Small Molecules with Anti-Prion Activity

Author(s): Carlo Mustazza*, Marco Sbriccoli, Paola Minosi, Carla Raggi

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 33 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Abstract:

Prion pathologies are fatal neurodegenerative diseases caused by the misfolding of the physiological Prion Protein (PrPC) into a β-structure-rich isoform called PrPSc. To date, there is no available cure for prion diseases and just a few clinical trials have been carried out. The initial approach in the search of anti-prion agents had PrPSc as a target, but the existence of different prion strains arising from alternative conformations of PrPSc, limited the efficacy of the ligands to a straindependent ability. That has shifted research to PrPC ligands, which either act as chaperones, by stabilizing the native conformation, or inhibit its interaction with PrPSc. The role of transition-metal mediated oxidation processes in prion misfolding has also been investigated. Another promising approach is the indirect action via other cellular targets, like membrane domains or the Protein- Folding Activity of Ribosomes (PFAR). Also, new prion-specific high throughput screening techniques have been developed. However, so far no substance has been found to be able to extend satisfactorily survival time in animal models of prion diseases. This review describes the main features of the Structure-Activity Relationship (SAR) of the various chemical classes of anti-prion agents.

Keywords: Prions, transmissible spongiform encephalopathies, scrapie, amyloid, histological dyes, Structure- Activity Relationship (SAR).

[1]
Prusiner, S.B. Novel proteinaceous infectious particles cause scrapie. Science, 1982, 216(4542), 136-144.
[http://dx.doi.org/10.1126/science.6801762] [PMID: 6801762]
[2]
Castle, A.R.; Gill, A.C. Physiological function of the cellular prion protein. Front. Mol. Biosci., 2017, 4, 19.
[http://dx.doi.org/10.3389/fmolb.2017.00019] [PMID: 28428956]
[3]
Solis, G.P.; Radon, Y.; Sempou, E.; Jechow, K.; Stuermer, C.A.; Málaga-Trillo, E. Conserved roles of the prion protein domains on subcellular localization and cell-cell adhesion. PLoS One, 2013, 8(7) e70327
[http://dx.doi.org/10.1371/journal.pone.0070327] [PMID: 23936187]
[4]
Linden, R. The biological function of the prion protein: a cell surface scaffold of signaling modules. Front. Mol. Neurosci., 2017, 10, 77.
[http://dx.doi.org/10.3389/fnmol.2017.00077] [PMID: 28373833]
[5]
Bremer, J.; Baumann, F.; Tiberi, C.; Wessig, C.; Fischer, H.; Schwarz, P.; Steele, A.D.; Toyka, K.V.; Nave, K.A.; Weis, J.; Aguzzi, A. Axonal prion protein is required for peripheral myelin maintenance. Nat. Neurosci., 2010, 13(3), 310-318.
[http://dx.doi.org/10.1038/nn.2483] [PMID: 20098419]
[6]
Pauly, P.C.; Harris, D.A. Copper stimulates endocytosis of the prion protein. J. Biol. Chem., 1998, 273(50), 33107-33110.
[http://dx.doi.org/10.1074/jbc.273.50.33107] [PMID: 9837873]
[7]
Gasperini, L.; Meneghetti, E.; Pastore, B.; Benetti, F.; Legname, G. Prion protein and copper cooperatively protect neurons by modulating NMDA receptor through S-nitrosylation. Antioxid. Redox Signal., 2015, 22(9), 772-784.
[http://dx.doi.org/10.1089/ars.2014.6032] [PMID: 25490055]
[8]
Pastore, A.; Zagari, A. A structural overview of the vertebrate prion proteins. Prion, 2007, 1(3), 185-197.
[http://dx.doi.org/10.4161/pri.1.3.5281] [PMID: 19164911]
[9]
Singh, J.; Udgaonkar, J.B. Molecular mechanism of the misfolding and oligomerization of prion protein: current understanding and its implications. Biochemistry, 2015, 54(29), 4431-4442.
[http://dx.doi.org/10.1021/acs.biochem.5b00605] [PMID: 26171558]
[10]
Jobling, M.F.; Stewart, L.R.; White, A.R.; McLean, C.; Friedhuber, A.; Maher, F.; Beyreuther, K.; Masters, C.L.; Barrow, C.J.; Collins, S.J.; Cappai, R. The hydrophobic core sequence modulates the neurotoxic and secondary structure properties of the prion peptide 106-126. J. Neurochem., 1999, 73(4), 1557-1565.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0731557.x] [PMID: 10501201]
[11]
Prusiner, S.B. Molecular biology of prion diseases. Science, 1991, 252(5012), 1515-1522.
[http://dx.doi.org/10.1126/science.1675487] [PMID: 1675487]
[12]
Caughey, B. Interactions between prion protein isoforms: the kiss of death? Trends Biochem. Sci., 2001, 26(4), 235-242.
[http://dx.doi.org/10.1016/S0968-0004(01)01792-3] [PMID: 11295556]
[13]
Cordeiro, Y.; Ferreira, N.C. New approaches for the selection and evaluation of anti-prion organic compounds. Mini Rev. Med. Chem., 2015, 15(2), 84-92.
[http://dx.doi.org/10.2174/1389557515666150227111629] [PMID: 25723455]
[14]
Tsuboi, Y.; Doh-Ura, K.; Yamada, T. Continuous intraventricular infusion of pentosan polysulfate: clinical trial against prion diseases. Neuropathology, 2009, 29(5), 632-636.
[http://dx.doi.org/10.1111/j.1440-1789.2009.01058.x] [PMID: 19788637]
[15]
Todd, N.V.; Morrow, J.; Doh-ura, K.; Dealler, S.; O’Hare, S.; Farling, P.; Duddy, M.; Rainov, N.G. Cerebroventricular infusion of pentosan polysulphate in human variant Creutzfeldt-Jakob disease. J. Infect., 2005, 50(5), 394-396.
[http://dx.doi.org/10.1016/j.jinf.2004.07.015] [PMID: 15907546]
[16]
Yamaguchi, S.; Nishida, Y.; Sasaki, K.; Kambara, M.; Kim, C.L.; Ishiguro, N.; Nagatsuka, T.; Uzawa, H.; Horiuchi, M. Inhibition of PrPSc formation by synthetic O-sulfated glycopyranosides and their polymers. Biochem. Biophys. Res. Commun., 2006, 349(2), 485-491.
[http://dx.doi.org/10.1016/j.bbrc.2006.08.072] [PMID: 16949037]
[17]
Ouidja, M.O.; Petit, E.; Kerros, M.E.; Ikeda, Y.; Morin, C.; Carpentier, G.; Barritault, D. BrugèrePicoux, J.; Deslys, J.P.; Adjou, K.; Papy-Garcia, D. Structure-activity studies on heparin mimetic polyanions for anti-prion therapies. Biochem. Biophys. Res. Commun., 2007, 363, 95-100.
[http://dx.doi.org/10.1016/j.bbrc.2007.08.113] [PMID: 17826736]
[18]
McCarthy, J.M.; Rasines Moreno, B.; Filippini, D.; Komber, H.; Maly, M.; Cernescu, M.; Brutschy, B.; Appelhans, D.; Rogers, M.S. Influence of surface groups on poly(pro-pylene imine) dendrimers antiprion activity. Biomacromolecules, 2013, 14(1), 27-37.
[http://dx.doi.org/10.1021/bm301165u] [PMID: 23234313]
[19]
Cooper, J.H. Selective amyloid staining as a function of amyloid composition and structure. Histochemical analysis of the alkaline Congo red, standardized toluidine blue, and iodine methods. Lab. Invest., 1974, 31(3), 232-238.
[PMID: 4137921]
[20]
Frid, P.; Anisimov, S.V.; Popovic, N. Congo red and protein aggregation in neurodegenerative diseases. Brain Res. Brain Res. Rev., 2007, 53(1), 135-160.
[http://dx.doi.org/10.1016/j.brainresrev.2006.08.001] [PMID: 16959325]
[21]
Rudyk, H.; Vasiljevic, S.; Hennion, R.M.; Birkett, C.R.; Hope, J.; Gilbert, I.H. Screening congo red and its analogues for their ability to prevent the formation of PrP-res in scrapie-infected cells. J. Gen. Virol., 2000, 81(Pt 4), 1155-1164.
