Achieving Functionality Through Modular Build-up: Structure and Size Selection of Serine Oligopeptidases

Author(s): Anna J. Kiss-Szemán*, Veronika Harmat, Dóra K. Menyhárd

Journal Name: Current Protein & Peptide Science

Volume 20 , Issue 11 , 2019

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Enzymes of the prolyl oligopeptidase family (S9 family) recognize their substrates not only by the specificity motif to be cleaved but also by size - they hydrolyze oligopeptides smaller than 30 amino acids. They belong to the serine-protease family, but differ from classical serine-proteases in size (80 kDa), structure (two domains) and regulation system (size selection of substrates). This group of enzymes is an important target for drug design as they are linked to amnesia, schizophrenia, type 2 diabetes, trypanosomiasis, periodontitis and cell growth. By comparing the structure of various members of the family we show that the most important features contributing to selectivity and efficiency are: (i) whether the interactions weaving the two domains together play a role in stabilizing the catalytic triad and thus their absence may provide for its deactivation: these oligopeptidases can screen their substrates by opening up, and (ii) whether the interaction-prone β-edge of the hydrolase domain is accessible and thus can guide a multimerization process that creates shielded entrance or intricate inner channels for the size-based selection of substrates. These cornerstones can be used to estimate the multimeric state and selection strategy of yet undetermined structures.

Keywords: Oligopeptidase, oligopeptide hydrolysis, acylaminoacyl-peptidase, acylpeptide hydrolase, β-edge aggregation, substrate selection, multimerization, substrate access.

Polgár, L. The prolyl oligopeptidase family. Cell. Mol. Life Sci., 2002, 59(2), 349-362.
Brocca, S.; Ferrari, C.; Barbiroli, A.; Pesce, A.; Lotti, M.; Nardini, M. A bacterial acyl aminoacyl peptidase couples flexibility and stability as a result of cold adaptation. FEBS J., 2016, 283(23), 4310-4324.
Szeltner, Z.; Rea, D.; Juhász, T.; Renner, V.; Mucsi, Z.; Orosz, G.; Fülöp, V.; Polgár, L. Substrate-dependent competency of the catalytic triad of prolyl oligopeptidase. J. Biol. Chem., 2002, 277(47), 44597-44605.
Morty, R.E.; Pellé, R.; Vadász, I.; Uzcanga, G.L.; Seeger, W.; Bubis, J. Oligopeptidase B from Trypanosoma evansi. A parasite peptidase that inactivates atrial natriuretic factor in the bloodstream of infected hosts. J. Biol. Chem., 2005, 280(12), 10925-10937.
Harmat, V.; Domokos, K.; Menyhárd, D.K.; Palló, A.; Szeltner, Z.; Szamosi, I.; Beke-Somfai, T.; Náray-Szabó, G.; Polgár, L. Structure and catalysis of acylaminoacyl peptidase: closed and open subunits of a dimer oligopeptidase. J. Biol. Chem., 2011, 286(3), 1987-98.
Hiramatsu, H.; Kyono, K.; Higashiyama, Y.; Fukushima, C.; Shima, H.; Sugiyama, S.; Inaka, K.; Yamamoto, A.; Shimizu, R. The structure and function of human dipeptidyl peptidase IV, possessing a unique eight-bladed beta-propeller fold., Biochem. Biophys. Res. Commun., 2003, 302(4), 849-854.e.
Rawlings, N.D.; Barrett, A.J.; Thomas, P.D.; Huang, X.; Bateman, A.; Finn, R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res., 2018, 46, D624-D632.
Maes, M.; Goossens, F.; Scharpé, S.; Meltzer, H.Y.; D’Hondt, P.; Cosyns, P. Lower serum prolyl endopeptidase enzyme activity in major depression: further evidence that peptidases play a role in the pathophysiology of depression. Biol. Psychiatry, 1994, 35(8), 545-552.
