Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Chaperones Promote Remarkable Solubilization of Salmonella enterica serovar Enteritidis Flagellin Expressed in Escherichia coli

Author(s): Bahador Bakhtiarvand, Zahra Sadeghi, Shirin Tarahomjoo* and Soheila Yaghmaie

Volume 27, Issue 3, 2020

Page: [210 - 218] Pages: 9

DOI: 10.2174/0929866526666190930103552

Price: $65

Abstract

Background: Flagellin of Salmonella enterica serovar Enteritidis (SEF) stimulates immune responses to both itself and coapplied antigens. It is therefore used in vaccine development and immunotherapy. Removal of pathogenic S. enterica ser. Enteritidis from SEF production process is advantageous due to the process safety improvement. The protein solubility analysis using SDS-PAGE indicated that 53.49% of SEF expressed in Escherichia coli formed inclusion bodies. However, the protein recovery from inclusion bodies requires a complex process with a low yield.

Objective: We thus aim to study possibility of enhancing SEF expression in E. coli in soluble form using chemical and molecular chaperones.

Methods: Chemical chaperones including arginine, sorbitol, trehalose, sodium chloride and benzyl alcohol were used as cultivation medium additives during SEF expression. SEF solubilization by coexpression of molecular chaperones DnaK, DnaJ, and GrpE was also investigated.

Results: All of the chemical chaperones were effective in improving SEF solubility. However, sorbitol showed the most profound effect. SEF solubilization by molecular chaperones was slightly better than that using sorbitol and this approach enhanced noticeably SEF soluble concentration and SEF solubility percentage to almost two folds and 96.37% respectively. Results of limited proteolysis assay and native PAGE indicated similar conformational states and proper folding for SEF obtained without using chaperones and for those obtained using sorbitol and the molecular chaperones. However, the molecular chaperones based system was less costly than the sorbitol based system.

Conclusion: The coexpression of molecular chaperones was then considered as the most appropriate approach for soluble SEF production. Therefore, SEF production for medical purposes is expected to be facilitated.

Keywords: Chemical chaperones, Escherichia coli, flagellin, molecular chaprones, S. enterica ser. Enteritidis, solubilization.