[http://dx.doi.org/10.1099/0022-1317-81-4-1155] [PMID: 10725446]
[22]
Caughey, B.; Brown, K.; Raymond, G.J.; Katzenstein, G.E.; Thresher, W. Binding of the protease-sensitive form of PrP (prion protein) to sulfated glycosaminoglycan and congo red. [corrected. J. Virol., 1994, 68(4), 2135-2141.
[http://dx.doi.org/ 10.1128/JVI.68.4.2135-2141.1994] [PMID: 7511169]
[23]
Ingrosso, L.; Ladogana, A.; Pocchiari, M. Congo red prolongs the incubation period in scrapie-infected hamsters. J. Virol., 1995, 69(1), 506-508.
[http://dx.doi.org/10.1128/JVI.69.1.506-508.1995] [PMID: 7983747]
[24]
Demaimay, R.; Harper, J.; Gordon, H.; Weaver, D.; Chesebro, B.; Caughey, B. Structural aspects of congo red as inhibitor of protease-resistant prion protein formation. J. Neurochem., 1998, 71(6), 2534-2541.
[http://dx.doi.org/10.1046/j.1471-4159.1998.71062534.x]] [PMID: 9832153]
[25]
Mays, C.E.; Joy, S.; Li, L.; Yu, L.; Genovesi, S.; West, F.G.; Westaway, D. Prion inhibition with multivalent PrPSc binding compounds. Biomaterials, 2012, 33(28), 6808-6822.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.004] [PMID: 22748770]
[26]
Risse, E.; Nicoll, A.J.; Taylor, W.A.; Wright, D.; Badoni, M.; Yang, X.; Farrow, M.A.; Collinge, J. Identification of a compound that disrupts binding of amyloid-β to the prion protein using a novel fluorescence-based assay. J. Biol. Chem., 2015, 290(27), 17020-17028.
[http://dx.doi.org/10.1074/jbc.M115.637124] [PMID: 25995455]
[27]
Ishikawa, K.; Doh-Ura, K.; Kudo, Y.; Nishida, N.; Murakami-Kubo, I.; Ando, Y.; Sawada, T.; Iwaki, T. Amyloid imaging probes are useful for detection of prion plaques and treatment of transmissible spongiform encephalopathies. J. Gen. Virol., 2004, 85(Pt 6), 1785-1790.
[http://dx.doi.org/10.1099/vir.0.19754-0] [PMID: 15166464]
[28]
Sellarajah, S.; Lekishvili, T.; Bowring, C.; Thompsett, A.R.; Rudyk, H.; Birkett, C.R.; Brown, D.R.; Gilbert, I.H. Synthesis of analogues of Congo red and evaluation of their anti-prion activity. J. Med. Chem., 2004, 47(22), 5515-5534.
[http://dx.doi.org/10.1021/jm049922t] [PMID: 15481988]
[29]
Styren, S.D.; Hamilton, R.L.; Styren, G.C.; Klunk, W.E. X-34, a fluorescent derivative of Congo red: a novel histochemical stain for Alzheimer’s disease pathology. J. Histochem. Cytochem., 2000, 48(9), 1223-1232.
[http://dx.doi.org/10.1177/002215540004800906] [PMID: 10950879]
[30]
Mustazza, C.; Sbriccoli, M.; Borioni, A.; Ferretti, R.; Del Giudice, M.R. New fluorinated 1,4bis(arylaminomethyl)- and 1,4-bis (arylaminomethylene)benzenes as fluorescent probes for amyloid plaques in Alzheimer’s disease and transmissible spongiform encephalopathies. MedChemComm, 2012, 3, 357-361.
[http://dx.doi.org/10.1039/C2MD00254J]
[31]
Mathis, C.A.; Bacskai, B.J.; Kajdasz, S.T.; McLellan, M.E.; Frosch, M.P.; Hyman, B.T.; Holt, D.P.; Wang, Y.; Huang, G.F.; Debnath, M.L.; Klunk, W.E. A lipophilic thioflavin-T derivative for positron emission tomography (PET) imaging of amyloid in brain. Bioorg. Med. Chem. Lett., 2002, 12(3), 295-298.
[http://dx.doi.org/10.1016/S0960-894X(01)00734-X] [PMID: 11814781]
[32]
Ishikawa, K.; Kudo, Y.; Nishida, N.; Suemoto, T.; Sawada, T.; Iwaki, T.; Doh-ura, K. Styrylbenzoazole derivatives for imaging of prion plaques and treatment of transmissible spongiform encephalopathies. J. Neurochem., 2006, 99(1), 198-205.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04035.x] [PMID: 16987247]
[33]
Cavaliere, P.; Torrent, J.; Prigent, S.; Granata, V.; Pauwels, K.; Pastore, A.; Rezaei, H.; Zagari, A. Binding of methylene blue to a surface cleft inhibits the oligomerization and fibrillization of prion protein. Biochim. Biophys. Acta, 2013, 1832(1), 20-28.
[http://dx.doi.org/10.1016/j.bbadis.2012.09.005] [PMID: 23022479]
[34]
Hyeon, J.W.; Kim, S.Y.; Lee, S. Anti-prion screening for acridine, dextran, and tannic acid using real timequaking induced conversion: a comparison with PrPSc infected cell screening. PLoS One, 2017, 12(1) e0170266https://dxdoi.org/10.1371/journal.pone.0170266
[PMID: 28095474]
[35]
Bresjanac, M.; Smid, L.M.; Vovko, T.D.; Petrič, A.; Barrio, J.A.; Popovic, M. Molecular imaging probe 2-(1-6-[(2-fluoroethyl)(methyl)amino]-2naphthylethylidene malononitrile labels prion plaques in vitro. Neurosci. J., 2003, 23, 8029-8033.
[http://dx.doi.org/10.1523/JNEUROSCI.23-22-08029.2003] [PMID: 12954864]
[36]
Gilch, S.; Winklhofer, K.F.; Groschup, M.H.; Nunziante, M.; Lucassen, R.; Spielhaupter, C.; Muranyi, W.; Riesner, D.; Tatzelt, J.; Schätzl, H.M. Intracellular re-routing of prion protein prevents propagation of PrP(Sc) and delays onset of prion disease. EMBO J., 2001, 20(15), 3957-3966.
[http://dx.doi.org/10.1093/emboj/20.15.3957] [PMID: 11483499]
[37]
Nunziante, M.; Kehler, C.; Maas, E.; Kassack, M.U.; Groschup, M.; Schätzl, H.M. Charged bipolar suramin derivatives induce aggregation of the prion protein at the cell surface and inhibit PrPSc replication. J. Cell Sci., 2005, 118(Pt 21), 4959-4973.
[http://dx.doi.org/10.1242/jcs.02609] [PMID: 16219680]
[38]
Herrmann, U.S.; Schütz, A.K.; Shirani, H.; Huang, D.; Saban, D.; Nuvolone, M.; Li, B.; Ballmer, B.; Åslund, A.K.; Mason, J.J.; Rushing, E.; Budka, H.; Nyström, S.; Hammarström, P.; Böckmann, A.; Caflisch, A.; Meier, B.H.; Nilsson, K.P.; Hornemann, S.; Aguzzi, A. Structure-based drug design identifies polythiophenes as antiprion compounds. Sci. Transl. Med., 2015, 7(299) 299ra123
[http://dx.doi.org/10.1126/scitranslmed.aab1923] [PMID: 26246168]
[39]
Caughey, W.S.; Raymond, L.D.; Horiuchi, M.; Caughey, B. Inhibition of protease-resistant prion protein formation by porphyrins and phthalocyanines. Proc. Natl. Acad. Sci. USA, 1998, 95(21), 12117-12122.
[http://dx.doi.org/10.1073/pnas.95.21.12117] [PMID: 9770449]
[40]
Priola, S.A.; Raines, A.; Caughey, W.S. Porphyrin and phthalocyanine antiscrapie compounds. Science, 2000, 287(5457), 1503-1506.
[http://dx.doi.org/10.1126/science.287.5457.1503] [PMID: 10688802]
[41]
Kocisko, D.A.; Caughey, W.S.; Race, R.E.; Roper, G.; Caughey, B.; Morrey, J.D. A porphyrin increases survival time of mice after intracerebral prion infection. Antimicrob. Agents Chemother., 2006, 50(2), 759-761.