Maes, M.; Goossens, F.; Scharpé, S.; Calabrese, J.; Desnyder, R.; Meltzer, H.Y. Alterations in plasma prolyl endopeptidase activity in depression, mania, and schizophrenia: Effects of antidepressants, mood stabilizers, and antipsychotic drugs. Psychiatry Res., 1995, 58(3), 217-225.
Maes, M.; Monteleone, P.; Bencivenga, R.; Goossens, F.; Maj, M.; van West, D.; Bosmans, E.; Scharpe, S. Lower serum activity of prolyl endopeptidase in anorexia and bulimia nervosa. Psychoneuroendocrinology, 2001, 26(1), 17-26.
Männistö, P.T.; García-Horsman, A.J. Mechanism of action of prolyl oligopeptidase (PREP) in degenerative brain diseases: has peptidase activity only a modulatory role on the interactions of PREP with proteins? Front. Aging Neurosci., 2017, 9, 27.
Guardiola, S.; Prades, R.; Mendieta, L.; Brouwer, A.J.; Streefkerk, J.; Nevola, L.; Tarragó, T.; Liskamp, R.M.J.; Giralt, E. Targeted covalent inhibition of prolyl oligopeptidase (POP): Discovery of sulfonylfluoride peptidomimetics. Cell Chem. Biol., 2018, 25(8), 1031-1037.e4.
Morty, R.E.; Pellé, R.; Vadász, I.; Uzcanga, G.L.; Seeger, W.; Bubis, J. Oligopeptidase B from Trypanosoma evansi. A parasite peptidase that inactivates atrial natriuretic factor in the bloodstream of infected hosts. J. Biol. Chem., 2005, 280(12), 10925-10937.
Swenerton, R.K.; Zhang, S.; Sajid, M.; Medzihradszky, K.F.; Craik, C.S.; Kelly, B.L.; McKerrow, J.H. The oligopeptidase B of Leishmania regulates parasite enolase and immune evasion. J. Biol. Chem., 2011, 286(1), 429-440.
Kim, N.H.; Yu, T.; Lee, D.H. The nonglycemic actions of dipeptidyl peptidase-4 inhibitors. Biomed Res. Int., 2014, 2014368703
Nathan, D.M. Finding new treatments for diabetes--how many, how fast... how good? N. Engl. J. Med., 2007, 356(5), 437-440.
Russell, S. Incretin-based therapies for type 2 diabetes mellitus: A review of direct comparisons of efficacy, safety and patient satisfaction. Int. J. Clin. Pharm., 2013, 35(2), 159-172.
Röhrborn, D.; Wronkowitz, N.; Eckel, J. DPP4 in diabetes. Front. Immunol., 2015, 6, 386.
Avogaro, A.; Fadini, G.P. The effects of dipeptidyl peptidase-4 inhibition on microvascular diabetes complications. Diabetes Care, 2014, 37(10), 2884-2894.
Aertgeerts, K.; Levin, I.; Shi, L.; Snell, G.P.; Jennings, A.; Prasad, G.S.; Zhang, Y.; Kraus, M.L.; Salakian, S.; Sridhar, V.; Wijnands, R.; Tennant, M.G. Structural and kinetic analysis of the substrate specificity of human fibroblast activation protein alpha. J. Biol. Chem., 2005, 280(20), 19441-19444.
Kin, Y.; Misumi, Y.; Ikehara, Y. Biosynthesis and characterization of the brain specific membrane protein DPPX, a dipeptidyl peptidase IV-related protein. J. Biochem., 2001, 129, 289-295.
Strop, P.; Bankovich, A.J.; Hansen, K.C.; Garcia, K.C.; Brunger, A.T. Structure of a human A-type potassium channel interacting protein DPPX, a member of the dipeptidyl aminopeptidase family. J. Mol. Biol., 2004, 343(4), 1055-1065.
Ross, B.; Krapp, S.; Augustin, M.; Kierfersauer, R.; Arciniega, M.; Geiss-Friedlander, R.; Huber, R. Structures and mechanism of dipeptidyl peptidases 8 and 9, important players in cellular homeostasis and cancer. Proc. Natl. Acad. Sci. USA, 2018, 115(7), E1437-E1445.
