Ellipticine, its Derivatives: Re-evaluation of Clinical Suitability with the Aid of Drug Delivery Systems

Author(s): Vipin Mohan Dan, Thania Sara Varghese, Gayathri Viswanathan, Sabulal Baby*

Journal Name: Current Cancer Drug Targets

Volume 20 , Issue 1 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Targeted drug delivery systems gave newer dimensions for safer and more effective use of therapeutic drugs, thus helping in circumventing the issues of toxicity and unintended drug accumulation. These ongoing developments in delivery systems can, in turn, bring back drugs that suffered various limitations, Ellipticine (EPT) being a candidate. EPT derivatives witnessed entry into clinical settings but failed to survive in clinics citing various toxic side effects. A large body of preclinical data deliberates the potency of drug delivery systems in increasing the efficiency of EPT/derivatives while decreasing their toxic side effects. Recent developments in drug delivery systems provide a platform to explore EPT and its derivatives as good clinical candidates in treating tumors. The present review deals with delivery mechanisms of EPT/EPT derivatives as antitumor drugs, in vitro and in vivo, and evaluates the suitability of EPT-carriers in clinical settings.

Keywords: Ellipticine, derivatives, sources, anticancer activity, nanocarriers, drug delivery.

Goodwin, S.; Smith, A.F.; Horning, E.C. Alkaloids of Ochrosia elliptica Labill. J. Am. Chem. Soc., 1959, 81, 1903-1908.
Woodward, R.B.; Lacobucci, G.A.; Hochstein, I.A. The synthesis of ellipticine. J. Am. Chem. Soc., 1959, 81, 4434-4435.
Potier, P.; Janot, M.M. Methoxy 9 ellipticine alcaloide du bois jaune de la Reunion (Ochrosia borbonica Gmel.). Ann. Pharm. Fr., 1973, 25, 523-524.
Morafaux, A.M.; Mulamba, T.; Richard, B.; Delaude, C.; Massiot, G.; Le Men Oliver, L. Alkaloids of Pterotaberna inconspicua. Phytochemistry, 1982, 2, 1767-1769.
Miller, C.M.; McCarthy, F.O. Isolation, biological activity and synthesis of the natural product ellipticine and related pyridocarbazoles. RSC Advances, 2012, 2, 8883-8918.
Iqbal, J.; Abbasi, B.A.; Mahmood, T.; Kanwal, S.; Ali, B.; Shah, S.A.; Khalil, A.T. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop. Biomed., 2017, 7, 1129-1150.
Michel, S.; Tillequin, F.; Koch, M. 17-Oxo ellipticine a new alkaloid of Strychnos dinklagei. Tetrahedron Lett., 1980, 21, 4027-4030.
Gribble, G.W. Synthesis and antitumour activity of ellipticine alkaloids and related compounds. The Alkaloids. Chemistry and Pharmacology, 1990, 39, 239-352.
Kouadio, K.; Rideau, M.; Ganser, C.; Chénieux, J.C.; Viel, C. Biotransformation of ellipticine into 5-formyl ellipticine by Choisya ternata strains. Plant Cell Rep., 1984, 3(5), 203-205. a
[http://dx.doi.org/10.1007/BF00270201] [PMID: 24253517]
Kouadio, K.; Chenieux, J.C.; Rideau, M.; Viel, C.; Viel, C. Antitumor alkaloids in callus cultures of Ochrosia elliptica. J. Nat. Prod., 1984, 47(5), 872-874. b
[http://dx.doi.org/10.1021/np50035a022] [PMID: 6512537]
Dalton, L.K.; Demerac, S.; Elmes, B.L.; Loder, J.W.; Swan, J.M.; Teitei, T. Synthesis of the tumor-inhibitory alkaloids, ellipticine, 9-methoxyellipticine, and related pyrido[4,3-b]carbazoles. Aust. J. Chem., 1967, 20, 2715-2727.