[http://dx.doi.org/10.1128/AAC.50.2.759-761.2006] [PMID: 16436739]
[42]
Caughey, W.S.; Priola, S.A.; Kocisko, D.A.; Raymond, L.D.; Ward, A.; Caughey, B. Cyclic tetrapyrrole sulfonation, metals, and oligomerization in antiprion activity. Antimicrob. Agents Chemother., 2007, 51(11), 3887-3894.
[http://dx.doi.org/10.1128/AAC.01599-06] [PMID: 17709470]
[43]
Massignan, T.; Cimini, S.; Stincardini, C.; Cerovic, M.; Vanni, I.; Elezgarai, S.R.; Moreno, J.; Stravalaci, M.; Negro, A.; Sangiovanni, V.; Restelli, E.; Riccardi, G.; Gobbi, M.; Castilla, J.; Borsello, T.; Nonno, R.; Biasini, E. A cationic tetrapyrrole inhibits toxic activities of the cellular prion protein. Sci. Rep., 2016, 6, 23180.
[http://dx.doi.org/10.1038/srep23180] [PMID: 26976106]
[44]
Sigurdsson, E.M.; Brown, D.R.; Alim, M.A.; Scholtzova, H.; Carp, R.; Meeker, H.C.; Prelli, F.; Frangione, B.; Wisniewski, T. Copper chelation delays the onset of prion disease. J. Biol. Chem., 2003, 278(47), 46199-46202.
[http://dx.doi.org/10.1074/jbc.C300303200] [PMID: 14519758]
[45]
Ponti, W.; Sala, M.; Pollera, C.; Braida, D.; Poli, G.; Bareggi, S. In vivo model for the evaluation of molecules active towards transmissible spongiform encephalopathies. Vet. Res. Commun., 2004, 28(Suppl. 1), 307-310.
[http://dx.doi.org/10.1023/B:VERC.0000045433.45346.1c] [PMID: 15372984]
[46]
Giachin, G.; Mai, P.T.; Tran, T.H.; Salzano, G.; Benetti, F.; Migliorati, V.; Arcovito, A.; Della Longa, S.; Mancini, G.; D’Angelo, P.; Legname, G. The non-octarepeat copper binding site of the prion protein is a key regulator of prion conversion. Sci. Rep., 2015, 5, 15253.
[http://dx.doi.org/10.1038/srep15253] [PMID: 26482532]
[47]
Arena, G.; La Mendola, D.; Pappalardo, G.; Sóvágó, I.; Rizzarelli, E. Interaction of Cu2+ with prion family peptide fragments: considerations on affinity, speciation and coordination. Coord. Chem. Rev., 2012, 256, 2202-2218.
[http://dx.doi.org/10.1016/j.ccr.2012.03.038]
[48]
Yen, C.F.; Harischandra, D.S.; Kanthasamy, A.; Sivasankar, S. Copper-induced structural conversion templates prion protein oligomerization and neurotoxicity. Sci. Adv., 2016, 2(7) e1600014
[http://dx.doi.org/10.1126/sciadv.1600014] [PMID: 27419232]
[49]
Choi, C.J.; Kanthasamy, A.; Anantharam, V.; Kanthasamy, A.G. Interaction of metals with prion protein: possible role of divalent cations in the pathogenesis of prion diseases. Neurotoxicology, 2006, 27(5), 777-787.
[http://dx.doi.org/10.1016/j.neuro.2006.06.004] [PMID: 16860868]
[50]
Brazier, M.W.; Wedd, A.G.; Collins, S.J. Antioxidant and metal chelation-based therapies in the treatment of prion disease. Antioxidants, 2014, 3(2), 288-308.
[http://dx.doi.org/10.3390/antiox3020288] [PMID: 26784872]
[51]
Brown, D.R. Neurodegeneration and oxidative stress: prion disease results from loss of antioxidant defence. Folia Neuropathol., 2005, 43(4), 229-243.
[PMID: 16416388]
[52]
Brazier, M.W.; Doctrow, S.R.; Masters, C.L.; Collins, S.J. A manganese-superoxide dismutase/catalase mimetic extends survival in a mouse model of human prion disease. Free Radic. Biol. Med., 2008, 45(2), 184-192.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.04.006] [PMID: 18455516]
[53]
Toni, M.; Massimino, M.L.; De Mario, A.; Angiulli, E.; Spisni, E. Metal dishomeostasis and their pathological role in prion and prion-like diseases: the basis for a nutritional approach. Front. Neurosci., 2017, 11, 3.
[http://dx.doi.org/10.3389/fnins.2017.00003] [PMID: 28154522]
[54]
Ozcan, A.; Ogun, M. Biochemistry of reactive oxygen and nitrogen species: Basic principles and clinical significance of oxidative stress 2015.3, 37-58..
[http://dx.doi.org/10.5772/61193]
[55]
Choi, C.J.; Anantharam, V.; Saetveit, N.J.; Houk, R.S.; Kanthasamy, A.; Kanthasamy, A.G. Normal cellular prion protein protects against manganese-induced oxidative stress and apoptotic cell death. Toxicol. Sci., 2007, 98(2), 495-509.
[http://dx.doi.org/10.1093/toxsci/kfm099] [PMID: 17483122]
[56]
Davies, P.; Brown, D.R. Manganese enhances prion protein survival in model soils and increases prion infectivity to cells. PLoS One, 2009, 4(10) e7518
[http://dx.doi.org/10.1371/journal.pone.0007518] [PMID: 19844576]
[57]
Brown, D.R.; Hafiz, F.; Glasssmith, L.L.; Wong, B.S.; Jones, I.M.; Clive, C.; Haswell, S.J. Consequences of manganese replacement of copper for prion protein function and proteinase resistance. EMBO J., 2000, 19(6), 1180-1186.
[http://dx.doi.org/10.1093/emboj/19.6.1180] [PMID: 10716918]
[58]
Brazier, M.W.; Volitakis, I.; Kvasnicka, M.; White, A.R.; Underwood, J.R.; Green, J.E.; Han, S.; Hill, A.F.; Masters, C.L.; Collins, S.J. Manganese chelation therapy extends survival in a mouse model of M1000 prion disease. J. Neurochem., 2010, 114(2), 440-451.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06771.x] [PMID: 20456001]
[59]
Kimberlin, R.H.; Walker, C.A. Suppression of scrapie infection in mice by heteropolyanion 23, dextran sulfate, and some other polyanions. Antimicrob. Agents Chemother., 1986, 30(3), 409-413.
[http://dx.doi.org/10.1128/AAC.30.3.409] [PMID: 2430521]
[60]
Heal, W.; Thompson, M.J.; Mutter, R.; Cope, H.; Louth, J.C.; Chen, B. Library synthesis and screening: 2,4-diphenylthiazoles and 2,4-diphenyloxazoles as potential novel prion disease therapeutics. J. Med. Chem., 2007, 50(6), 1347-1353.
[http://dx.doi.org/10.1021/jm0612719] [PMID: 17305326]
[61]
Ghaemmaghami, S.; May, B.C.H.; Renslo, A.R.; Prusiner, S.B. Discovery of 2-aminothiazoles as potent antiprion compounds. J. Virol., 2010, 84(7), 3408-3412.
[http://dx.doi.org/10.1128/JVI.02145-09] [PMID: 20032192]
[62]
Gallardo-Godoy, A.; Gever, J.; Fife, K.L.; Silber, B.M.; Prusiner, S.B.; Renslo, A.R. 2-Aminothiazoles as therapeutic leads for prion diseases. J. Med. Chem., 2011, 54(4), 1010-1021.
[http://dx.doi.org/10.1021/jm101250y] [PMID: 21247166]
[63]
Silber, B.M.; Rao, S.; Fife, K.L.; Gallardo-Godoy, A.; Renslo, A.R.; Dalvie, D.K.; Giles, K.; Freyman, Y.; Elepano, M.; Gever, J.R.; Li, Z.; Jacobson, M.P.; Huang, Y.; Benet, L.Z.; Prusiner, S.B. Pharmacokinetics and metabolism of 2-aminothiazoles with antiprion activity in mice. Pharm. Res., 2013, 30(4), 932-950.