Graphical Abstract
[1]
Tarahomjoo, S. Utilizing bacterial flagellins against infectious diseases and cancers. Antonie van Leeuwenhoek, 2014, 105(2), 275-288.
[http://dx.doi.org/10.1007/s10482-013-0075-2] [PMID: 24276957]
[2]
Honko, A.N.; Sriranganathan, N.; Lees, C.J.; Mizel, S.B. Flagellin is an effective adjuvant for immunization against lethal respiratory challenge with Yersinia pestis. Infect. Immun., 2006, 74(2), 1113-1120.
[http://dx.doi.org/10.1128/IAI.74.2.1113-1120.2006] [PMID: 16428759]
[3]
Skountzou, I. Martin, Mdel.P.; Wang, B.; Ye, L.; Koutsonanos, D.; Weldon, W.; Jacob, J.; Compans, R.W. Salmonella flagellins are potent adjuvants for intranasally administered whole inactivated influenza vaccine. Vaccine, 2010, 28(24), 4103-4112.
[http://dx.doi.org/10.1016/j.vaccine.2009.07.058] [PMID: 19654062]
[4]
Kajikawa, A.; Satoh, E.; Leer, R.J.; Yamamoto, S.; Igimi, S. Intragastric immunization with recombinant Lactobacillus casei expressing flagellar antigen confers antibody-independent protective immunity against Salmonella enterica serovar Enteritidis. Vaccine, 2007, 25(18), 3599-3605.
[http://dx.doi.org/10.1016/j.vaccine.2007.01.055] [PMID: 17287050]
[5]
Simon, R.; Tennant, S.M.; Wang, J.Y.; Schmidlein, P.J.; Lees, A.; Ernst, R.K.; Pasetti, M.F.; Galen, J.E.; Levine, M.M. Salmonella enterica serovar Enteritidis Core O Polysaccharide conjugated to H: g,m Flagellin as a candidate vaccine for protection against Invasive infection with S. Enteritidis. Infect. Immun., 2011, 79(10), 4240-4249.
[http://dx.doi.org/10.1128/IAI.05484-11] [PMID: 21807909]
[6]
Singh, S.M.; Panda, A.K. Solubilization and refolding of bacterial inclusion body proteins. J. Biosci. Bioeng., 2005, 99(4), 303-310.
[http://dx.doi.org/10.1263/jbb.99.303] [PMID: 16233795]
[7]
Yin, J.; Li, G.; Ren, X.; Herrler, G. Select what you need: A comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. J. Biotechnol., 2007, 127(3), 335-347.
[http://dx.doi.org/10.1016/j.jbiotec.2006.07.012] [PMID: 16959350]
[8]
Hartl, F.U.; Hayer-Hartl, M. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science, 2002, 295(5561), 1852-1858.
[http://dx.doi.org/10.1126/science.1068408] [PMID: 11884745]
[9]
Perlmutter, D.H. Chemical chaperones: A pharmacological strategy for disorders of protein folding and trafficking. Pediatr. Res., 2002, 52(6), 832-836.
[http://dx.doi.org/10.1203/00006450-200212000-00004] [PMID: 12438657]
[10]
Nishihara, K.; Kanemori, M.; Yanagi, H.; Yura, T. Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl. Environ. Microbiol., 2000, 66(3), 884-889.
[http://dx.doi.org/10.1128/AEM.66.3.884-889.2000] [PMID: 10698746]
[11]
Tarahomjoo, S.; Katakura, Y.; Satoh, E.; Shioya, S. Bidirectional cell-surface anchoring function of C-terminal repeat region of peptidoglycan hydrolase of Lactococcus lactis IL1403. J. Biosci. Bioeng., 2008, 105(2), 116-121.
[http://dx.doi.org/10.1263/jbb.105.116] [PMID: 18343337]
[12]
Prasad, S.; Khadatare, P.B.; Roy, I. Effect of chemical chaperones in improving the solubility of recombinant proteins in Escherichia coli. Appl. Environ. Microbiol., 2011, 77(13), 4603-4609.
[http://dx.doi.org/10.1128/AEM.05259-11] [PMID: 21551288]
[13]
Schäffner, J.; Winter, J.; Rudolph, R.; Schwarz, E. Cosecretion of chaperones and low-molecular-size medium additives increases the yield of recombinant disulfide-bridged proteins. Appl. Environ. Microbiol., 2001, 67(9), 3994-4000.
[http://dx.doi.org/10.1128/AEM.67.9.3994-4000.2001] [PMID: 11525996]
[14]
Gallagher, S.R. One-dimensional electrophoresis using nondenaturing conditions. Curr. Protoc. Mol. Biol, 2001, 10, Unit 10.2B.
[http://dx.doi.org/10.1002/0471142727.mb1002bs47] [PMID: 18265064]
[15]
Tsumoto, K.; Umetsu, M.; Kumagai, I.; Ejima, D.; Philo, J.S.; Arakawa, T. Role of arginine in protein refolding, solubilization, and purification. Biotechnol. Prog., 2004, 20(5), 1301-1308.
[http://dx.doi.org/10.1021/bp0498793] [PMID: 15458311]
[16]
Celis, T.F.; Rosenfeld, H.J.; Maas, W.K. Mutant of Escherichia coli K-12 defective in the transport of basic amino acids. J. Bacteriol., 1973, 116(2), 619-626.
[PMID: 4583243]
[17]
Melo, E.P.; Estrela, N.; Lopes, C.; Matias, A.C.; Tavares, E.; Ochoa-Mendes, V. Compacting proteins: Pros and cons of osmolyte-induced folding. Curr. Protein Pept. Sci., 2010, 11(8), 744-751.
[http://dx.doi.org/10.2174/138920310794557727] [PMID: 21235509]
[18]
Shigapova, N.; Török, Z.; Balogh, G.; Goloubinoff, P.; Vígh, L.; Horváth, I. Membrane fluidization triggers membrane remodeling which affects the thermotolerance in Escherichia coli. Biochem. Biophys. Res. Commun., 2005, 328(4), 1216-1223.
[http://dx.doi.org/10.1016/j.bbrc.2005.01.081] [PMID: 15708006]
[19]
Westerheide, S.D.; Morimoto, R.I. Heat shock response modulators as therapeutic tools for diseases of protein conformation. J. Biol. Chem., 2005, 280(39), 33097-33100.
[http://dx.doi.org/10.1074/jbc.R500010200] [PMID: 16076838]
[20]
Warnecke, T. Loss of the DnaK-DnaJ-GrpE chaperone system among the Aquificales. Mol. Biol. Evol., 2012, 29(11), 3485-3495.
[http://dx.doi.org/10.1093/molbev/mss152] [PMID: 22683810]
[21]
Vonderviszt, F.; Kanto, S.; Aizawa, S.; Namba, K. Terminal regions of flagellin are disordered in solution. J. Mol. Biol., 1989, 209(1), 127-133.
[http://dx.doi.org/10.1016/0022-2836(89)90176-9] [PMID: 2810365]
[22]
Lengeler, J.; Lin, E.C. Reversal of the mannitol-sorbitol diauxie in Escherichia coli. J. Bacteriol., 1972, 112(2), 840-848.
[PMID: 4563979]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy