1097/JTO.0b013e318206a221] [PMID: 21252716]
Hirsch FR, Franklin WA, Gazdar AF, Bunn PA Jr. Early detection of lung cancer: clinical perspectives of recent advances in biology and radiology. Clin Cancer Res 2001; 7(1): 5-22.
[PMID: 11205917]
Böcking A, Biesterfeld S, Chatelain R, Gien-Gerlach G, Esser E. Diagnosis of bronchial carcinoma on sections of paraffin-embedded sputum. Sensitivity and specificity of an alternative to routine cytology. Acta Cytol 1992; 36(1): 37-47.
[PMID: 1546511]
Rivera MP, Detterbeck F, Mehta AC. American College of Chest Physicians. Diagnosis of lung cancer: the guidelines. Chest 2003; 123(1)(Suppl.): 129S-36S.
[http://dx.doi.org/10.1378/chest.123.1_suppl.129S] [PMID: 12527572]
Wieskopf B, Demangeat C, Purohit A, et al. Cyfra 21-1 as a biologic marker of non-small cell lung cancer. Evaluation of sensitivity, specificity, and prognostic role. Chest 1995; 108(1): 163-9.
[http://dx.doi.org/10.1378/chest.108.1.163] [PMID: 7541742]
Burghuber OC, Worofka B, Schernthaner G, et al. Serum neuron-specific enolase is a useful tumor marker for small cell lung cancer. Cancer 1990; 65(6): 1386-90.
[http://dx.doi.org/10.1002/1097-0142(19900315)65:6<1386:AID-CNCR2820650623>3.0.CO;2-9] [PMID: 2155054]
Watine J, Charet JC. Primary small-cell bronchial cancer: value of serum tumor markers in the prognostic evaluation Presse Med 1999; 28(28): 1541-6.
[PMID: 10526565]
Bréchot JM, Chevret S, Nataf J, et al. Diagnostic and prognostic value of Cyfra 21-1 compared with other tumour markers in patients with non-small cell lung cancer: a prospective study of 116 patients. Eur J Cancer 1997; 33(3): 385-91.
[http://dx.doi.org/10.1016/S0959-8049(97)89010-7] [PMID: 9155521]
Paone G, De Angelis G, Munno R, et al. Discriminant analysis on small cell lung cancer and non-small cell lung cancer by means of NSE and CYFRA-21.1. Eur Respir J 1995; 8(7): 1136-40.
[http://dx.doi.org/10.1183/09031936.95.08071136] [PMID: 7589398]
Baaklini WA, Reinoso MA, Gorin AB, Sharafkaneh A, Manian P. Diagnostic yield of fiberoptic bronchoscopy in evaluating solitary pulmonary nodules. Chest 2000; 117(4): 1049-54.
[http://dx.doi.org/10.1378/chest.117.4.1049] [PMID: 10767238]
Chaudhary BA, Yoneda K, Burki NK. Fiberoptic bronchoscopy. Comparison of procedures used in the diagnosis of lung cancer. J Thorac Cardiovasc Surg 1978; 76(1): 33-7.
[PMID: 661364]
Vansteenkiste J, Dooms C, De Leyn P. Early stage non-small-cell lung cancer: challenges in staging and adjuvant treatment: evidence-based staging. Ann Oncol 2010; 21(7): vii189-95.
Mazzone P, Jain P, Arroliga AC, Matthay RA. Bronchoscopy and needle biopsy techniques for diagnosis and staging of lung cancer. Clin Chest Med 2002; 23(1): 137-58. ix.
[http://dx.doi.org/10.1016/S0272-5231(03)00065-0] [PMID: 11901908]
Henschke CI, Shaham D, Yankelevitz DF, Altorki NK. CT screening for lung cancer: past and ongoing studies. Seminars in thoracic and cardiovascular surgery 2005; 17(2): 99-106.
Van’t Westeinde SC, van Klaveren RJ. Screening and early detection of lung cancer. Cancer J 2011; 17(1): 3-10.
[http://dx.doi.org/10.1097/PPO.0b013e3182099319] [PMID: 21263260]
Kumar R, Nadig MR, Chauhan A. Positron emission tomography: clinical applications in oncology. Part 1. Expert Rev Anticancer Ther 2005; 5(6): 1079-94.
[http://dx.doi.org/10.1586/14737140.5.6.1079] [PMID: 16336099]
Pastorino U, Bellomi M, Landoni C, et al. Early lung-cancer detection with spiral CT and positron emission tomography in heavy smokers: 2-year results. Lancet 2003; 362(9384): 593-7.
[http://dx.doi.org/10.1016/S0140-6736(03)14188-8] [PMID: 12944057]
Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 2008; 83(5): 584-94.
Mountain CF. Revision in the international system for staging of lung cancer. Chest 1997; 111(6): 1710-7.
[http://dx.doi.org/10.1378/chest.111.6.1710] [PMID: 9187198]
Ihde DC. Chemotherapy of lung cancer. N Engl J Med 1992; 327(20): 1434-41.
[http://dx.doi.org/10.1056/NEJM199211123272006] [PMID: 1328881]
Iqbal MA, Arora S, Prakasam G, Calin GA, Syed MA. MicroRNA in lung cancer: role, mechanisms, pathways and therapeutic relevance Mol Aspects Med 2018. S0098- 2997(18)30065-7
[http://dx.doi.org/10.1016/j.mam.2018.07.003] [PMID: 30102929]
Indovina P, Marcelli E, Maranta P, Tarro G. Lung cancer proteomics: recent advances in biomarker discovery Int J Proteomics 2011 2011.