[http://dx.doi.org/10.1007/s11095-012-0912-4] [PMID: 23417511]
[64]
Li, Z.; Silber, B.M.; Rao, S.; Gever, J.R.; Bryant, C.; Gallardo-Godoy, A.; Dolghih, E.; Widjaja, K.; Elepano, M.; Jacobson, M.P.; Prusiner, S.B.; Renslo, A.R. 2-Aminothiazoles with improved pharmacotherapeutic properties for treatment of prion disease. ChemMedChem, 2013, 8(5), 847-857.
[http://dx.doi.org/10.1002/cmdc.201300007] [PMID: 23509039]
[65]
Pagadala, N.S.; Perez-Pineiro, R.; Wishart, D.S.; Tuszynski, J.A. In silico studies and fluorescence binding assays of potential anti-prion compounds reveal an important binding site for prion inhibition from PrP(C) to PrP(Sc). Eur. J. Med. Chem., 2015, 91, 118-131.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.045] [PMID: 25042003]
[66]
Narayanan, S.P.; Nair, D.G.; Schaal, D.; Barbosa de Aguiar, M.; Wenzel, S.; Kremer, W.; Schwarzinger, S.; Kalbitzer, H.R. Structural transitions in full-length human prion protein detected by xenon as probe and spin labeling of the N-terminal domain. Sci. Rep., 2016, 6, 28419.
[http://dx.doi.org/10.1038/srep28419] [PMID: 27341298]
[67]
Kalgutkar, A.S.; Driscoll, J.; Zhao, S.X.; Walker, G.S.; Shepard, R.M.; Soglia, J.R.; Atherton, J.; Yu, L.; Mutlib, A.E.; Munchhof, M.J.; Reiter, L.A.; Jones, C.S.; Doty, J.L.; Trevena, K.A.; Shaffer, C.L.; Ripp, S.L. A rational chemical intervention strategy to circumvent bioactivation liabilities associated with a nonpeptidyl thrombopoietin receptor agonist containing a 2-amino-4-arylthiazole motif. Chem. Res. Toxicol., 2007, 20(12), 1954-1965.
[http://dx.doi.org/10.1021/tx700270r] [PMID: 17935300]
[68]
Berry, D.B.; Lu, D.; Geva, M.; Watts, J.C.; Bhardwaj, S.; Oehler, A.; Renslo, A.R.; DeArmond, S.J.; Prusiner, S.B.; Giles, K. Drug resistance confounding prion therapeutics. Proc. Natl. Acad. Sci. USA, 2013, 110(44), E4160-E4169.
[http://dx.doi.org/10.1073/pnas.1317164110] [PMID: 24128760]
[69]
Berry, D.; Giles, K.; Oehler, A.; Bhardwaj, S.; DeArmond, S.J.; Prusiner, S.B. Use of 2-aminothiazole to treat chronic wasting disease in transgenic mice. J. Infect. Dis., 2015, 212(Suppl. 1), S17-S25.
[http://dx.doi.org/10.1093/infdis/jiu656] [PMID: 26116725]
[70]
Thompson, M.J.; Louth, J.C.; Greenwood, G.K.; Sorrell, F.J.; Knight, S.G.; Adams, N.B.P.; Chen, B. Improved 2,4-diarylthiazole-based antiprion agents: switching the sense of the amide group at C5 leads to an increase in potency. ChemMedChem, 2010, 5(9), 1476-1488.
[http://dx.doi.org/10.1002/cmdc.201000217] [PMID: 20635376]
[71]
Thompson, M.J.; Louth, J.C.; Little, S.M.; Chen, B.; Coldham, I. 2,4-diarylthiazole antiprion compounds as a novel structural class of antimalarial leads. Bioorg. Med. Chem. Lett., 2011, 21(12), 3644-3647.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.090] [PMID: 21570837]
[72]
Doh-Ura, K.; Iwaki, T.; Caughey, B. Lysosomotropic agents and cysteine protease inhibitors inhibit scrapie-associated prion protein accumulation. J. Virol., 2000, 74(10), 4894-4897.
[http://dx.doi.org/10.1128/JVI.74.10.4894-4897.2000] [PMID: 10775631]
[73]
Korth, C.; May, B.C.; Cohen, F.E.; Prusiner, S.B. Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc. Natl. Acad. Sci. USA, 2001, 98(17), 9836-9841.
[http://dx.doi.org/10.1073/pnas.161274798] [PMID: 11504948]
[74]
Vogtherr, M.; Grimme, S.; Elshorst, B.; Jacobs, D.M.; Fiebig, K.; Griesinger, C.; Zahn, R. Antimalarial drug quinacrine binds to C-terminal helix of cellular prion protein. J. Med. Chem., 2003, 46(17), 3563-3564.
[http://dx.doi.org/10.1021/jm034093h] [PMID: 12904059]
[75]
Murakami-Kubo, I.; Doh-Ura, K.; Ishikawa, K.; Kawatake, S.; Sasaki, K.; Kira, J.; Ohta, S.; Iwaki, T. Quinoline derivatives are therapeutic candidates for transmissible spon-giform encephalopathies. J. Virol., 2004, 78(3), 1281-1288.
[http://dx.doi.org/10.1128/JVI.78.3.1281-1288.2004] [PMID: 14722283]
[76]
Klingenstein, R.; Löber, S.; Kujala, P.; Godsave, S.; Leliveld, S.R.; Gmeiner, P.; Peters, P.J.; Korth, C. Tricyclic antidepressants, quinacrine and a novel, synthetic chimera thereof clear prions by destabilizing detergent-resistant membrane compartments. J. Neurochem., 2006, 98(3), 748-759.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03889.x] [PMID: 16749906]
[77]
Cope, H.; Mutter, R.; Heal, W.; Pascoe, C.; Brown, P.; Pratt, S.; Chen, B. Synthesis and SAR study of acridine, 2-methylquinoline and 2-phenylquinazoline analogues as anti-prion agents. Eur. J. Med. Chem., 2006, 41(10), 1124-1143.
[http://dx.doi.org/10.1016/j.ejmech.2006.05.002] [PMID: 16782236]
[78]
Klingenstein, R.; Melnyk, P.; Leliveld, S.R.; Ryckebusch, A.; Korth, C. Similar structure-activity relationships of quinoline derivatives for antiprion and antimalarial effects. J. Med. Chem., 2006, 49(17), 5300-5308.
[http://dx.doi.org/10.1021/jm0602763] [PMID: 16913719]
[79]
Nguyen, T.H.; Lee, C.Y.; Teruya, K.; Ong, W.Y.; Doh-ura, K.; Go, M.L. Antiprion activity of functionalized 9-aminoacridines related to quinacrine. Bioorg. Med. Chem., 2008, 16(14), 6737-6746.
[http://dx.doi.org/10.1016/j.bmc.2008.05.060] [PMID: 18556207]
[80]
Nguyen, T.; Sakasegawa, Y.; Doh-Ura, K.; Go, M.L. Anti-prion activities and drug-like potential of functionalized quinacrine analogs with basic phenyl residues at the 9-amino position. Eur. J. Med. Chem., 2011, 46(7), 2917-2929.
[http://dx.doi.org/10.1016/j.ejmech.2011.04.016] [PMID: 21531054]
[81]
Villa, V.; Tonelli, M.; Thellung, S.; Corsaro, A.; Tasso, B.; Novelli, F.; Canu, C.; Pino, A.; Chiovitti, K.; Paludi, D.; Russo, C.; Sparatore, A.; Aceto, A.; Boido, V.; Sparatore, F.; Florio, T. Efficacy of novel acridine derivatives in the inhibition of hPrP90-231 prion protein fragment toxicity. Neurotox. Res., 2011, 19(4), 556-574.
[http://dx.doi.org/10.1007/s12640-010-9189-8] [PMID: 20405353]
[82]
May, B.C.; Fafarman, A.T.; Hong, S.B.; Rogers, M.; Deady, L.W.; Prusiner, S.B.; Cohen, F.E. Potent inhibition of scrapie prion replication in cultured cells by bis-acridines. Proc. Natl. Acad. Sci. USA, 2003, 100(6), 3416-3421.
[http://dx.doi.org/10.1073/pnas.2627988100] [PMID: 12626750]
[83]
Dollinger, S.; Löber, S.; Klingenstein, R.; Korth, C.; Gmeiner, P. A chimeric ligand approach leading to potent antiprion active acridine derivatives: design, synthesis and biological investigations. J. Med. Chem., 2006, 49(22), 6591-6595.