Bezerra, G.A.; Dobrovetsky, E.; Seitova, A.; Fedosyuk, S.; Dhe-Paganon, S.; Gruber, K. Structure of human dipeptidyl peptidase 10 (DPPY): A modulator of neuronal Kv4 channels. Sci. Rep., 2015, 5, 8769.
Yamada, R.; Ymamoto, K. Recent findings on genes associated with inflammatory disease. Mutat. Res., 2005, 573(1-2), 136-151.
Waumans, Y.; Baerts, L.; Kehoe, K.; Lambeir, A.M.; De Meester, I. The dipeptidyl peptidase family, prolyl oligopeptidase, and prolyl carboxypeptidase in the immune system and inflammatory disease, including atherosclerosis. Front. Immunol., 2015, 6, 387.
Wagner, L.; Klemann, C.; Stephan, M.; von Hörsten, S. Unravelling the immunological roles of dipeptidyl peptidase 4 (DPP4) activity and/or structure homologue (DASH) proteins. Clin. Exp. Immunol., 2016, 184(3), 265-283.
Banbula, A.; Mak, P.; Bugni, M.; Silberring, J.; Dubin, A.; Nelson, D.; Travis, J.; Potempa, J. Prolyl tripeptidyl peptidase from Porphyromonas gingivalis - A novel enzyme with possible pathological implications for the development of periodontitis. J. Biol. Chem., 1999, 274(14), 9246-9252.
Xu, Y.; Nakajima, Y.; Ito, K.; Zheng, H.; Oyama, H.; Heiser, U.; Hoffmann, T.; Gartner, U.T.; Demuth, H.U.; Yoshimoto, T. Novel inhibitor for prolyl tripeptidyl aminopeptidase from Porphyromonas gingivalis and details of substrate-recognition mechanism. J. Mol. Biol., 2008, 375(3), 708-719.
Griffen, A.L.; Becker, M.R.; Lyons, S.R.; Moeschberger, M.L.; Leys, E.J. Prevalence of Porphyromonas gingivalis and periodontal health status. J. Clin. Microbiol., 1998, 36(11), 3239-3242.
Iwai, T.; Inoue, Y.; Umeda, M.; Huang, Y.; Kurihara, N.; Koike, M.; Ishikawa, I. Oral bacteria in the occluded arteries of patients with Buerger disease. J. Vasc. Surg., 2005, 42(1), 107-115.
Kshirsagar, A.V.; Offenbacher, S.; Moss, K.L.; Barros, S.P.; Beck, J.D. Antibodies to periodontal organisms are associated with decreased kidney function. The dental atherosclerosis risk in communities study. Blood Purif., 2007, 25(1), 125-132.
Detert, J.; Pischon, N.; Burmester, G.R.; and Buttgereit, F. The association between rheumatoid arthritis and periodontal disease. Arthritis Res. Ther., 2010, 12(5), 218.
Yamin, R.; Zhao, C.; O’Connor, P.B.; McKee, A.C.; Abraham, C.R. Acyl peptide hydrolase degrades monomeric and oligomeric amyloid-beta peptide. Mol. Neurodegener., 2009, 4, 33.
Palmieri, G.; Bergamo, P.; Luini, A.; Ruvo, M.; Gogliettino, M.; Langella, E.; Saviano, M.; Hegde, R.N.; Sandomenico, A.; Rossi, M. Acylpeptide hydrolase inhibition as targeted strategy to induce proteasomal down-regulation. PLoS One, 2011, 6(10)e25888
Shimizu, K.; Kiuchi, Y.; Ando, K.; Hayakawa, M.; Kikugawa, K. Coordination of oxidized protein hydrolase and the proteasome in the clearance of cytotoxic denatured proteins. Biochem. Biophys. Res. Commun., 2004, 324(1), 140-146.
Perrier, J.; Durand, A.; Giardina, T.; Puigserver, A. Catabolism of intracellular N-terminal acetylated proteins: involvement of acylpeptide hydrolase and acylase. Biochimie, 2005, 87(8), 673-685.