Hatzakis KD, Froudarakis ME, Bouros D, Tzanakis N, Karkavitsas N, Siafakas NM. Prognostic value of serum tumor markers in patients with lung cancer. Respiration 2002; 69(1): 25-9.
[http://dx.doi.org/10.1159/000049366] [PMID: 11844959]
Xiao T, Ying W, Li L, et al. An approach to studying lung cancer-related proteins in human blood. Mol Cell Proteomics 2005; 4(10): 1480-6.
[http://dx.doi.org/10.1074/mcp.M500055-MCP200] [PMID: 15970581]
Patz EF Jr, Campa MJ, Gottlin EB, Kusmartseva I, Guan XR, Herndon JE II. Panel of serum biomarkers for the diagnosis of lung cancer. J Clin Oncol 2007; 25(35): 5578-83.
[http://dx.doi.org/10.1200/JCO.2007.13.5392] [PMID: 18065730]
Sung H-J, Cho J-Y. Biomarkers for the lung cancer diagnosis and their advances in proteomics. BMB Rep 2008; 41(9): 615-25.
[http://dx.doi.org/10.5483/BMBRep.2008.41.9.615] [PMID: 18823584]
Friedman RC, Farh KK-H, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19(1): 92-105.
[http://dx.doi.org/10.1101/gr.082701.108] [PMID: 18955434]
Bahmanpour Z, Sheervalilou R, Choupani J, Shekari Khaniani M, Montazeri V, Mansoori Derakhshan S. A new insight on serum microRNA expression as novel biomarkers in breast cancer patients. J Cell Physiol 2019; 234(11): 19199-211.
[http://dx.doi.org/10.1002/jcp.28656] [PMID: 31026062]
Catuogno S, Esposito CL, Quintavalle C, Cerchia L, Condorelli G, De Franciscis V. Recent advance in biosensors for microRNAs detection in cancer. Cancers (Basel) 2011; 3(2): 1877-98.
[http://dx.doi.org/10.3390/cancers3021877] [PMID: 24212787]
Maurizi G, Babini L, Della Guardia L. Potential role of microRNAs in the regulation of adipocytes liposecretion and adipose tissue physiology. J Cell Physiol 2018; 233(12): 9077-86.
[http://dx.doi.org/10.1002/jcp.26523] [PMID: 29932216]
He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004; 5(7): 522-31.
[http://dx.doi.org/10.1038/nrg1379] [PMID: 15211354]
Ambros V, Horvitz HR. Heterochronic mutants of the nematode Caenorhabditis elegans. Science 1984; 226(4673): 409-16.
[http://dx.doi.org/10.1126/science.6494891] [PMID: 6494891]
Wang QZ, Xu W, Habib N, Xu R. Potential uses of microRNA in lung cancer diagnosis, prognosis, and therapy. Curr Cancer Drug Targets 2009; 9(4): 572-94.
[http://dx.doi.org/10.2174/156800909788486731] [PMID: 19519323]
Singh NK. microRNAs databases: developmental methodologies, structural and functional annotations. Interdiscip Sci 2017; 9(3): 357-77.
[http://dx.doi.org/10.1007/s12539-016-0166-7] [PMID: 27021491]
Aval SF, Lotfi H, Sheervalilou R, Zarghami N. Tuning of major signaling networks (TGF-β, Wnt, Notch and Hedgehog) by miRNAs in human stem cells commitment to different lineages: Possible clinical application. Biomed Pharmacother 2017; 91: 849-60.
[http://dx.doi.org/10.1016/j.biopha.2017.05.020] [PMID: 28501774]
Kafshdooz L, Pourfathi H, Akbarzadeh A, et al. The role of microRNAs and nanoparticles in ovarian cancer: a review. Artif Cells Nanomed Biotechnol 2018; 46(2): 241-7.
Yang J-S, Lai EC. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell 2011; 43(6): 892-903.
[http://dx.doi.org/10.1016/j.molcel.2011.07.024] [PMID: 21925378]
Hutvágner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001; 293(5531): 834-8.
[http://dx.doi.org/10.1126/science.1062961] [PMID: 11452083]
Malumbres M. miRNAs and cancer: an epigenetics view. Mol Aspects Med 2013; 34(4): 863-74.
[http://dx.doi.org/10.1016/j.mam.2012.06.005] [PMID: 22771542]
Jamali AA, Pourhassan-Moghaddam M, Dolatabadi JEN, Omidi Y. Nanomaterials on the road to microRNA detection with optical and electrochemical nanobiosensors. Trends Analyt Chem 2014; 55: 24-42.
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136(2): 215-33.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
Roberts TC. The microRNA machinery microRNA: Basic Science. Springer 2015; pp. 15-30.
Hu Z, Chen J, Tian T, et al. Genetic variants of miRNA sequences and non-small cell lung cancer survival. J Clin Invest 2008; 118(7): 2600-8.
[http://dx.doi.org/10.1172/JCI34934] [PMID: 18521189]
Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 2007; 4(9): 721-6.
[http://dx.doi.org/10.1038/nmeth1079] [PMID: 17694064]
Tay Y, Kats L, Salmena L, et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 2011; 147(2): 344-57.
[http://dx.doi.org/10.1016/j.cell.2011.09.029] [PMID: 22000013]
Devita VT Jr, Lawrence TS, Rosenberg SA. DeVita, Hellman, and Rosenberg’s cancer: principles & practice of oncology. Lippincott Williams & Wilkins 2015.