[http://dx.doi.org/10.1021/jm060773j] [PMID: 17064077]
[84]
May, B.C.; Witkop, J.; Sherrill, J.; Anderson, M.O.; Madrid, P.B.; Zorn, J.A.; Prusiner, S.B.; Cohen, F.E.; Guy, R.K. Structure-activity relationship study of 9-amino-acridine compounds in scrapie-infected neuroblastoma cells. Bioorg. Med. Chem. Lett., 2006, 16(18), 4913-4916.
[http://dx.doi.org/10.1016/j.bmcl.2006.06.050] [PMID: 16860557]
[85]
Bongarzone, S.; Tran, H.N.; Cavalli, A.; Roberti, M.; Carloni, P.; Legname, G.; Bolognesi, M.L. Parallel synthesis, evaluation, and preliminary structure-activity relationship of 2,5-diamino-1,4-benzoquinones as a novel class of bivalent anti-prion compound. J. Med. Chem., 2010, 53(22), 8197-8201.
[http://dx.doi.org/10.1021/jm100882t] [PMID: 21047125]
[86]
Zulianello, L.; Kaneko, K.; Scott, M.; Erpel, S.; Han, D.; Cohen, F.E.; Prusiner, S.B. Dominant-negative inhibition of prion formation diminished by deletion mutagenesis of the prion protein. J. Virol., 2000, 74(9), 4351-4360.
[http://dx.doi.org/10.1128/JVI.74.9.4351-4360.2000] [PMID: 10756050]
[87]
Shibuya, S.; Higuchi, J.; Shin, R.W.; Tateishi, J.; Kitamoto, T. Protective prion protein polymorphisms against sporadic Creutzfeldt-Jakob disease. Lancet, 1998, 351(9100), 419.
[http://dx.doi.org/10.1016/S0140-6736(05)78358-6] [PMID: 9482303]
[88]
Perrier, V.; Wallace, A.C.; Kaneko, K.; Safar, J.; Prusiner, S.B.; Cohen, F.E. Mimicking dominant negative inhibition of prion replication through structure-based drug design. Proc. Natl. Acad. Sci. USA, 2000, 97(11), 6073-6078.
[http://dx.doi.org/10.1073/pnas.97.11.6073] [PMID: 10823951]
[89]
Reddy, T.R.; Mutter, R.; Heal, W.; Guo, K.; Gillet, V.J.; Pratt, S.; Chen, B. Library design, synthesis, and screening: pyridine dicarbonitriles as potential prion disease therapeutics. J. Med. Chem., 2006, 49(2), 607-615.
[http://dx.doi.org/10.1021/jm050610f] [PMID: 16420046]
[90]
May, B.C.H.; Zorn, J.A.; Witkop, J.; Sherrill, J.; Wallace, A.C.; Legname, G.; Prusiner, S.B.; Cohen, F.E. Structure-activity relationship study of prion inhibition by 2-aminopyridine-3,5-dicarbonitrile-based compounds: parallel synthesis, bioactivity, and in vitro pharmacokinetics. J. Med. Chem., 2007, 50(1), 65-73.
[http://dx.doi.org/10.1021/jm061045z] [PMID: 17201410]
[91]
Guo, K.; Mutter, R.; Heal, W.; Reddy, T.R.; Cope, H.; Pratt, S.; Thompson, M.J.; Chen, B. Synthesis and evaluation of a focused library of pyridine dicarbonitriles against prion disease. Eur. J. Med. Chem., 2008, 43(1), 93-106.
[http://dx.doi.org/10.1016/j.ejmech.2007.02.018] [PMID: 17475368]
[92]
Kuwata, K.; Nishida, N.; Matsumoto, T.; Kamatari, Y.O.; Hosokawa-Muto, J.; Kodama, K.; Nakamura, H.K.; Kimura, K.; Kawasaki, M.; Takakura, Y.; Shirabe, S.; Takata, J.; Kataoka, Y.; Katamine, S. Hot spots in prion protein for pathogenic conversion. Proc. Natl. Acad. Sci. USA, 2007, 104(29), 11921-11926.
[http://dx.doi.org/10.1073/pnas.0702671104] [PMID: 17616582]
[93]
Kimura, T.; Hosokawa-Muto, J.; Kamatari, Y.O.; Kuwata, K. Synthesis of GN8 derivatives and evaluation of their antiprion activity in TSE-infected cells. Bioorg. Med. Chem. Lett., 2011, 21(5), 1502-1507.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.132] [PMID: 21277202]
[94]
Bolognesi, M.L.; Ai Tran, H.N.; Staderini, M.; Monaco, A.; López-Cobeñas, A.; Bongarzone, S.; Biarnés, X.; López-Alvarado, P.; Cabezas, N.; Caramelli, M.; Carloni, P.; Menéndez, J.C.; Legname, G. Discovery of a class of diketopiperazines as antiprion compounds. ChemMedChem, 2010, 5(8), 1324-1334.
[http://dx.doi.org/10.1002/cmdc.201000133] [PMID: 20540064]
[95]
Hosokawa-Muto, J.; Kamatari, Y.O.; Nakamura, H.K.; Kuwata, K. Variety of antiprion compounds discovered through an in silico screen based on cellular-form prion protein structure: correlation between antiprion activity and binding affinity. Antimicrob. Agents Chemother., 2009, 53(2), 765-771.
[http://dx.doi.org/10.1128/AAC.01112-08] [PMID: 19015328]
[96]
Kimura, T.; Hosokawa-Muto, J.; Asami, K.; Murai, T.; Kuwata, K. Synthesis of 9-substituted 2,3,4,9-tetrahydro-1H-carbazole derivatives and evaluation of their anti-prion activity in TSE-infected cells. Eur. J. Med. Chem., 2011, 46(11), 5675-5679.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.039] [PMID: 21906853]
[97]
Ishibashi, D.; Nakagaki, T.; Ishikawa, T.; Atarashi, R.; Watanabe, K.; Cruz, F.A.; Hamada, T.; Nishida, N. Structure-based drug discovery for prion disease using a novel binding simulation. EBioMedicine, 2016, 9, 238-249.
[http://dx.doi.org/10.1016/j.ebiom.2016.06.010] [PMID: 27333028]
[98]
Caughey, B.; Raymond, L.D.; Raymond, G.J.; Maxson, L.; Silveira, J.; Baron, G.S. Inhibition of protease-resistant prion protein accumulation in vitro by curcumin. J. Virol., 2003, 77(9), 5499-5502.
[http://dx.doi.org/10.1128/JVI.77.9.5499-5502.2003] [PMID: 12692251]
[99]
Hafner-Bratkovic, I.; Gaspersic, J.; Smid, L.M.; Bresjanac, M.; Jerala, R. Curcumin binds to the alpha-helical intermediate and to the amyloid form of prion protein - a new mechanism for the inhibition of PrP(Sc) accumulation. J. Neurochem., 2008, 104(6), 1553-1564.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05105.x] [PMID: 17996023]
[100]
Zanyatkin, I.; Stroylova, Y.; Tishina, S.; Stroylov, V.; Melnikova, A.; Haertle, T.; Muronetz, V. Inhibition of prion propagation by 3,4dimethoxycynnamic acid. Phytother. Res., 2017, 31(7), 1046-1055.
[http://dx.doi.org/10.1002/ptr.5824] [PMID: 28509424]
[101]
Riemer, C.; Burwinkel, M.; Schwarz, A.; Gültner, S.; Mok, S.W.F.; Heise, I.; Holtkamp, N.; Baier, M. Evaluation of drugs for treatment of prion infections of the central nervous system. J. Gen. Virol., 2008, 89(Pt 2), 594-597.
[http://dx.doi.org/10.1099/vir.0.83281-0] [PMID: 18198391]
[102]
Tatzelt, J.; Prusiner, S.B.; Welch, W.J. Chemical chaperones interfere with the formation of scrapie prion protein. EMBO J., 1996, 15(23), 6363-6373.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb01027.x] [PMID: 8978663]
[103]
Prior, M.; Lehmann, S.; Sy, M.S.; Molloy, B.; McMahon, H.E. Cyclodextrins inhibit replication of scrapie prion protein in cell culture. J. Virol., 2007, 81(20), 11195-11207.