Arnesen, T. Towards a functional understanding of protein N-Terminal acetylation. PLoS Biol., 2011, 9(5)e1001074
Forte, G.M.; Pool, M.R.; Stirling, C.J. N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum. PLoS Biol., 2011, 9(5)e1001073
Sandomenico, A.; Russo, A.; Palmieri, G.; Bergamo, P.; Gogliettino, P.; Falcigno, L.; Ruvo, M. Small peptide inhibitors of acetyl-peptide hydrolase having an uncommon mechanism of inhibition and a stable bent conformation. J. Med. Chem., 2012, 55(5), 2102-2111.
Fujino, T.; Watanabe, K.; Beppu, M.; Kikugawa, K.; Yasuda, H. Identification of oxidized protein hydrolase of human erythrocytes as acylpeptide hydrolase. Biochim. Biophys. Acta, 2000, 1478(1), 102-112.
Shimizu, K.; Fujino, T.; Ando, K.; Hayakawa, M.; Yasuda, H.; Kikugawa, K. Overexpression of oxidized protein hydrolase protects COS-7 cells from oxidative stress-induced inhibition of cell growth and survival. Biochem. Biophys. Res. Commun., 2003, 304(4), 766-771.
Adibekian, A.; Martin, B.R.; Wang, C.; Hsu, K.L.; Bachovchin, D.A.; Niessen, S.; Hoover, H.; Cravatt, B.F. Click-generated triazole ureas as ultrapotent in vivo-active serine hydrolase inhibitors. Nat. Chem. Biol., 2011, 7(7), 469-478.
Zeng, Z.; Rulten, S.L.; Breslin, C.; Zlatanou, A.; Coulthard, V.; Caldecott, K.W. Acylpeptide hydrolase is a component of the cellular response to DNA Damage. DNA Repair, 2017, 58, 52-61.
Erlandsson, R.; Boldog, F.; Persson, B.; Zabarovsky, B.; Allikmets, R.L.; Sümegi, J.; Klein, G.; Jörnvall, H. The gene from the short arm of chromosome 3, at D3F15S2, frequently deleted in renal cell carcinoma, encodes acylpeptide hydrolase. Oncogene, 1991, 6, 1293-1295.
Fage, C.D.; Hegemann, J.D.; Nebel, A.J.; Steinbach, R.M.; Zhu, S.; Linne, U.; Harms, K.; Bange, G.; Marahiel, M.A. Structure and mechanism of the Sphingopyxin I lasso peptide isopeptidase. Angew. Chem. Int. Ed. Engl., 2016, 55(41), 12717-12721.
Rawlings, N.D.; Barrett, A.J. Evolutionary families of peptidases. Biochem. J., 1993, 290(1), 205-218.
Liu, F.; Zhao, Z.S.; Ren, Y.; Cheng, G.; Tang, X.F.; Tang, B. Autocatalytic activation of a thermostable glutamyl endopeptidase capable of hydrolyzing proteins at high temperatures. Appl. Microbiol. Biotechnol., 2016, 100(24), 10429-10441.
Ohara-Nemoto, Y.; Ikeda, Y.; Kobayashi, M.; Sasaki, M.; Tajika, S.; Kimura, S. Characterization and molecular cloning of a glutamyl endopeptidase from Staphylococcus epidermidis. Microb. Pathog., 2002, 33(1), 33-41.
Calander, A.M.; Dubin, G.; Potempa, J.; Tarkowski, A. Staphylococcus aureus infection triggers production of neutralizing, V8 protease-specific antibodies. FEMS Immunol. Med. Microbiol., 2008, 52(2), 267-272.
Qin, X.; Singh, K.V.; Weinstock, G.M.; Murray, B.E. Effects of Enterococcus faecalis fsr genes on production of gelatinase and a serine protease and virulence. Infect. Immun., 2000, 68(5), 2579-2586.
Lee, C.W.; Yang, I.S. Cutaneous calcinosis in erythromelanosis follicularis faciei et colli. Clin. Exp. Dermatol., 1987, 12(1), 31-32.