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9(6): 654-9.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
Krek A, Grün D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37(5): 495-500.
[http://dx.doi.org/10.1038/ng1536] [PMID: 15806104]
Inui M, Martello G, Piccolo S. MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 2010; 11(4): 252-63.
[http://dx.doi.org/10.1038/nrm2868] [PMID: 20216554]
Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99(24): 15524-9.
[http://dx.doi.org/10.1073/pnas.242606799] [PMID: 12434020]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
Rabinowits G, Gerçel-Taylor C, Day JM, Taylor DD, Kloecker GH. Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 2009; 10(1): 42-6.
[http://dx.doi.org/10.3816/CLC.2009.n.006] [PMID: 19289371]
Gao Z, Peng Y. A highly sensitive and specific biosensor for ligation- and PCR-free detection of microRNAs. Biosens Bioelectron 2011; 26(9): 3768-73.
[http://dx.doi.org/10.1016/j.bios.2011.02.029] [PMID: 21420848]
Hao N, Li X-L, Zhang H-R, Xu J-J, Chen H-Y. A highly sensitive ratiometric electrochemiluminescent biosensor for microRNA detection based on cyclic enzyme amplification and resonance energy transfer. Chem Commun (Camb) 2014; 50(94): 14828-30.
[http://dx.doi.org/10.1039/C4CC06801G] [PMID: 25322904]
Gan TQ, Xie ZC, Tang RX, et al. Clinical value of miR-145-5p in NSCLC and potential molecular mechanism exploration: A retrospective study based on GEO, qRT-PCR, and TCGA data. Tumour Biol 2017; 39(3)1010428317691683
[http://dx.doi.org/10.1177/1010428317691683] [PMID: 28347234]
Du L, Schageman JJ, Subauste MC, et al. miR-93, miR-98, and miR-197 regulate expression of tumor suppressor gene FUS1. Mol Cancer Res 2009; 7(8): 1234-43.
[http://dx.doi.org/10.1158/1541-7786.MCR-08-0507] [PMID: 19671678]
Lebanony D, Benjamin H, Gilad S, et al. Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma. J Clin Oncol 2009; 27(12): 2030-7.
[http://dx.doi.org/10.1200/JCO.2008.19.4134] [PMID: 19273703]
Pan X, Wang Z-X, Wang R. MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biol Ther 2010; 10(12): 1224-32.
[http://dx.doi.org/10.4161/cbt.10.12.14252] [PMID: 21139417]
Tellez CS, Juri DE, Do K, et al. EMT and stem cell-like properties associated with miR-205 and miR-200 epigenetic silencing are early manifestations during carcinogen-induced transformation of human lung epithelial cells. Cancer Res 2011; 71(8): 3087-97.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3035] [PMID: 21363915]
Zang Y-S, Zhong Y-F, Fang Z, Li B, An J. MiR-155 inhibits the sensitivity of lung cancer cells to cisplatin via negative regulation of Apaf-1 expression. Cancer Gene Ther 2012; 19(11): 773-8.
[http://dx.doi.org/10.1038/cgt.2012.60] [PMID: 22996741]
Zhu W, Liu X, He J, Chen D, Hunag Y, Zhang YK. Overexpression of members of the microRNA-183 family is a risk factor for lung cancer: a case control study. BMC Cancer 2011; 11(1): 393.
[http://dx.doi.org/10.1186/1471-2407-11-393] [PMID: 21920043]
Võsa U, Vooder T, Kolde R, Vilo J, Metspalu A, Annilo T. Meta-analysis of microRNA expression in lung cancer. Int J Cancer 2013; 132(12): 2884-93.
[http://dx.doi.org/10.1002/ijc.27981] [PMID: 23225545]
He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network. Nature 2007; 447(7148): 1130-4.
[http://dx.doi.org/10.1038/nature05939] [PMID: 17554337]
Crawford M, Brawner E, Batte K, et al. MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochem Biophys Res Commun 2008; 373(4): 607-12.
[http://dx.doi.org/10.1016/j.bbrc.2008.06.090] [PMID: 18602365]
Ohdaira H, Sekiguchi M, Miyata K, Yoshida K. MicroRNA-494 suppresses cell proliferation and induces senescence in A549 lung cancer cells. Cell Prolif 2012; 45(1): 32-8.
[http://dx.doi.org/10.1111/j.1365-2184.2011.00798.x] [PMID: 22151897]
Wang X, Cao L, Wang Y, Wang X, Liu N, You Y. Regulation of let-7 and its target oncogenes (Review). Oncol Lett 2012; 3(5): 955-60.
[http://dx.doi.org/10.3892/ol.2012.609] [PMID: 22783372]
Xi S, Xu H, Shan J, et al. Cigarette smoke mediates epigenetic repression of miR-487b during pulmonary carcinogenesis. J Clin Invest 2013; 123(3): 1241-61.
[http://dx.doi.org/10.1172/JCI61271] [PMID: 23426183]
Mao G, Liu Y, Fang X, et al. Tumor-derived microRNA-494 promotes angiogenesis in non-small cell lung cancer. Angiogenesis 2015; 18(3): 373-82.
[http://dx.doi.org/10.1007/s10456-015-9474-5] [PMID: 26040900]
Yuan Y, Du W, Wang Y, et al. Suppression of AKT expression by miR-153 produced anti-tumor activity in lung cancer. Int J Cancer 2015; 136(6): 1333-40.