Larue, L.; Rivalle, C.; Muzard, G.; Paoletti, C.; Bisagni, E.; Paoletti, J. A new series of ellipticine derivatives (1-(alkylamino)-9-methoxyellipticine). Synthesis, DNA binding, and biological properties. J. Med. Chem., 1988, 31(10), 1951-1956.
[http://dx.doi.org/10.1021/jm00118a014] [PMID: 3172128]
Liu, C.Y.; Knochel, P. Preparation of polyfunctional aryl azides from aryl triazenes. A new synthesis of ellipticine, 9-methoxyellipticine, isoellipticine, and 7-carbethoxyisoellipticine. J. Org. Chem., 2007, 72(19), 7106-7115.
[http://dx.doi.org/10.1021/jo070774z] [PMID: 17705535]
Ibrahim-Ouali, M.; Dummer, F. Recent syntheses of ellipticine and its derivatives. ARKIVOC, 2018, i, 216-243.
Hahn, F.E., Ed.; Ellipticine, In: Antibiotics: Mechanism of Action of Antieukaryotic and Antiviral Compounds , 1979; 5:2, pp. 195-213.
Dantas, S.O.; Galvao, D.S. An investigation of the electronic structure of the antitumour drug ellipticine and its derivatives. Part II. Spectroscopic INDO/CI study. J. Mol. Struct. THEOCHEM, 1992, 257, 437-449.
Froelich-Ammon, S.J.; Patchan, M.W.; Osheroff, N.; Thompson, R.B. Topoisomerase II binds to ellipticine in the absence or presence of DNA. Characterization of enzyme-drug interactions by fluorescence spectroscopy. J. Biol. Chem., 1995, 270(25), 14998-15004.
[http://dx.doi.org/10.1074/jbc.270.25.14998] [PMID: 7797481]
Hamilton, P.L.; Arya, D.P. Natural product DNA major groove binders. Nat. Prod. Rep., 2012, 29(2), 134-143.
[http://dx.doi.org/10.1039/C1NP00054C] [PMID: 22183179]
Garbett, N.C.; Graves, D.E. Extending nature’s leads: the anticancer agent ellipticine. Curr. Med. Chem. Anticancer Agents, 2004, 4(2), 149-172.
[http://dx.doi.org/10.2174/1568011043482070] [PMID: 15032720]
Stiborova, M.; Rupertova, M.; Schmeiser, H.H.; Frei, E. Molecular mechanisms of antineoplastic action of an anticancer drug ellipticine. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2006, 150(1), 13-23.
[http://dx.doi.org/10.5507/bp.2006.002] [PMID: 16936898]
Stiborová, M.; Rupertová, M.; Frei, E. Cytochrome P450- and peroxidase-mediated oxidation of anticancer alkaloid ellipticine dictates its anti-tumor efficiency. Biochim. Biophys. Acta, 2011, 1814(1), 175-185.
[http://dx.doi.org/10.1016/j.bbapap.2010.05.016] [PMID: 20576524]
Stiborová, M.; Poljaková, J.; Martínková, E.; Bořek-Dohalská, L.; Eckschlager, T.; Kizek, R.; Frei, E. Ellipticine cytotoxicity to cancer cell lines - a comparative study. Interdiscip. Toxicol., 2011, 4(2), 98-105. b
[http://dx.doi.org/10.2478/v10102-011-0017-7] [PMID: 21753906]
Stiborová, M.; Poljaková, J.; Martínková, E.; Ulrichová, J.; Simánek, V.; Dvořák, Z.; Frei, E. Ellipticine oxidation and DNA adduct formation in human hepatocytes is catalyzed by human cytochromes P450 and enhanced by cytochrome b5. Toxicology, 2012, 302(2-3), 233-241.
[http://dx.doi.org/10.1016/j.tox.2012.08.004] [PMID: 22917556]
Andrews, W.J.; Panova, T.; Normand, C.; Gadal, O.; Tikhonova, I.G.; Panov, K.I. Old drug, new target: ellipticines selectively inhibit RNA polymerase I transcription. J. Biol. Chem., 2013, 288(7), 4567-4582.