[http://dx.doi.org/10.1128/JVI.02559-06] [PMID: 17699584]
[104]
Bach, S.; Talarek, N.; Andrieu, T.; Vierfond, J.M.; Mettey, Y.; Galons, H.; Dormont, D.; Meijer, L.; Cullin, C.; Blondel, M. Isolation of drugs active against mammalian prions using a yeast-based screening assay. Nat. Biotechnol., 2003, 21(9), 1075-1081.
[http://dx.doi.org/10.1038/nbt855] [PMID: 12910243]
[105]
Bach, S.; Tribouillard, D.; Talarek, N.; Desban, N.; Gug, F.; Galons, H.; Blondel, M. A yeast-based assay to isolate drugs active against mammalian prions. Methods, 2006, 39(1), 72-77.
[http://dx.doi.org/10.1016/j.ymeth.2006.04.005] [PMID: 16750390]
[106]
Tribouillard-Tanvier, D.; Béringue, V.; Desban, N.; Gug, F.; Bach, S.; Voisset, C.; Galons, H.; Laude, H.; Vilette, D.; Blondel, M. Antihypertensive drug guanabenz is active in vivo against both yeast and mammalian prions. PLoS One, 2008, 3(4) e1981
[http://dx.doi.org/10.1371/journal.pone.0001981] [PMID: 18431471]
[107]
Tribouillard-Tanvier, D.; Dos Reis, S.; Gug, F.; Voisset, C.; Béringue, V.; Sabate, R.; Kikovska, E.; Talarek, N.; Bach, S.; Huang, C.; Desban, N.; Saupe, S.J.; Supattapone, S.; Thuret, J.Y.; Chédin, S.; Vilette, D.; Galons, H.; Sanyal, S.; Blondel, M. Protein folding activity of ribosomal RNA is a selective target of two unrelated antiprion drugs. PLoS One, 2008, 3(5) e2174
[http://dx.doi.org/10.1371/journal.pone.0002174] [PMID: 18478094]
[108]
Banerjee, D.; Sanyal, S. Protein folding activity of the ribosome (PFAR) - a target for antiprion compounds. Viruses, 2014, 6(10), 3907-3924.
[http://dx.doi.org/10.3390/v6103907] [PMID: 25341659]
[109]
Pang, Y.; Kurella, S.; Voisset, C.; Samanta, D.; Banerjee, D.; Schabe, A.; Das Gupta, C.; Galons, H.; Blondel, M.; Sanyal, S. The antiprion compound 6-aminophenanthridine inhibits the protein folding activity of the ribosome by direct competition. J. Biol. Chem., 2013, 288(26), 19081-19089.
[http://dx.doi.org/10.1074/jbc.M113.466748] [PMID: 23673663]
[110]
Banerjee, D.; Vovusha, H.; Pang, Y.; Oumata, N.; Sanyal, B.; Sanyal, S. Spectroscopic and DFT studies on 6-aminophenanthridine and its derivatives provide insights in their activity towards ribosomal RNA. Biochimie, 2014, 97, 194-199.
[http://dx.doi.org/10.1016/j.biochi.2013.10.012] [PMID: 24184272]
[111]
Oumata, N.; Nguyen, P.H.; Beringue, V.; Soubigou, F.; Pang, Y.; Desban, N.; Massacrier, C.; Morel, Y.; Paturel, C.; Contesse, M.A.; Bouaziz, S.; Sanyal, S.; Galons, H.; Blondel, M.; Voisset, C. The toll-like receptor agonist imiquimod is active against prions. PLoS One, 2013, 8(8) e72112
[http://dx.doi.org/10.1371/journal.pone.0072112] [PMID: 23977222]
[112]
Nguyen, P.; Oumata, N.; Soubigou, F.; Evrard, J.; Desban, N.; Lemoine, P.; Bouaziz, S.; Blondel, M.; Voisset, C. Evaluation of the antiprion activity of 6-aminophenan-thridines and related heterocycles. Eur. J. Med. Chem., 2014, 82, 363-371.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.083] [PMID: 24927056]
[113]
Silber, B.M. Gever, J.R.; Li, Z.; GallardoGodoy, A.; Renslo, A.R.; Widjaja, K.; Irwin, J.J.; Rao, S.; Jacobson, M.P.; Ghaemmaghami, S.; Prusiner, S.B. Antiprion compounds that reduce PrPSc levels in dividing and stationary-phase cells. Bioorg. Med. Chem., 2013, 21, 7999-8012.
[http://dx.doi.org/10.1016/j.bmc.2013.09.022] [PMID: 24183589]
[114]
Li, Z.; Rao, S.; Gever, J.R.; Widjaja, K.; Prusiner, S.B.; Silber, B.M. Towards optimization of arylamides as novel, potent and brain-penetrant antiprion lead compounds. ACS Med. Chem. Lett., 2013, 4(7), 647-650.
[http://dx.doi.org/10.1021/ml300454k] [PMID: 23977416]
[115]
Lu, D.; Giles, K.; Li, Z.; Rao, S.; Dolghih, E.; Gever, J.R.; Geva, M.; Elepano, M.L.; Oehler, A.; Bryant, C.; Renslo, A.R.; Jacobson, M.P.; Dearmond, S.J.; Silber, B.M.; Prusiner, S.B. Biaryl amides and hydrazones as therapeutics for prion disease in transgenic mice. J. Pharmacol. Exp. Ther., 2013, 347(2), 325-338.
[http://dx.doi.org/10.1124/jpet.113.205799] [PMID: 23965382]
[116]
Giles, K.; Berry, D.B.; Condello, C.; Dugger, B.N.; Li, Z.; Oehler, A.; Bhardwaj, S.; Elepano, M.; Guan, S.; Silber, B.M.; Olson, S.H.; Prusiner, S.B. Optimization of arylamides that extend survival in prion-infected mice. J. Pharmacol. Exp. Ther., 2016, 358(3), 537-547.
[http://dx.doi.org/10.1124/jpet.116.235556] [PMID: 27317802]
[117]
Thompson, M.J.; Borsenberger, V.; Louth, J.C.; Judd, K.E.; Chen, B. Design, synthesis, and structure-activity relationship of indole-3-glyoxylamide libraries possessing highly potent activity in a cell line model of prion disease. J. Med. Chem., 2009, 52(23), 7503-7511.
[http://dx.doi.org/10.1021/jm900920x] [PMID: 19842664]
[118]
Thompson, M.J.; Louth, J.C.; Ferrara, S.; Sorrell, F.J.; Irving, B.J.; Cochrane, E.J.; Meijer, A.J.; Chen, B. Structure-activity relationship refinement and further assessment of indole-3-glyoxylamides as a lead series against prion disease. ChemMedChem, 2011, 6(1), 115-130.
[http://dx.doi.org/10.1002/cmdc.201000383] [PMID: 21154498]
[119]
Bertsch, U.; Winklhofer, K.F.; Hirschberger, T.; Bieschke, J.; Weber, P.; Hartl, F.U.; Tavan, P.; Tatzelt, J.; Kretzschmar, H.A.; Giese, A. Systematic identification of antiprion drugs by high-throughput screening based on scanning for intensely fluorescent targets. J. Virol., 2005, 79(12), 7785-7791.
[http://dx.doi.org/10.1128/JVI.79.12.7785-7791.2005] [PMID: 15919931]
[120]
Kawasaki, Y.; Kawagoe, K.; Chen, C.J.; Teruya, K.; Sakasegawa, Y.; Doh-ura, K. Orally administered amyloidophilic compound is effective in prolonging the incubation periods of animals cerebrally infected with prion diseases in a prion strain-dependent manner. J. Virol., 2007, 81(23), 12889-12898.
[http://dx.doi.org/10.1128/JVI.01563-07] [PMID: 17881452]
[121]
Zaccagnini, L.; Brogi, S.; Brindisi, M.; Gemma, S.; Chemi, G.; Legname, G.; Campiani, G.; Butini, S. Identification of novel fluorescent probes preventing PrPSc replication in prion diseases. Eur. J. Med. Chem., 2017, 127, 859-873.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.064] [PMID: 27842893]
[122]
Geissen, M.; Leidel, F.; Eiden, M.; Hirschberger, T.; Fast, C.; Bertsch, U.; Tavan, P.; Giese, A.; Kretzschmar, H.; Schatzl, H.M.; Groschup, M.H. From high-throughput cell culture screening to mouse model: identification of new inhibitor classes against prion disease. ChemMedChem, 2011, 6(10), 1928-1937.
[http://dx.doi.org/10.1002/cmdc.201100119] [PMID: 21755599]
[123]
Kimata, A.; Nakagawa, H.; Ohyama, R.; Fukuuchi, T.; Ohta, S.; Doh-ura, K.; Suzuki, T.; Miyata, N. New series of antiprion compounds: pyrazolone derivatives have the potent activity of inhibiting protease-resistant prion protein accumulation. J. Med. Chem., 2007, 50(21), 5053-5056.
[http://dx.doi.org/10.1021/jm070688r] [PMID: 17850126]
[124]
Wagner, J.; Ryazanov, S.; Leonov, A.; Levin, J.; Shi, S.; Schmidt, F.; Prix, C.; Pan-Montojo, F.; Bertsch, U.; Mitteregger-Kretzschmar, G.; Geissen, M.; Eiden, M.; Leidel, F.; Hirschberger, T.; Deeg, A.A.; Krauth, J.J.; Zinth, W.; Tavan, P.; Pilger, J.; Zweckstetter, M.; Frank, T.; Bähr, M.; Weishaupt, J.H.; Uhr, M.; Urlaub, H.; Teichmann, U.; Samwer, M.; Bötzel, K.; Groschup, M.; Kretzschmar, H.; Griesinger, C.; Giese, A. Anle138b: a novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson’s disease. Acta Neuropathol., 2013, 125(6), 795-813.
[http://dx.doi.org/10.1007/s00401-013-1114-9] [PMID: 23604588]
[125]
Stanton, J.B.; Schneider, D.A.; Dinkel, K.D.; Balmer, B.F.; Baszler, T.V.; Mathison, B.A.; Boykin, D.W.; Kumar, A. Discovery of a novel, monocationic, small-molecule inhibitor of scrapie prion accumulation in cultured sheep microglia and Rov cells. PLoS One, 2012, 7(11) e51173
[http://dx.doi.org/10.1371/journal.pone.0051173] [PMID: 23226483]
[126]
Dinkel, K.D.; Stanton, J.B.; Boykin, D.W.; Stephens, C.E.; Madsen-Bouterse, S.A.; Schneider, D.A. Antiprion activity of DB-772 and related monothiophene- and furan based analogs in a persistently infected ovine microglia culture system. Antimicrob. Agents Chemother., 2016, 60(9), 5467-5482.
[http://dx.doi.org/10.1128/AAC.00811-16] [PMID: 27381401]
[127]
Li, Z.; Gever, J.R.; Rao, S.; Widjaja, K.; Prusiner, S.B.; Silber, B.M. Discovery and preliminary structure-activity relationship of arylpiperazines as novel, brain-penetrant anti-prion compounds. ACS Med. Chem. Lett., 2013, 4, 397-401.
[http://dx.doi.org/10.1021/ml300472n] [PMID: 23847718]
[128]
Leidel, F.; Eiden, M.; Geissen, M.; Hirschberger, T.; Tavan, P.; Giese, A.; Kretzschmar, H.A.; Schätzl, H.; Groschup, M.H. Piperazine derivatives inhibit PrP/PrP(res) propagation in vitro and in vivo. Biochem. Biophys. Res. Commun., 2014, 445(1), 23-29.
[http://dx.doi.org/10.1016/j.bbrc.2014.01.122] [PMID: 24502948]
[129]
Ferreira, N.C.; Marques, I.A.; Conceição, W.A.; Macedo, B.; Machado, C.S.; Mascarello, A.; Chiaradia-Delatorre, L.D.; Yunes, R.A.; Nunes, R.J.; Hughson, A.G.; Raymond, L.D.; Pascutti, P.G.; Caughey, B.; Cordeiro, Y. Anti-prion activity of a panel of aromatic chemical compounds: in vitro and in silico approaches. PLoS One, 2014, 9(1) e84531
[http://dx.doi.org/10.1371/journal.pone.0084531] [PMID: 24400098]
[130]
Ayrolles-Torro, A.; Imberdis, T.; Torrent, J.; Toupet, K.; Baskakov, I.V.; Poncet-Montange, G.; Grégoire, C.; Roquet-Baneres, F.; Lehmann, S.; Rognan, D.; Pugnière, M.; Verdier, J.M.; Perrier, V. Oligomeric-induced activity by thienyl pyrimidine compounds traps prion infectivity. J. Neurosci., 2011, 31(42), 14882-14892.
[http://dx.doi.org/10.1523/JNEUROSCI.0547-11.2011] [PMID: 22016521]
[131]
Simoneau, S.; Rezaei, H.; Salès, N.; Kaiser-Schulz, G.; Lefebvre-Roque, M.; Vidal, C.; Fournier, J.G.; Comte, J.; Wopfner, F.; Grosclaude, J.; Schätzl, H.; Lasmézas, C.I. In vitro and in vivo neurotoxicity of prion protein oligomers. PLoS Pathog., 2007, 3(8) e125
[http://dx.doi.org/10.1371/journal.ppat.0030125] [PMID: 17784787]
[132]
Tagliavini, F.; McArthur, R.A.; Canciani, B.; Giaccone, G.; Porro, M.; Bugiani, M.; Lievens, P.M.J.; Bugiani, O.; Peri, E.; Dall’Ara, P.; Rocchi, M.; Poli, G.; Forloni, G.; Bandiera, T.; Varasi, M.; Suarato, A.; Cassutti, P.; Cervini, M.A.; Lansen, J.; Salmona, M.; Post, C. Effectiveness of anthracycline against experimental prion disease in Syrian hamsters. Science, 1997, 276(5315), 1119-1122.
[http://dx.doi.org/10.1126/science.276.5315.1119] [PMID: 9148807]
[133]
Forloni, G.; Iussich, S.; Awan, T.; Colombo, L.; Angeretti, N.; Girola, L.; Bertani, I.; Poli, G.; Caramelli, M.; Grazia Bruzzone, M.; Farina, L.; Limido, L.; Rossi, G.; Giaccone, G.; Ironside, J.W.; Bugiani, O.; Salmona, M.; Tagliavini, F. Tetracyclines affect prion infectivity. Proc. Natl. Acad. Sci. USA, 2002, 99(16), 10849-10854.
[http://dx.doi.org/10.1073/pnas.162195499] [PMID: 12149459]
[134]
Tagliavini, F.; Forloni, G.; Colombo, L.; Rossi, G.; Girola, L.; Canciani, B.; Angeretti, N.; Giampaolo, L.; Peressini, E.; Awan, T.; De Gioia, L.; Ragg, E.; Bugiani, O.; Salmona, M. Tetracycline affects abnormal properties of synthetic PrP peptides and PrP(Sc) in vitro. J. Mol. Biol., 2000, 300(5), 1309-1322.
[http://dx.doi.org/10.1006/jmbi.2000.3840] [PMID: 10903871]
[135]
Haïk, S.; Marcon, G.; Mallet, A.; Tettamanti, M.; Welaratne, A.; Giaccone, G.; Azimi, S.; Pietrini, V.; Fabreguettes, J.R.; Imperiale, D.; Cesaro, P.; Buffa, C.; Aucan, C.; Lucca, U.; Peckeu, L.; Suardi, S.; Tranchant, C.; Zerr, I.; Houillier, C.; Redaelli, V.; Vespignani, H.; Campanella, A.; Sellal, F.; Krasnianski, A.; Seilhean, D.; Heinemann, U.; Sedel, F.; Canovi, M.; Gobbi, M.; Di Fede, G.; Laplanche, J.L.; Pocchiari, M.; Salmona, M.; Forloni, G.; Brandel, J.P.; Tagliavini, F. Doxycycline in Creutzfeldt-Jakob disease: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol., 2014, 13(2), 150-158.
[http://dx.doi.org/10.1016/S1474-4422(13)70307-7] [PMID: 24411709]
[136]
Charvériat, M.; Reboul, M.; Wang, Q.; Picoli, C.; Lenuzza, N.; Montagnac, A.; Nhiri, N.; Jacquet, E.; Guéritte, F.; Lallemand, J.Y.; Deslys, J.P.; Mouthon, F. New inhibitors of prion replication that target the amyloid precursor. J. Gen. Virol., 2009, 90(Pt 5), 1294-1301.