O’Toole, P.W.; Foster, T.J. Nucleotide sequence of the epidermolytic toxin A gene of Staphylococcus aureus. J. Bacteriol., 1987, 169(9), 3910-3915.
Dancer, S.; Garratt, R.; Saldanha, J.; Jhoti, H.; Evans, R. The epidermolytic toxins are serine proteases. FEBS Lett., 1990, 268(1), 129-132.
Bukowski, M.; Wladyka, B.; Dubin, G. Exfoliative toxins of Staphylococcus aureus. Toxins, 2010, 2(5), 1148-1165.
Nemoto, T. K.; Ohara-Nemoto, Y.; Bezerra, G.A.; Shimoyama, Y.; Kimura, S. A Porphyromonas gingivalis periplasmic novel exopeptidase, acylpeptidyl oligopeptidase, releases N-acylated di- and tripeptides from oligopeptides. J. Biol. Chem., 2016, 291(11), 5913-5925.
Nishimura, M.; Ikeda, K.; Sugiyama, M. Molecular cloning and characterization of gene encoding novel puromycin-inactivating enzyme from blasticidin S-producing Streptomyces morookaensis. J. Biosci. Bioeng., 2006, 101(1), 63-69.
Matoba, Y.; Nakayama, A.; Oda, K.; Noda, M.; Kumagai, M.; Nishimura, M.; Sugiyama, M. Structural evidence that puromycin hydrolase is a new type of aminopeptidase with a prolyl oligopeptidase family fold. Proteins, 2011, 79(10), 2999-3005.
Fülöp, V.; Böcskei, Z.; Polgár, L. Prolyl oligopeptidase: an unusual beta-propeller domain regulates proteolysis. Cell, 1998, 94(2), 161-170.
McLuskey, K.; Paterson, N.G.; Bland, N.D.; Isaacs, N.W.; Mottram, J.C. Crystal structure of Leishmania major oligopeptidase B gives insight into the enzymatic properties of a trypanosomatid virulence factor. J. Biol. Chem., 2010, 285(50), 39249-39259.
Bartlam, M.; Wang, G.; Yang, H.; Gao, R.; Zhao, X.; Xie, G.; Cao, S.; Feng, Y.; Rao, Z. Crystal structure of an acylpeptide hydrolase/esterase from Aeropyrum pernix K1. Structure, 2004, 12(8), 1481-1488.
Rasmussen, H.B.; Branner, H.B.; Wiberg, F.C.; Wagtmann, N. Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nat. Struct. Biol., 2003, 10(1), 19-25.
Canning, P.; Rea, D.; Morty, R.E.; Fülöp, V. Crystal structures of Trypanosoma brucei oligopeptidase B broaden the paradigm of catalytic regulation in prolyl oligopeptidase family enzymes. PLoS One, 2013, 8(11)e79349
Motta, F.N.; Bastos, I.M.; Faudry, E.; Ebel, C.; Lima, M.M.; Neves, D.; Ragno, M.; Barbosa, J.A.; de Freitas, S.M.; Santana, J.M. The Trypanosoma cruzi virulence factor oligopeptidase B (OPBTc) assembles into an active and stable dimer. PLoS One, 2012, 7(1)e30431
Fukumoto, J.; Ismail, N.I.; Kubo, M.; Kinoshita, K.; Inoue, M.; Yuasa, K.; Nishimoto, M.; Matsuki, H.; Tsuji, A. Possible role of inter-domain salt bridges in oligopeptidase B from Trypanosoma brucei: Critical role of Glu172 of non-catalytic b-propeller domain in catalytic activity and Glu490 of catalytic domain in stability of OPB. J. Biochem., 2013, 154(5), 465-473.
Papaleo, E.; Paravicini, F.; Grandori, R.; De Gioia, L.; Brocca, S. Structural investigation of the cold-adapted acylaminoacyl peptidase from Sporosarcina psychrophila by atomistic simulations and biophysical methods. Biochim. Biophys. Acta, 2014, 1844(12), 2203-2213.