[http://dx.doi.org/10.1074/jbc.M112.411611] [PMID: 23293027]
Stiborová, M.; Černá, V.; Moserová, M.; Mrízová, I.; Arlt, V.M.; Frei, E. The anticancer drug ellipticine activated with cytochrome P450 mediates DNA damage determining its pharmacological efficiencies: studies with rats, Hepatic Cytochrome P450 Reductase Null (HRN™) mice and pure enzymes. Int. J. Mol. Sci., 2014, 16(1), 284-306.
[http://dx.doi.org/10.3390/ijms16010284] [PMID: 25547492]
Le Pecq, J.B. Nguyen-Dat-Xuong; Gosse, C.; Paoletti, C. A new antitumoral agent: 9-hydroxyellipticine. Possibility of a rational design of anticancerous drugs in the series of DNA intercalating drugs. Proc. Natl. Acad. Sci. USA, 1974, 71(12), 5078-5082.
[http://dx.doi.org/10.1073/pnas.71.12.5078] [PMID: 4531039]
Schwaller, M.A.; Aubard, J.; Dodin, G. Kinetic and thermodynamic studies on drug-DNA interactions in the ellipticine series. Anticancer Drug Des., 1990, 5(1), 77-87.
[PMID: 2317261]
Stiborová, M.; Bieler, C.A.; Wiessler, M.; Frei, E. The anticancer agent ellipticine on activation by cytochrome P450 forms covalent DNA adducts. Biochem. Pharmacol., 2001, 62(12), 1675-1684.
[PMID: 11755121]
Fung, S.Y.; Duhamel, J.; Chen, P. Solvent effect on the photophysical properties of the anticancer agent ellipticine. J. Phys. Chem. A, 2006, 110(40), 11446-11454.
[http://dx.doi.org/10.1021/jp062778y] [PMID: 17020255]
Auclair, C. Multimodal action of antitumor agents on DNA: the ellipticine series. Arch. Biochem. Biophys., 1987, 259(1), 1-14.
[http://dx.doi.org/10.1016/0003-9861(87)90463-2] [PMID: 3318697]
Paoletti, C.; Le Pecq, J.B.; Dat-Xuong, N.; Juret, P.; Garnier, H.; Amiel, J.L.; Rouesse, J. Antitumor activity, pharmacology, and toxicity of ellipticines, ellipticinium, and 9-hydroxy derivatives: preliminary clinical trials of 2-methyl-9-hydroxy ellipticinium (NSC 264-137). Recent Results Cancer Res., 1980, 74, 107-123.
[http://dx.doi.org/10.1007/978-3-642-81488-4_15] [PMID: 7003658]
Sureau, F.; Moreau, F.; Millot, J.M.; Manfait, M.; Allard, B.; Aubard, J.; Schwaller, M.A. Microspectrofluorometry of the protonation state of ellipticine, an antitumor alkaloid, in single cells. Biophys. J., 1993, 65(5), 1767-1774.
[http://dx.doi.org/10.1016/S0006-3495(93)81273-6] [PMID: 8298010]
Fung, S.Y.; Yang, H.; Bhola, P.T.; Sadatmousavi, P.; Muzar, E.; Liu, M.; Chen, P. Self-assembling peptide as a potential carrier for hydrophobic anticancer drug ellipticine: Complexation, release and in vitro delivery. Adv. Funct. Mater., 2009, 19, 74-83.
Liu, J.; Xiao, Y.; Allen, C. Polymer-drug compatibility: a guide to the development of delivery systems for the anticancer agent, ellipticine. J. Pharm. Sci., 2004, 93(1), 132-143.
[http://dx.doi.org/10.1002/jps.10533] [PMID: 14648643]
Searle, F.; Gac-Breton, S.; Keane, R.; Dimitrijevic, S.; Brocchini, S.; Sausville, E.A.; Duncan, R.N. -(2-hydroxypropyl) methacrylamide copolymer-6-(3-aminopropyl)-ellipticine conjugates. Synthesis, in vitro, and preliminary in vivo evaluation. Bioconjug. Chem., 2001, 12(5), 711-718.