[http://dx.doi.org/10.1002/ijc.29103] [PMID: 25066607]
Shan N, Shen L, Wang J, He D, Duan C. MiR-153 inhibits migration and invasion of human non-small-cell lung cancer by targeting ADAM19. Biochem Biophys Res Commun 2015; 456(1): 385-91.
[http://dx.doi.org/10.1016/j.bbrc.2014.11.093] [PMID: 25475731]
Lv P, Zhang P, Li X, Chen Y. Micro ribonucleic acid (RNA)-101 inhibits cell proliferation and invasion of lung cancer by regulating cyclooxygenase-2. Thorac Cancer 2015; 6(6): 778-84.
[http://dx.doi.org/10.1111/1759-7714.12283] [PMID: 26557918]
Kumamoto T, Seki N, Mataki H, et al. Regulation of TPD52 by antitumor microRNA-218 suppresses cancer cell migration and invasion in lung squamous cell carcinoma. Int J Oncol 2016; 49(5): 1870-80.
[http://dx.doi.org/10.3892/ijo.2016.3690] [PMID: 27633630]
Shi ZM, Wang L, Shen H, et al. Downregulation of miR-218 contributes to epithelial-mesenchymal transition and tumor metastasis in lung cancer by targeting Slug/ZEB2 signaling. Oncogene 2017; 36(18): 2577-88.
[http://dx.doi.org/10.1038/onc.2016.414] [PMID: 28192397]
Izzotti A, Calin GA, Arrigo P, Steele VE, Croce CM, De Flora S. Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. FASEB J 2009; 23(3): 806-12.
[http://dx.doi.org/10.1096/fj.08-121384] [PMID: 18952709]
Nymark P, Guled M, Borze I, et al. Integrative analysis of microRNA, mRNA and aCGH data reveals asbestos- and histology-related changes in lung cancer. Genes Chromosomes Cancer 2011; 50(8): 585-97.
[http://dx.doi.org/10.1002/gcc.20880] [PMID: 21563230]
Puisségur MP, Mazure NM, Bertero T, et al. miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ 2011; 18(3): 465-78.
[http://dx.doi.org/10.1038/cdd.2010.119] [PMID: 20885442]
Vucic EA, Thu KL, Pikor LA, et al. Smoking status impacts microRNA mediated prognosis and lung adenocarcinoma biology. BMC Cancer 2014; 14(1): 778.
[http://dx.doi.org/10.1186/1471-2407-14-778] [PMID: 25342220]
Kim H, Yang JM, Jin Y, et al. MicroRNA expression profiles and clinicopathological implications in lung adenocarcinoma according to EGFR, KRAS, and ALK status. Oncotarget 2017; 8(5): 8484-98.
[http://dx.doi.org/10.18632/oncotarget.14298] [PMID: 28035073]
Chen X, Hu Z, Wang W, et al. Identification of ten serum microRNAs from a genome-wide serum microRNA expression profile as novel noninvasive biomarkers for nonsmall cell lung cancer diagnosis. Int J Cancer 2012; 130(7): 1620-8.
[http://dx.doi.org/10.1002/ijc.26177] [PMID: 21557218]
Rani S, Gately K, Crown J, O’Byrne K, O’Driscoll L. Global analysis of serum microRNAs as potential biomarkers for lung adenocarcinoma. Cancer Biol Ther 2013; 14(12): 1104-12.
[http://dx.doi.org/10.4161/cbt.26370] [PMID: 24025412]
Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008; 105(30): 10513-8.
[http://dx.doi.org/10.1073/pnas.0804549105] [PMID: 18663219]
Schwarzenbach H, Nishida N, Calin GA, Pantel K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol 2014; 11(3): 145-56.
[http://dx.doi.org/10.1038/nrclinonc.2014.5] [PMID: 24492836]
Pencheva N, Tavazoie SF. Control of metastatic progression by microRNA regulatory networks. Nat Cell Biol 2013; 15(6): 546-54.
[http://dx.doi.org/10.1038/ncb2769] [PMID: 23728460]
Wiggins JF, Ruffino L, Kelnar K, et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res 2010; 70(14): 5923-30.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0655] [PMID: 20570894]
Bouchie A. First microRNA mimic enters clinic. Nature Publishing Group 2013.
Bader AG. miR-34 - a microRNA replacement therapy is headed to the clinic. Front Genet 2012; 3: 120.
[http://dx.doi.org/10.3389/fgene.2012.00120] [PMID: 22783274]
Barger JF, Nana-Sinkam SP. MicroRNA as tools and therapeutics in lung cancer. Respir Med 2015; 109(7): 803-12.
[http://dx.doi.org/10.1016/j.rmed.2015.02.006] [PMID: 25910758]
Bishop JA, Benjamin H, Cholakh H, Chajut A, Clark DP, Westra WH. Accurate classification of non-small cell lung carcinoma using a novel microRNA-based approach. Clin Cancer Res 2010; 16(2): 610-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2638] [PMID: 20068099]
Nishikawa E, Osada H, Okazaki Y, et al. miR-375 is activated by ASH1 and inhibits YAP1 in a lineage-dependent manner in lung cancer. Cancer Res 2011; 71(19): 6165-73.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1020] [PMID: 21856745]
Nadal E, Zhong J, Lin J, et al. A MicroRNA cluster at 14q32 drives aggressive lung adenocarcinoma. Clin Cancer Res 2014; 20(12): 3107-17.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-3348] [PMID: 24833665]
Bjaanaes MM, Halvorsen AR, Solberg S, et al. Unique microRNA-profiles in EGFR-mutated lung adenocarcinomas. Int J Cancer 2014; 135(8): 1812-21.
[http://dx.doi.org/10.1002/ijc.28828] [PMID: 24599520]
Su K, Zhang T, Wang Y, Hao G. Diagnostic and prognostic value of plasma microRNA-195 in patients with non-small cell lung cancer. World J Surg Oncol 2016; 14(1): 224.
[http://dx.doi.org/10.1186/s12957-016-0980-8] [PMID: 27733164]
Demes M, Aszyk C, Bartsch H, Schirren J, Fisseler-Eckhoff A. Differential miRNA-expression as an adjunctive diagnostic tool in neuroendocrine tumors of the lung. Cancers (Basel) 2016; 8(4): 38.
[http://dx.doi.org/10.3390/cancers8040038] [PMID: 27023611]
Heegaard NH, Schetter AJ, Welsh JA, Yoneda M, Bowman ED, Harris CC. Circulating micro-RNA expression profiles in early stage nonsmall cell lung cancer. Int J Cancer 2012; 130(6): 1378-86.
[http://dx.doi.org/10.1002/ijc.26153] [PMID: 21544802]
Wang Y, Gu J, Roth JA, et al. Pathway-based serum microRNA profiling and survival in patients with advanced stage non-small cell lung cancer. Cancer Res 2013; 73(15): 4801-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3273] [PMID: 23774211]
Obad S, dos Santos CO, Petri A, et al. Silencing of microRNA families by seed-targeting tiny LNAs. Nat Genet 2011; 43(4): 371-8.
[http://dx.doi.org/10.1038/ng.786] [PMID: 21423181]
Esquela-Kerscher A, Trang P, Wiggins JF, et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 2008; 7(6): 759-64.
[http://dx.doi.org/10.4161/cc.7.6.5834] [PMID: 18344688]
Trang P, Medina PP, Wiggins JF, et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene 2010; 29(11): 1580-7.
[http://dx.doi.org/10.1038/onc.2009.445] [PMID: 19966857]
Bian H-B, Pan X, Yang J-S, Wang Z-X, De W. Upregulation of microRNA-451 increases cisplatin sensitivity of non-small cell lung cancer cell line (A549). J Exp Clin Cancer Res 2011; 30(1): 20.
[http://dx.doi.org/10.1186/1756-9966-30-20] [PMID: 21329503]
Kasinski AL, Slack FJ. miRNA-34 prevents cancer initiation and progression in a therapeutically resistant K-ras and p53-induced mouse model of lung adenocarcinoma. Cancer Res 2012; 72(21): 5576-87.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2001] [PMID: 22964582]
Xiao F, Bai Y, Chen Z, et al. Downregulation of HOXA1 gene affects small cell lung cancer cell survival and chemoresistance under the regulation of miR-100. Eur J Cancer 2014; 50(8): 1541-54.
[http://dx.doi.org/10.1016/j.ejca.2014.01.024] [PMID: 24559685]
Castro D, Moreira M, Gouveia AM, Pozza DH, De Mello RA. MicroRNAs in lung cancer. Oncotarget 2017; 8(46): 81679-85.
[http://dx.doi.org/10.18632/oncotarget.20955] [PMID: 29113423]
Liu S, Su W, Li Z, Ding X. Electrochemical detection of lung cancer specific microRNAs using 3D DNA origami nanostructures. Biosens Bioelectron 2015; 71: 57-61.
[http://dx.doi.org/10.1016/j.bios.2015.04.006] [PMID: 25884735]
Ren Y, Deng H, Shen W, Gao Z. A highly sensitive and selective electrochemical biosensor for direct detection of microRNAs in serum. Anal Chem 2013; 85(9): 4784-9.
[http://dx.doi.org/10.1021/ac400583e] [PMID: 23594156]
Yin JQ, Zhao RC, Morris KV. Profiling microRNA expression with microarrays. Trends Biotechnol 2008; 26(2): 70-6.
[http://dx.doi.org/10.1016/j.tibtech.2007.11.007] [PMID: 18191262]
Baker M. MicroRNA profiling: separating signal from noise. Nature Publishing Group 2010.
Norouzi M, Yasamineh S, Montazeri M, et al. Recent advances on nanomaterials-based fluorimetric approaches for microRNAs detection. Mater Sci Eng C 2019.104110007
[http://dx.doi.org/10.1016/j.msec.2019.110007] [PMID: 31500008]
de Planell-Saguer M, Rodicio MC. Detection methods for microRNAs in clinic practice. Clin Biochem 2013; 46(10-11): 869-78.
[http://dx.doi.org/10.1016/j.clinbiochem.2013.02.017] [PMID: 23499588]
Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X. MicroRNA: function, detection, and bioanalysis. Chem Rev 2013; 113(8): 6207-33.
[http://dx.doi.org/10.1021/cr300362f] [PMID: 23697835]
Wang J. Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron 2006; 21(10): 1887-92.
[http://dx.doi.org/10.1016/j.bios.2005.10.027] [PMID: 16330202]
Tothill IE. Biosensors for cancer markers diagnosis Seminars Cell Develop Biol. Elsevier 2009.
Lewis EK, Haaland WC, Nguyen F, et al. Color-blind fluorescence detection for four-color DNA sequencing. Proc Natl Acad Sci USA 2005; 102(15): 5346-51.
[http://dx.doi.org/10.1073/pnas.0501606102] [PMID: 15800037]
Mulaa F. Biosensors in: Handbook of Food Safety Engineering. 2011.
Bohunicky B, Mousa SA. Biosensors: the new wave in cancer diagnosis. Nanotechnol Sci Appl 2010; 4(1): 1-10.
[PMID: 24198482]
Pall GS, Codony-Servat C, Byrne J, Ritchie L, Hamilton A. Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by northern blot. Nucleic Acids Res 2007; 35(8)e60
[http://dx.doi.org/10.1093/nar/gkm112] [PMID: 17405769]
Ramkissoon SH, Mainwaring LA, Sloand EM, Young NS, Kajigaya S. Nonisotopic detection of microRNA using digoxigenin labeled RNA probes. Mol Cell Probes 2006; 20(1): 1-4.
[http://dx.doi.org/10.1016/j.mcp.2005.07.004] [PMID: 16146683]
Várallyay É, Burgyán J, Havelda Z. MicroRNA detection by northern blotting using locked nucleic acid probes Nat Proto 2008. 3(2): 190.1.
Winter J, Diederichs S, Micro RNA. Northern blotting, precursor cloning, and Ago2-improved RNA interference MicroRNA and Cancer. Springer 2011; pp. 85-100.
Chen C, Ridzon DA, Broomer AJ, et al. Real-time quantification of microRNAs by stem–loop RT–PCR. Nucleic Acids Res 2005; 33(20)e179
Kroh EM, Parkin RK, Mitchell PS, Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 2010; 50(4): 298-301.
[http://dx.doi.org/10.1016/j.ymeth.2010.01.032] [PMID: 20146939]
Rosenwald S, Gilad S, Benjamin S, et al. Validation of a microRNA-based qRT-PCR test for accurate identification of tumor tissue origin. Mod Pathol 2010; 23(6): 814-23.
[http://dx.doi.org/10.1038/modpathol.2010.57] [PMID: 20348879]
Zhi F, Chen X, Wang S, et al. The use of hsa-miR-21, hsa-miR-181b and hsa-miR-106a as prognostic indicators of astrocytoma. Eur J Cancer 2010; 46(9): 1640-9.
[http://dx.doi.org/10.1016/j.ejca.2010.02.003] [PMID: 20219352]
Acunzo M, Romano G, Wernicke D, Croce CM. MicroRNA and cancer--a brief overview. Adv Biol Regul 2015; 57: 1-9.
[http://dx.doi.org/10.1016/j.jbior.2014.09.013] [PMID: 25294678]
Jansson MD, Lund AH. MicroRNA and cancer. Mol Oncol 2012; 6(6): 590-610.
[http://dx.doi.org/10.1016/j.molonc.2012.09.006] [PMID: 23102669]
Chen C, Ridzon DA, Broomer AJ, et al. Real-time quantification of microRNAs by stem–loop RT–PCR. Nucleic Acids Res 2005; 33(20)e179
Liang R-Q, Li W, Li Y, et al. An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res 2005; 33(2)e17
Yang W-J, Li X-B, Li Y-Y, et al. Quantification of microRNA by gold nanoparticle probes. Anal Biochem 2008; 376(2): 183-8.
[http://dx.doi.org/10.1016/j.ab.2008.02.003] [PMID: 18316033]
Wu F, Zhang S, Dassopoulos T, et al. Identification of microRNAs associated with ileal and colonic Crohn’s disease. Inflamm Bowel Dis 2010; 16(10): 1729-38.
[http://dx.doi.org/10.1002/ibd.21267] [PMID: 20848482]
Konishi H, Ichikawa D, Komatsu S, et al. Detection of gastric cancer-associated microRNAs on microRNA microarray comparing pre- and post-operative plasma. Br J Cancer 2012; 106(4): 740-7.
[http://dx.doi.org/10.1038/bjc.2011.588] [PMID: 22262318]
Gao Z, Yang Z. Detection of microRNAs using electrocatalytic nanoparticle tags. Anal Chem 2006; 78(5): 1470-7.
[http://dx.doi.org/10.1021/ac051726m] [PMID: 16503596]
Gao Z, Yu YH. Direct labeling microRNA with an electrocatalytic moiety and its application in ultrasensitive microRNA assays. Biosens Bioelectron 2007; 22(6): 933-40.
[http://dx.doi.org/10.1016/j.bios.2006.04.020] [PMID: 16735114]
Lusi EA, Passamano M, Guarascio P, Scarpa A, Schiavo L. Innovative electrochemical approach for an early detection of microRNAs. Anal Chem 2009; 81(7): 2819-22.
[http://dx.doi.org/10.1021/ac8026788] [PMID: 19331434]
Yin H, Zhou Y, Zhang H, Meng X, Ai S. Electrochemical determination of microRNA-21 based on graphene, LNA integrated molecular beacon, AuNPs and biotin multifunctional bio bar codes and enzymatic assay system. Biosens Bioelectron 2012; 33(1): 247-53.
[http://dx.doi.org/10.1016/j.bios.2012.01.014] [PMID: 22317835]
Johnson BN, Mutharasan R. Sample preparation-free, real-time detection of microRNA in human serum using piezoelectric cantilever biosensors at attomole level. Anal Chem 2012; 84(23): 10426-36.
[http://dx.doi.org/10.1021/ac303055c] [PMID: 23101954]
Bettazzi F, Hamid-Asl E, Esposito CL, et al. Electrochemical detection of miRNA-222 by use of a magnetic bead-based bioassay. Anal Bioanal Chem 2013; 405(2-3): 1025-34.