Szeltner, Z.; Kiss, A.L.; Domokos, K.; Harmat, V.; Náray-Szabó, G.; Polgár, L. Characterization of a novel acylaminoacyl peptidase with hexameric structure and endopeptidase activity. Biochim. Biophys. Acta, 2009, 1794(8), 1204-1210.
Mitta, M.; Asada, K.; Uchimura, Y.; Kimizuka, F.; Kato, I.; Sakiyama, F.; Tsunasawa, S. The primary structure of porcine liver acylamino acid-releasing enzyme deduced from cDNA sequences. J. Biochem., 1989, 106(4), 548-551.
Wright, H.; Kiss, A.L.; Szeltner, Z.; Polgár, L.; Fülöp, V. Crystallization and preliminary crystallographic analysis of porcine acylaminoacyl peptidase. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2005, 61(10), 942-944.
Fuxreiter, M.; Magyar, C.; Juhász, T.; Szeltner, Z.; Polgár, L.; Simon, I. Flexibility of prolyl oligopeptidase: molecular dynamics and molecular framework analysis of the potential substrate pathways. Proteins, 2005, 60(3), 504-512.
Menyhárd, D.K.; Kiss-Szemán, A.; Tichy-Rács, É.; Hornung, B.; Rádi, K.; Szeltner, Z.; Domokos, K.; Szamosi, I.; Náray-Szabó, G.; Polgár, L.; Harmat, V. A self-compartmentalizing hexamer serine protease from Pyrococcus horikoshii: Substrate selection achieved through multimerization. J. Biol. Chem., 2013, 288(24), 17884-17894.
Kaszuba, K. Rog. T.; St Pierre. J.F.; Mannisto. P.T.; Karttunen. M.; Bunker, A. Molecular dynamics study of prolyl oligopeptidase with inhibitor in binding cavity. SAR QSAR Environ. Res., 2009, 20(7-8), 595-609.
Juhász, T.; Szeltner, Z.; Polgár, L. Truncated prolyl oligopeptidase from Pyrococcus furiosus. Proteins, 2007, 69(3), 633-643.
Menyhárd, D.K.; Orgován, Z.; Szeltner, Z.; Szamosi, I.; Harmat, V. Catalytically distinct states captured in a crystal lattice: The substrate-bound and scavenger states of acylaminoacyl peptidase and their implications for functionality. Acta Crystallogr. D Biol. Crystallogr., 2015, 71(3), 461-472.
Richardson, J.S.; Richardson, D.C. Natural beta-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc. Natl. Acad. Sci. USA, 2002, 99(5), 2754-2759.
Maurer-Stroh, S.; Debulpaep, M.; Kuemmerer, N.; de la Paz Lopez, M.; Martins, I.C.; Reumers, J.; Morris, K.L.; Copland, A.; Serpell, L.; Serrano, L.; Schymkowitz, J.W.; Rousseau, F. Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat. Methods, 2010, 7, 237-242.
Krissinel, E.; Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol., 2007, 372(3), 774-797.
Szeltner, Z.; Rea, D.; Juhász, T.; Renner, V.; Fülöp, V.; Polgár, L. Concerted structural changes in the peptidase and the propeller domains of prolyl oligopeptidase are required for substrate binding. J. Mol. Biol., 2004, 340, 627-637.
Shan, L.; Mathews, I.I.; Khosla, C. Structural and mechanistic analysis of two prolyl endopeptidases: Role of interdomain dynamics in catalysis and specificity. Proc. Natl. Acad. Sci. USA, 2005, 102(10), 3599-3604.
Czekster, C.M.; Ludewig, H.; McMahon, S.A.; Naismith, J.H. Characterization of a dual function macrocyclase enables design and use of efficient macrocyclization substrates. Nat. Commun., 2017, 8, 1045.
Li, M.; Chen, C.; Davies, D.R.; Chiu, T.K. Induced-fit mechanism for prolyl endopeptidase. J. Biol. Chem., 2010, 285(28), 21487-21495.
Kiss, A.L.; Hornung, B.; Rádi, K.; Gengeliczki, Z.; Sztáray, B.; Juhász, T.; Szeltner, Z.; Harmat, V.; Polgár, L. The acylaminoacyl peptidase from Aeropyrum pernix K1 thought to be an exopeptidase displays endopeptidase activity. J. Mol. Biol., 2007, 368(2), 509-520.
Kiss, A.L.; Palló, A.; Náray-Szabó, G.; Harmat, V.; Polgár, L. Structural and kinetic contributions of the oxyanion binding site to the catalytic activity of acylaminoacyl peptidase. J. Struct. Biol., 2008, 162(2), 312-323.
Yadav, P.; Goyal, V.D.; Gaur, N.K.; Kumar, A.; Gokhale, S.M.; Jamdar, S.N.; Makde, R.D. Carboxypeptidase in prolyl oligopeptidase family: Unique enzyme activation and substrate-screening mechanisms. J. Biol. Chem., 2018. epub ahead of print
Siponen, M.I.; Moche, M.; Arrowsmith, C.H.; Berglund, H.; Bountra, C.; Collins, R.; Edwards, A.M.; Flodin, S.; Flores, A.; Graslund, S.; Hammarstrom, M.; Johansson, A.; Johansson, I.; Kallas, A.; Karlberg, T.; Kraulis, P.; Kotenyova, T.; Kotzsch, A.; Markova, N.; Nielsen, T.K.; Nordlund, P.; Nyman, T.; Persson, C.; Roos, A.K.; Schutz, P.; Svensson, L.; Thorsell, A.G.; Tresaugues, L.; Van Den Berg, S.; Wahlberg, E.; Weigelt, J.; Welin, M.; Wisniewska, M.; Schuler, H. Structural Genomics Consortium, (SGC). To be 330 published.
Han, Q.; Robinson, H.; Li, J. Biochemical identification and crystal structure of kynurenine formamidase from Drosophila melanogaster. Biochem. J., 2012, 446(2), 253-260.
Nicolet, Y.; Lockridge, O.; Masson, P.; Fontecilla-Camps, J.C.; Nachon, F. Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J. Biol. Chem., 2003, 278(42), 41141-41147.
Terzyan, S.; Wang, C.S.; Downs, D.; Hunter, B.; Zhang, X.C. Crystal structure of the catalytic domain of human bile salt activated lipase. Protein Sci., 2000, 9(9), 1783-1790.
Fabrichny, I.P.; Leone, P.; Sulzenbacher, G.; Comoletti, D.; Miller, M.T.; Taylor, P.; Bourne, Y.; Marchot, P. Structural analysis of the synaptic protein neuroligin and its beta-neurexin complex: determinants for folding and cell adhesion. Neuron, 2007, 56(6), 979-991.
Wu, D.; Li, Y.; Song, G.; Zhang, D.; Shaw, N.; Liu, Z.J. Crystal structure of human esterase D: A potential genetic marker of retinoblastoma. FASEB J., 2009, 23(5), 1441-1446.
Zhang, R.; Koroleva, O.; Collert, F.; Joachimiak, A. 1.5 Å crystal structure of the Cephalosporin C deacetylase. To be published.
Won, S.J.; Davda, D.; Labby, K.J.; Hwang, S.Y.; Pricer, R.; Majmudar, J.D.; Armacost, K.A.; Rodriguez, L.A.; Rodriguez, C.L.; Chong, F.S.; Torossian, K.A.; Palakurthi, J.; Hur, E.S.; Meagher, J.L.; Brooks, C.L. 3rd; Stuckey, J.A.; Martin, B.R. Molecular mechanism for isoform-selective inhibition of acyl protein thioesterases 1 and 2 (APT1 and APT2). ACS Chem. Biol., 2016, 11(12), 3374-3382.
Mandel, C.R.; Tweel, B.; Tong, L. Crystal structure of human mitochondrial acyl-CoA thioesterase (ACOT2). Biochem. Biophys. Res. Commun., 2009, 385(4), 630-633.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 23 October, 2019
Page: [1089 - 1101]
Pages: 13
DOI: 10.2174/1389203720666190925103339
Price: $65

Article Metrics

PDF: 25
PRC: 1