[http://dx.doi.org/10.1021/bc0001544] [PMID: 11562189]
Nishiyama, N.; Kataoka, K. Preparation and characterization of size-controlled polymeric micelle containing cis-dichlorodia-mmineplatinum(II) in the core. J. Control. Release, 2001, 74(1-3), 83-94.
[http://dx.doi.org/10.1016/S0168-3659(01)00314-5] [PMID: 11489486]
Kabanov, A.V.; Batrakova, E.V.; Alakhov, V.Y. Pluronic block copolymers for overcoming drug resistance in cancer. Adv. Drug Deliv. Rev., 2002, 54(5), 759-779.
[http://dx.doi.org/10.1016/S0169-409X(02)00047-9] [PMID: 12204601]
Allen, C.; Maysinger, D.; Eisenberg, A. Nanoengineering block copolymer aggregates for drug delivery. Colloids Surf. B Biointerfaces, 1999, 16, 3-27.
Benahmed, A.; Ranger, M.; Leroux, J.C. Novel polymeric micelles based on the amphiphilic diblock copolymer poly(N-vinyl-2-pyrrolidone)-block-poly(D,L-lactide). Pharm. Res., 2001, 18(3), 323-328.
[http://dx.doi.org/10.1023/A:1011054930439] [PMID: 11442272]
Sedlacek, O.; Monnery, B.D.; Filippov, S.K.; Hoogenboom, R.; Hruby, M. Poly(2-oxazoline)s--are they more advantageous for biomedical applications than other polymers? Macromol. Rapid Commun., 2012, 33(19), 1648-1662.
[http://dx.doi.org/10.1002/marc.201200453] [PMID: 23034926]
Maeda, H. Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug. Chem., 2010, 21(5), 797-802.
[http://dx.doi.org/10.1021/bc100070g] [PMID: 20397686]
Studenovský, M.; Sedláček, O.; Hrubý, M.; Pánek, J.; Ulbrich, K. Multi-responsive polymer micelles as ellipticine delivery carriers for cancer therapy. Anticancer Res., 2015, 35(2), 753-757.
[PMID: 25667454]
Wang, H.; Yang, L.; Rempel, G.L. Preparation of pH-responsive polymer core-shell nanospheres for delivery of hydrophobic antineoplastic drug ellipticine. Macromol. Biosci., 2014, 14(2), 166-172.
[http://dx.doi.org/10.1002/mabi.201300333] [PMID: 24106137]
Cheng, Z.; Al Zaki, A.; Hui, J.Z.; Muzykantov, V.R.; Tsourkas, A. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science, 2012, 338(6109), 903-910.
[http://dx.doi.org/10.1126/science.1226338] [PMID: 23161990]
Stiborova, M.; Manhartova, Z.; Hodek, P.; Adam, V.; Kizek, R.; Frei, E. Formation of DNA adducts by ellipticine and its micellar form in rats - a comparative study. Sensors (Basel), 2014, 14(12), 22982-22997.
[http://dx.doi.org/10.3390/s141222982] [PMID: 25479328]
Thakur, R.; Das, A.; Chakraborty, A. Photophysical and photodynamical study of ellipticine: an anticancer drug molecule in bile salt modulated in vitro created liposome. Phys. Chem. Chem. Phys., 2012, 14(44), 15369-15378.
[http://dx.doi.org/10.1039/c2cp41708a] [PMID: 23059904]
Fung, S.Y.; Yang, H.; Chen, P. Sequence effect of self-assembling peptides on the complexation and in vitro delivery of the hydrophobic anticancer drug ellipticine. PLoS One, 2008, 3(4)e1956
[http://dx.doi.org/10.1371/journal.pone.0001956] [PMID: 18398476]
Zhang, S.; Holmes, T.; Lockshin, C.; Rich, A. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc. Natl. Acad. Sci. USA, 1993, 90(8), 3334-3338.
[http://dx.doi.org/10.1073/pnas.90.8.3334] [PMID: 7682699]
Fung, S.Y.; Keyes, C.; Duhamel, J.; Chen, P. Concentration effect on the aggregation of a self-assembling oligopeptide. Biophys. J., 2003, 85(1), 537-548.
[http://dx.doi.org/10.1016/S0006-3495(03)74498-1] [PMID: 12829508]
Fung, S.Y.; Yang, H.; Chen, P. Formation of colloidal suspension of hydrophobic compounds with an amphiphilic self-assembling peptide. Colloids Surf. B Biointerfaces, 2007, 55(2), 200-211.
[http://dx.doi.org/10.1016/j.colsurfb.2006.12.002] [PMID: 17234393]
Keyes-Baig, C.; Duhamel, J.; Fung, S.Y.; Bezaire, J.; Chen, P. Self-assembling peptide as a potential carrier of hydrophobic compounds. J. Am. Chem. Soc., 2004, 126(24), 7522-7532.
[http://dx.doi.org/10.1021/ja0381297] [PMID: 15198599]
Zhang, S.; Lockshin, C.; Cook, R.; Rich, A. Unusually stable beta-sheet formation in an ionic self-complementary oligopeptide. Biopolymers, 1994, 34(5), 663-672.
[http://dx.doi.org/10.1002/bip.360340508] [PMID: 8003624]
Wu, Y.; Sadatmousavi, P.; Wang, R.; Lu, S.; Yuan, Y.F.; Chen, P. Self-assembling peptide-based nanoparticles enhance anticancer effect of ellipticine in vitro and in vivo. Int. J. Nanomedicine, 2012, 7, 3221-3233.
[PMID: 22802684]
Ma, W.; Lu, S.; Pan, P.; Sadatmousavi, P.; Yuan, Y.; Chen, P. Pharmacokinetics of peptide mediated delivery of anticancer drug ellipticine. PLoS One, 2012, 7(8)e43684
[http://dx.doi.org/10.1371/journal.pone.0043684] [PMID: 22952737]
Hancock, R.E.; Sahl, H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol., 2006, 24(12), 1551-1557.
[http://dx.doi.org/10.1038/nbt1267] [PMID: 17160061]
Hoskin, D.W.; Ramamoorthy, A. Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta, 2008, 1778(2), 357-375.
[http://dx.doi.org/10.1016/j.bbamem.2007.11.008] [PMID: 18078805]
Lu, S.; Ding, Y.; Wu, Y.; Wang, R.; Pan, R.; Wan, Z.; Xu, W.; Zhang, L.; Yuan, Y-f.; Chen, P. An amphipathic lytic peptide for enhanced and selective delivery of ellipticine. J. Mater. Chem. B Mater. Biol. Med., 2016, 4, 4348-4355.
Zhou, Y.; Quan, G.; Wu, Q.; Zhang, X.; Niu, B.; Wu, B.; Huang, Y.; Pan, X.; Wu, C. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm. Sin. B, 2018, 8(2), 165-177.
[http://dx.doi.org/10.1016/j.apsb.2018.01.007] [PMID: 29719777]
Baeza, A.; Manzano, M.; Colilla, M.; Vallet-Regí, M. Recent advances in mesoporous silica nanoparticles for antitumor therapy: our contribution. Biomater. Sci., 2016, 4(5), 803-813.
[http://dx.doi.org/10.1039/C6BM00039H] [PMID: 26902682]
ALOthman. Z. A review: Fundamental aspects of silicate mesoporous materials. Materials (Basel), 2012, 5, 2874-2902.
Koninti, R.K.; Palvai, S.; Satpathi, S.; Basu, S.; Hazra, P. Loading of an anti-cancer drug into mesoporous silica nano-channels and its subsequent release to DNA. Nanoscale, 2016, 8(43), 18436-18445.