[http://dx.doi.org/10.1007/s00216-012-6476-7] [PMID: 23099529]
Erdem A, Congur G, Eksin E. Multichannel screen printed array of electrodes for enzyme-linked voltammetric detection of MicroRNAs. Sens Actuators B Chem 2013; 188: 1089-95.
Hong C-Y, Chen X, Liu T, et al. Ultrasensitive electrochemical detection of cancer-associated circulating microRNA in serum samples based on DNA concatamers. Biosens Bioelectron 2013; 50: 132-6.
[http://dx.doi.org/10.1016/j.bios.2013.06.040] [PMID: 23850778]
Kilic T, Nur Topkaya S, Ozsoz M. A new insight into electrochemical microRNA detection: a molecular caliper, p19 protein. Biosens Bioelectron 2013; 48: 165-71.
[http://dx.doi.org/10.1016/j.bios.2013.04.011] [PMID: 23680935]
Cheng F-F, Zhang J-J, He T-T, Shi J-J, Abdel-Halim ES, Zhu J-J. Bimetallic Pd-Pt supported graphene promoted enzymatic redox cycling for ultrasensitive electrochemical quantification of microRNA from cell lysates. Analyst (Lond) 2014; 139(16): 3860-5.
[http://dx.doi.org/10.1039/C4AN00777H] [PMID: 24976373]
Erdem A, Congur G. Label-free voltammetric detection of MicroRNAs at multi-channel screen printed array of electrodes comparison to graphite sensors. Talanta 2014; 118: 7-13.
[http://dx.doi.org/10.1016/j.talanta.2013.09.041] [PMID: 24274264]
Miao P, Wang B, Yu Z, Zhao J, Tang Y. Ultrasensitive electrochemical detection of microRNA with star trigon structure and endonuclease mediated signal amplification. Biosens Bioelectron 2015; 63: 365-70.
[http://dx.doi.org/10.1016/j.bios.2014.07.075] [PMID: 25127470]
Congur G, Eksin E, Erdem A. Impedimetric detection of microRNA at graphene oxide modified sensors. Electrochim Acta 2015; 172: 20-7.
Tothill IE. Biosensors developments and potential applications in the agricultural diagnosis sector. Comput Electron Agric 2001; 30(1-3): 205-18.
Kress-Rogers E, Brimelow CJ. Instrumentation and sensors for the food industry. Woodhead Publishing 2001.
Green MC, Murray JL, Hortobagyi GN. Monoclonal antibody therapy for solid tumors. Cancer Treat Rev 2000; 26(4): 269-86.
[http://dx.doi.org/10.1053/ctrv.2000.0176] [PMID: 10913382]
Oyama T, Sykes KF, Samli KN, Minna JD, Johnston SA, Brown KC. Isolation of lung tumor specific peptides from a random peptide library: generation of diagnostic and cell-targeting reagents. Cancer Lett 2003; 202(2): 219-30.
[http://dx.doi.org/10.1016/j.canlet.2003.08.011] [PMID: 14643452]
McGuire MJ, Sykes KF, Samli KN, et al. A library-selected, Langerhans cell-targeting peptide enhances an immune response. DNA Cell Biol 2004; 23(11): 742-52.
[http://dx.doi.org/10.1089/dna.2004.23.742] [PMID: 15585132]
Ulrich H, Alves MJ, Colli W. RNA and DNA aptamers as potential tools to prevent cell adhesion in disease. Braz J Med Biol Res 2001; 34(3): 295-300.
[http://dx.doi.org/10.1590/S0100-879X2001000300002] [PMID: 11262579]
Cerchia L, Hamm J, Libri D, Tavitian B, de Franciscis V. Nucleic acid aptamers in cancer medicine. FEBS Lett 2002; 528(1-3): 12-6.
[http://dx.doi.org/10.1016/S0014-5793(02)03275-1] [PMID: 12297271]
Mosbach K, Ramström O. The emerging technique of molecular imprinting and its future impact on biotechnology. Biotechnology (N Y) 1996; 14(2): 163.
Lotierzo M, Henry OY, Piletsky S, et al. Surface plasmon resonance sensor for domoic acid based on grafted imprinted polymer. Biosens Bioelectron 2004; 20(2): 145-52.
[http://dx.doi.org/10.1016/j.bios.2004.01.032] [PMID: 15308215]
Yang H, Hui A, Pampalakis G, et al. Direct, electronic microRNA detection for the rapid determination of differential expression profiles. Angew Chem Int Ed Engl 2009; 48(45): 8461-4.
[http://dx.doi.org/10.1002/anie.200902577] [PMID: 19810065]
Wegman DW, Krylov SN. Direct miRNA-hybridization assays and their potential in diagnostics. Trends Analyt Chem 2013; 44: d121-30.
Pumera M, Sanchez S, Ichinose I, Tang JJS, Chemical AB. Electrochemical nanobiosensors. Sens Actuators B Chem 2007; 123(2): 1195-205.
Mirrahimi M, Hosseini V, Kamrava SK, et al. Selective heat generation in cancer cells using a combination of 808 nm laser irradiation and the folate-conjugated Fe2O3@ Au nanocomplex Artif ells Nanomed Biotechnol 2018; 46(1): 241-53.
Abed Z, Beik J, Laurent S, et al. Iron oxide-gold core-shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance. J Cancer Res Clin Oncol 2019; 145(5): 1213-9.
[http://dx.doi.org/10.1007/s00432-019-02870-x] [PMID: 30847551]
D’Agata R, Spoto G. Advanced methods for microRNA biosensing: a problem-solving perspective. Anal Bioanal Chem 2019; 411(19): 4425-44.