[http://dx.doi.org/10.1099/vir.0.009084-0] [PMID: 19264641]
[137]
Marella, M.; Lehmann, S.; Grassi, J.; Chabry, J. Filipin prevents pathological prion protein accumulation by reducing endocytosis and inducing cellular PrP release. J. Biol. Chem., 2002, 277(28), 25457-25464.
[http://dx.doi.org/10.1074/jbc.M203248200] [PMID: 11994310]
[138]
Xi, Y.G.; Ingrosso, L.; Ladogana, A.; Masullo, C.; Pocchiari, M. Amphotericin B treatment dissociates in vivo replication of the scrapie agent from PrP accumulation. Nature, 1992, 356(6370), 598-601.
[http://dx.doi.org/10.1038/356598a0] [PMID: 1348570]
[139]
Adjou, K.T.; Demaimay, R.; Deslys, J.P.; Lasm Zas, C.I.; Beringue, V.; Demart, S.; Lamoury, F.; Seman, M.; Dormont, D. MS-8209, a water-soluble amphotericin B derivative, affects both scrapie agent replication and PrPres accumulation in Syrian hamster scrapie. J. Gen. Virol., 1999, 80(Pt 4), 1079-1085.
[http://dx.doi.org/10.1099/0022-1317-80-4-1079] [PMID: 10211979]
[140]
Vey, M.; Pilkuhn, S.; Wille, H.; Nixon, R.; DeArmond, S.J.; Smart, E.J.; Anderson, R.G.; Taraboulos, A.; Prusiner, S.B. Subcellular colocalization of the cellular and scrapie prion proteins in caveolae-like membranous domains. Proc. Natl. Acad. Sci. USA, 1996, 93(25), 14945-14949.
[http://dx.doi.org/10.1073/pnas.93.25.14945] [PMID: 8962161]
[141]
Mangé, A.; Nishida, N.; Milhavet, O.; McMahon, H.E.; Casanova, D.; Lehmann, S. Amphotericin B inhibits the generation of the scrapie isoform of the prion protein in infected cultures. J. Virol., 2000, 74(7), 3135-3140.
[http://dx.doi.org/10.1128/JVI.74.7.3135-3140.2000] [PMID: 10708429]
[142]
Taraboulos, A.; Scott, M.; Semenov, A.; Avrahami, D.; Laszlo, L.; Prusiner, S.B. Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J. Cell Biol., 1995, 129(1), 121-132.
[http://dx.doi.org/10.1083/jcb.129.1.121] [PMID: 7698979]
[143]
Bate, C.; Salmona, M.; Diomede, L.; Williams, A. Squalestatin cures prion-infected neurons and protects against prion neurotoxicity. J. Biol. Chem., 2004, 279(15), 14983-14990.
[http://dx.doi.org/10.1074/jbc.M313061200] [PMID: 14754889]
[144]
Outram, G.W.; Dickinson, A.G.; Fraser, H. Reduced susceptibility to scrapie in mice after steroid administration. Nature, 1974, 249(460), 855-856.
[http://dx.doi.org/10.1038/249855a0] [PMID: 4209742]
[145]
Kocisko, D.A.; Baron, G.S.; Rubenstein, R.; Chen, J.; Kuizon, S.; Caughey, B. New inhibitors of scrapie-associated prion protein formation in a library of 2000 drugs and natural products. J. Virol., 2003, 77(19), 10288-10294.
[http://dx.doi.org/10.1128/JVI.77.19.10288-10294.2003] [PMID: 12970413]
[146]
Gilch, S.; Bach, C.; Lutzny, G.; Vorberg, I.; Schätzl, H.M. Inhibition of cholesterol recycling impairs cellular PrP(Sc) propagation. Cell. Mol. Life Sci., 2009, 66(24), 3979-3991.
[http://dx.doi.org/10.1007/s00018-009-0158-4] [PMID: 19823766]
[147]
Heiseke, A.; Aguib, Y.; Schätzl, H.M. Autophagy, prion infection and their mutual interactions. Curr. Issues Mol. Biol., 2010, 12(2), 87-97.
[http://dx.doi.org/10.21775/9781912530076.03] [PMID: 19767652]
[148]
Karapetyan, Y.E.; Sferrazza, G.F.; Zhou, M.; Ottenberg, G.; Spicer, T.; Chase, P.; Fallahi, M.; Hodder, P.; Weissmann, C.; Lasmézas, C.I. Unique drug screening approach for prion diseases identifies tacrolimus and astemizole as antiprion agents. Proc. Natl. Acad. Sci. USA, 2013, 110(17), 7044-7049.
[http://dx.doi.org/10.1073/pnas.1303510110] [PMID: 23576755]
[149]
Marzo, L.; Marijanovic, Z.; Browman, D.; Chamoun, Z.; Caputo, A.; Zurzolo, C. 4-hydroxytamoxifen leads to PrPSc clearance by conveying both PrPC and PrPSc to lysosomes independently of autophagy. J. Cell Sci., 2013, 126(Pt 6), 1345-1354.
[http://dx.doi.org/10.1242/jcs.114801] [PMID: 23418355]
[150]
Perovic, S.; Schröder, H.C.; Pergande, G.; Ushijima, H.; Müller, W.E.G. Effect of flupirtine on Bcl-2 and glutathione level in neuronal cells treated in vitro with the prion protein fragment (PrP106-126). Exp. Neurol., 1997, 147(2), 518-524.
[http://dx.doi.org/10.1006/exnr.1997.6559] [PMID: 9344576]
[151]
Otto, M.; Cepek, L.; Ratzka, P.; Doehlinger, S.; Boekhoff, I.; Wiltfang, J.; Irle, E.; Pergande, G.; Ellers-Lenz, B.; Windl, O.; Kretzschmar, H.A.; Poser, S.; Prange, H. Efficacy of flupirtine on cognitive function in patients with CJD: a double-blind study. Neurology, 2004, 62(5), 714-718.
[http://dx.doi.org/10.1212/01.WNL.0000113764.35026.EF] [PMID: 15007119]
[152]
Nishizawa, K.; Oguma, A.; Kawata, M.; Sakasegawa, Y.; Teruya, K.; Doh-ura, K. Efficacy and mechanism of a glycoside compound inhibiting abnormal prion protein formation in prion-infected cells: implications of interferon and phosphodiesterase 4D-interacting protein. J. Virol., 2014, 88(8), 4083-4099.
[http://dx.doi.org/10.1128/JVI.03775-13] [PMID: 24453367]
[153]
Touil, F.; Pratt, S.; Mutter, R.; Chen, B. Screening a library of potential prion therapeutics against cellular prion proteins and insights into their mode of biological activities by surface plasmon resonance. J. Pharm. Biomed. Anal., 2006, 40(4), 822-832.
[http://dx.doi.org/10.1016/j.jpba.2005.08.011] [PMID: 16242887]
[154]
Kovačević, S.; Karadžić, M.; Podunavac-Kuzmanović, S.; Jevrić, L. Binding affinity toward human prion protein of some anti-prion compounds - assessment based on QSAR modeling, molecular docking and non-parametric ranking. Eur. J. Pharm. Sci., 2018, 111, 215-225.
[http://dx.doi.org/10.1016/j.ejps.2017.10.004] [PMID: 28987536]
[155]
Bolognesi, M.L.; Legname, G. Approaches for discovering anti-prion compounds: lessons learned and challenges ahead. Expert Opin. Drug Discov., 2015, 10(4), 389-397.
[http://dx.doi.org/10.1517/17460441.2015.1016498] [PMID: 25682812]
[156]
Nakajima, M.; Yamada, T.; Kusuhara, T.; Furukawa, H.; Takahashi, M.; Yamauchi, A.; Kataoka, Y. Results of quinacrine administration to patients with Creutzfeldt-Jakob disease. Dement. Geriatr. Cogn. Disord., 2004, 17(3), 158-163.
[http://dx.doi.org/10.1159/000076350] [PMID: 14739538]
[157]
Barreca, M.L.; Iraci, N.; Biggi, S.; Cecchetti, V.; Biasini, E. Pharmacological agents targeting the cellular prion protein. Pathogens, 2018, 7(1), 27.
[http://dx.doi.org/10.3390/pathogens7010027] [PMID: 29518975]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 33
Year: 2020
Published on: 07 October, 2020
Page: [5446 - 5479]
Pages: 34
DOI: 10.2174/0929867326666190927121744
Price: $65

Article Metrics

PDF: 30
HTML: 2