[http://dx.doi.org/10.1039/C6NR06285G] [PMID: 27775145]
Slowing, I.I.; Trewyn, B.G.; Giri, S.; Lin, V.S-Y. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater., 2007, 17, 1225-1236.
Vivero-Escoto, J.L.; Slowing, I.I.; Trewyn, B.G.; Lin, V.S. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small, 2010, 6(18), 1952-1967.
[http://dx.doi.org/10.1002/smll.200901789] [PMID: 20690133]
Gavvala, K.; Satpathi, S.; Hazra, P. pH responsive translocation of an anticancer drug between cyclodextrin and DNA. RSC Advances, 2015, 5, 98080-98086.
Sengupta, A.; Koninti, R.K.; Gavvala, K.; Ballav, N.; Hazra, P. An anticancer drug to probe non-specific protein-DNA interactions. Phys. Chem. Chem. Phys., 2014, 16(9), 3914-3917.
[http://dx.doi.org/10.1039/c3cp54422b] [PMID: 24448495]
Muhammad, F.; Guo, M.; Qi, W.; Sun, F.; Wang, A.; Guo, Y.; Zhu, G. pH-Triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. J. Am. Chem. Soc., 2011, 133(23), 8778-8781.
[http://dx.doi.org/10.1021/ja200328s] [PMID: 21574653]
Lai, C.Y.; Trewyn, B.G.; Jeftinija, D.M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V.S. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J. Am. Chem. Soc., 2003, 125(15), 4451-4459.
[http://dx.doi.org/10.1021/ja028650l] [PMID: 12683815]
Wilson, K.P.; Malcolm, B.A.; Matthews, B.W. Structural and thermodynamic analysis of compensating mutations within the core of chicken egg white lysozyme. J. Biol. Chem., 1992, 267(15), 10842-10849.
[PMID: 1587860]
Deere, J.; Magner, E.; Wall, J.G.; Hodnett, B.K. Mechanistic and structural features of protein adsorption onto mesoporous silicate. J. Phys. Chem. B, 2002, 106, 7340-7347.
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
Marr, A.K.; Gooderham, W.J.; Hancock, R.E. Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr. Opin. Pharmacol., 2006, 6(5), 468-472.
[http://dx.doi.org/10.1016/j.coph.2006.04.006] [PMID: 16890021]
Wang, Y.; Zhao, Q.; Han, N.; Bai, L.; Li, J.; Liu, J.; Che, E.; Hu, L.; Zhang, Q.; Jiang, T.; Wang, S. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine (Lond.), 2015, 11(2), 313-327.
[http://dx.doi.org/10.1016/j.nano.2014.09.014] [PMID: 25461284]
Dalton, L.K.; Demerac, S.; Elmes, B.C.; Loder, J.W.; Swan, J.M.; Teitei, T. Synthesis of the tumour-inhibitory alkaloids, ellipticine, 9-methoxyellipticine, and related pyrido[4,3-b]carbazoles. Aust. J. Chem., 1967, 20, 2715-2727.
Mathé, G.; Hayat, M.; De Vassal, F.; Schwarzenberg, L.; Schneider, M.; Schlumberger, J.R.; Jasmin, C.; Rosenfeld, C. Methoxy-9-ellipticine lactate. 3. Clinical screening: its action in acute myeloblastic leukaemia. Rev. Eur. Etud. Clin. Biol., 1970, 15(5), 541-545.
[PMID: 5270253]
Ansari, B.M.; Thompson, E.N. Methoxy-9-ellipticine lactate in refractory acute myeloid leukaemia. Postgrad. Med. J., 1975, 51(592), 103-105.
[http://dx.doi.org/10.1136/pgmj.51.592.103] [PMID: 1054156]
Avendaño, C.; Menendez, J.C. Other anticancer drugs targeting DNA and DNA-associated enzymes. Med. Chem. Anti-cancer Drugs, 2nd ed; Elsevier, 2015, pp. 273-323.