Govindaraj M, Muthukumar M, Raju GB. Electrochemical oxidation of tannic acid contaminated wastewater by RuO2/IrO2/TaO2-coated titanium and graphite anodes. Environ Technol 2010; 31(14): 1613-22.
[http://dx.doi.org/10.1080/09593330.2010.482147] [PMID: 21275257]
Yang F, Kundu S, Vidal AB, et al. Determining the behavior of RuO(x) nanoparticles in mixed-metal oxides: structural and catalytic properties of RuO2/TiO2(110) surfaces. Angew Chem Int Ed Engl 2011; 50(43): 10198-202.
[http://dx.doi.org/10.1002/anie.201103798] [PMID: 21915966]
Alamzadeh Z, Beik J, Pirhajati Mahabadi V, et al. Ultrastructural and optical characteristics of cancer cells treated by a nanotechnology based chemo-photothermal therapy method. J Photochem Photobiol B 2019; 192: 19-25.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.01.005] [PMID: 30665146]
Mirrahimi M, Abed Z, Beik J, et al. A thermo-responsive alginate nanogel platform co-loaded with gold nanoparticles and cisplatin for combined cancer chemo-photothermal therapy. Pharmacol Res 2019; 143: 178-85.
[http://dx.doi.org/10.1016/j.phrs.2019.01.005] [PMID: 30611856]
Shirvalilou S, Khoei S, Khoee S, Emamgholizadeh Minaei S. Magnetic Graphene Oxide Nanocarrier as a drug delivery vehicle for MRI monitored magnetic targeting of rat brain tumors. IJMP 2018; 15: 134.
Shirvalilou S, Khoei S, Khoee S, Raoufi NJ, Karimi MR, Shakeri-Zadeh A. Development of a magnetic nano-graphene oxide carrier for improved glioma-targeted drug delivery and imaging: In vitro and in vivo evaluations. Chem Biol Interact 2018; 295: 97-108.
[http://dx.doi.org/10.1016/j.cbi.2018.08.027] [PMID: 30170108]
Fan Y, Chen X, Trigg AD, Tung CH, Kong J, Gao Z. Detection of MicroRNAs using target-guided formation of conducting polymer nanowires in nanogaps. J Am Chem Soc 2007; 129(17): 5437-43.
[http://dx.doi.org/10.1021/ja067477g] [PMID: 17411036]
Song E, Choi J-W. Conducting polyaniline nanowire and its applications in chemiresistive sensing. Nanomaterials (Basel) 2013; 3(3): 498-523.
[http://dx.doi.org/10.3390/nano3030498] [PMID: 28348347]
Duan X, Niu C, Sahi V, et al. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 2003; 425(6955): 274-8.
[http://dx.doi.org/10.1038/nature01996] [PMID: 13679911]
Zhu J, Cui Y. Photovoltaics: More solar cells for less. Nat Mater 2010; 9(3): 183-4.
[http://dx.doi.org/10.1038/nmat2701] [PMID: 20168338]
Wang D, Hu L, Zhou H, Abdel-Halim E, Zhu J-J. Molecular beacon structure mediated rolling circle amplification for ultrasensitive electrochemical detection of microRNA based on quantum dots tagging. Electrochem Commun 2013; 33: 80-3.
Akbarzadeh A, Fekri Aval S, Sheervalilou R, Fekri L, Zarghami N, Mohammadian M, et al. Quantum dots for biomedical delivery applications. Rev cell Biol. Mol Med 2006; 2(4): 66-78.
Tran HV, Piro B, Reisberg S, Tran LD, Duc HT, Pham MC. Label-free and reagentless electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: application to prostate cancer biomarker miR-141. Biosens Bioelectron 2013; 49: 164-9.
[http://dx.doi.org/10.1016/j.bios.2013.05.007] [PMID: 23743328]
Wang L, Xiong Q, Xiao F, Duan H. 2D nanomaterials based electrochemical biosensors for cancer diagnosis. Biosens Bioelectron 2017; 89(Pt 1): 136-51.
[http://dx.doi.org/10.1016/j.bios.2016.06.011] [PMID: 27318880]
Peng Y, Gao Z. Amplified detection of microRNA based on ruthenium oxide nanoparticle-initiated deposition of an insulating film. Anal Chem 2011; 83(3): 820-7.
[http://dx.doi.org/10.1021/ac102370s] [PMID: 21207998]
Topkaya SN, Azimzadeh M, Ozsoz M. Electrochemical biosensors for cancer biomarkers detection: Recent advances and challenges. Electroanalysis 2016; 28(7): 1402-19.
Bellassai N, Spoto G. Biosensors for liquid biopsy: circulating nucleic acids to diagnose and treat cancer. Anal Bioanal Chem 2016; 408(26): 7255-64.
[http://dx.doi.org/10.1007/s00216-016-9806-3] [PMID: 27497966]
Peng Y, Yi G, Gao Z. A highly sensitive microRNA biosensor based on ruthenium oxide nanoparticle-initiated polymerization of aniline. Chem Commun (Camb) 2010; 46(48): 9131-3.
[http://dx.doi.org/10.1039/c0cc01990a] [PMID: 21042626]
Gooding JJ. Electrochemical DNA hybridization biosensors. Electroanalysis. An International Journal Devoted to Fundamental Practical Aspects of Electroanalysis 2002; 14(17): 1149-56.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 13 December, 2019
Page: [13 - 35]
Pages: 23
DOI: 10.2174/1566524019666191001114941
Price: $65

Article Metrics

PDF: 22