Juret, P.; Tanguy, A.; Girard, A.; Le Talaer, J.Y.; Abbatucci, J.S. Dat-Yuong, Le Pecq, J.B.; Paoletti, C. Hydroxy 9-methyl 2-ellipticinium acetate (NSC 264-137). Toxicologic study and therapeutic effect in 100 cancers (author’s transl). Nouv. Presse Med., 1979, 8, 1495-1498.
[PMID: 471724]
Juret, P.; Heron, J.F.; Couette, J.E.; Delozier, T.; Le Talaer, J.Y. Hydroxy-9-methyl-2-ellipticinium for osseous metastases from breast cancer: a 5-year experience. Cancer Treat. Rep., 1982, 66(11), 1909-1916.
[PMID: 7139636]
Rouësse, J.G.; Le Chevalier, T.; Caille, P.; Mondesir, J.M.; Sancho-Garnier, H.; May-Levin, F.; Spielmann, M.; De Jager, R.; Amiel, J.L. Phase II study of elliptinium in advanced breast cancer. Cancer Treat. Rep., 1985, 69(6), 707-708.
[PMID: 4016774]
Treat, J.; Greenspan, A.; Rahman, A.; McCabe, M.S.; Byrne, P.J. Elliptinium: phase II study in advanced measurable breast cancer. Invest. New Drugs, 1989, 7(2-3), 231-234.
[http://dx.doi.org/10.1007/BF00170864] [PMID: 2793378]
Mondesir, J.M.; Bidart, J.M.; Goodman, A.; Alberici, G.F.; Caille, P.; Troalen, F.; Rouesse, J.; Bohuon, C.; Gralla, R.J.; Einzig, A.I. Drug-induced antibodies during 2-N-methyl-9-hydroxyellipticinium acetate (NSC-264137) treatment: schedule dependency and relationship to hemolysis. J. Clin. Oncol., 1985, 3(5), 735-740.
[http://dx.doi.org/10.1200/JCO.1985.3.5.735] [PMID: 3998787]
Buzdar, A.U.; Hortobagyi, G.N.; Esparza, L.T.; Holmes, F.A.; Ro, J.S.; Fraschini, G.; Lichtiger, B. Elliptinium acetate in metastatic breast cancer--a phase II study. Oncology, 1990, 47(2), 101-104.
[http://dx.doi.org/10.1159/000226797] [PMID: 2314820]
Tran, S.; DeGiovanni, P.J.; Piel, B.; Rai, P. Cancer nanomedicine: a review of recent success in drug delivery. Clin. Transl. Med., 2017, 6(1), 44-53.
[http://dx.doi.org/10.1186/s40169-017-0175-0] [PMID: 29230567]
Lyon, P.C.; Gray, M.D.; Mannaris, C.; Folkes, L.K.; Stratford, M.; Campo, L.; Chung, D.Y.F.; Scott, S.; Anderson, M.; Goldin, R.; Carlisle, R.; Wu, F.; Middleton, M.R.; Gleeson, F.V.; Coussios, C.C. Safety and feasibility of ultrasound-triggered targeted drug delivery of doxorubicin from thermosensitive liposomes in liver tumours (TARDOX): a single-centre, open-label, phase 1 trial. Lancet Oncol., 2018, 19(8), 1027-1039.
[http://dx.doi.org/10.1016/S1470-2045(18)30332-2] [PMID: 30001990]
Lyon, P.C.; Griffiths, L.F.; Lee, J.; Chung, D.; Carlisle, R.; Wu, F.; Middleton, M.R.; Gleeson, F.V.; Coussios, C.C. Clinical trial protocol for TARDOX: a phase I study to investigate the feasibility of targeted release of lyso-thermosensitive liposomal doxorubicin (ThermoDox®) using focused ultrasound in patients with liver tumours. J. Ther. Ultrasound, 2017, 5, 28-32.
[http://dx.doi.org/10.1186/s40349-017-0104-0] [PMID: 29118984]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 27 January, 2020
Page: [33 - 46]
Pages: 14
DOI: 10.2174/1568009619666190927150131
Price: $65

Article Metrics

PDF: 27
PRC: 1