Plasma-Free Amino Acid Profiling of Nasal Polyposis Patients

Author(s): Mustafa Celik*, Alper Şen, İsmail Koyuncu, Ataman Gönel

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 22 , Issue 9 , 2019

Become EABM
Become Reviewer

Abstract:

Aim and Objective: To determine the mechanisms present in the etiopathogenesis of nasal polyposis. It is not clear whether amino acids contribute in a causal way to the development of the disease. Therefore, the aim of this study was to determine the plasma-free amino acid profile in patients with nasal polyposis and to compare the results with a healthy control group.

Materials and Methods: This was a prospective controlled study that took place in the Otolaryngology Department at the Harran University Faculty of Medicine between April 2017 and April 2018. Plasmafree amino acid profile levels were studied in serum samples taken from a patient group and a healthy control group. Patients who were diagnosed with bilateral diffuse nasal polyposis and were scheduled for surgical interventions were included in this study. Individuals whose age, gender, and body mass index values were compatible with that of the patient group and who did not have any health problems were included in the control group. All the participants whose levels of plasma-free amino acid were thought to be affected by one or more of the following factors were excluded from the study: smoking and alcohol use, allergic rhinitis presence, the presence of acute or chronic sinusitis, a history of endoscopic sinus surgery, unilateral nasal masses, a history of chronic drug use, systemic or topical steroid use in the last three months for any reason, and liver, kidney, hematological, cardiovascular, metabolic, neurological, or psychiatric disorders or malignancies.

Results: In patients with nasal polyposis, 3-methyl histidine (3-MHIS: nasal polyposis group (ng) = 3.22 (1.92 – 6.07); control group (cg) = 1.21 (0.77 – 1.68); p = 0.001); arginine (arg: ng = 98.95 (70.81 – 117.75); cg = 75.10 (54.49 – 79.88); p = 0.005); asparagine (asn: ng = 79.84 (57.50 – 101.44); cg = 60.66 (46.39 – 74.62); p = 0.021); citrulline (cit: ng = 51.83 (43.81 – 59.78); cg = 38.33 (27.81 – 53.73); p = 0.038); cystine (cys: ng = 4.29 (2.43 – 6.66); cg = 2.41 (1.51 – 4.16); p = 0.019); glutamic acid (glu: ng = 234.86 (128.75 – 286.66); cg = 152.37 (122.51 – 188.34); p = 0.045); histidine (his: ng = 94.19 (79.34 – 113.99); cg = 74.80 (62.76 – 98.91); p = 0.018); lysine (lys: ng = 297.22 (206.55 – 371.25); cg = 179.50 (151.58 – 238.02); p = 0.001); ornithine (ng = 160.62 (128.36 – 189.32); cg = 115.91 (97.03 – 159.91); p = 0.019); serine (ser: ng = 195.15 (151.58 – 253.07); cg = 83.07 (67.44 – 92.44); p = 0.001); taurine (tau: ng = 74.69 (47.00 – 112.13); cg = 53.14 (33.57 – 67.31); p = 0.006); tryptophan (trp: ng = 52.31 (33.81 – 80.11); cg = 34.44 (25.94 – 43.07); p = 0.005), homocitrulline (ng = 1.75 (1.27 – 2.59); cg = 0.00 (0.00 – 0.53); p = 0.001); norvaline (ng = 6.90 (5.61 – 9.18); cg = 4.93 (3.74 – 7.13); p = 0.021); argininosuccinic acid (ng = 14.33 (10.06 – 25.65); cg = 12.22 (5.77 – 16.87) p = 0.046); and plasma concentrations were significantly higher than in the healthy control group (p <0.05). However, the gamma-aminobutyric acid (gaba: ng = 0.16 (0.10 – 0.24); cg = 0.21 (0.19 – 0.29); p = 0.010) plasma concentration was significantly lower in the nasal polyposis group than in the healthy control group.

Conclusion: In this study, plasma levels of 15 free amino acids were significantly higher in the nasal polyposis group than in the healthy control group. A plasma level of 1 free amino acid was found to be significantly lower in the nasal polyposis group compared to the healthy control group. Therefore, it is important to determine the possibility of using the information obtained to prevent the recurrence of the condition and to develop effective treatment strategies. This study may be a milestone for studies of this subject. However, this study needs to be confirmed by further studies conducted in a larger series.

Keywords: Nasal polyposis, amino acid profiling, biomarker, plasma, recurrence, effective treatment.

[1]
Pawankar, R. Nasal polyposis: an update: editorial review. Curr. Opin. Allergy Clin. Immunol., 2003, 3(1), 1-6.
[http://dx.doi.org/10.1097/00130832-200302000-00001] [PMID: 12582307]
[2]
Vinokur, V.; Berenshtein, E.; Chevion, M.M.; Eliashar, R. Iron homeostasis and methionine-centred redox cycle in nasal polyposis. Free Radic. Res., 2011, 45(3), 366-373.
[http://dx.doi.org/10.3109/10715762.2010.535531] [PMID: 21110782]
[3]
Felig, P. Amino acid metabolism in man. Annu. Rev. Biochem., 1975, 44(1), 933-955.
[http://dx.doi.org/10.1146/annurev.bi.44.070175.004441] [PMID: 1094924]
[4]
Brosnan, J.T. Interorgan amino acid transport and its regulation. J. Nutr., 2003, 133, 2068S-2072S.
[http://dx.doi.org/10.1093/jn/133.6.2068S] [PMID: 12771367]
[5]
Christensen, H.N. Interorgan amino acid nutrition. Physiol. Rev., 1982, 62(4 Pt 1), 1193-1233.
[http://dx.doi.org/10.1152/physrev.1982.62.4.1193] [PMID: 6752985]
[6]
Armstrong, M.D.; Stave, U. A study of plasma free amino acid levels. V. Correlations among the amino acids and between amino acids and some other blood constituents. Metabolism, 1973, 22(6), 827-833.
[http://dx.doi.org/10.1016/0026-0495(73)90054-1] [PMID: 4709333]
[7]
Armstrong, M.D.; Stave, U. A study of plasma free amino acid levels. IV. Characteristic individual levels of the amino acids. Metabolism, 1973, 22(6), 821-825.
[http://dx.doi.org/10.1016/0026-0495(73)90053-X] [PMID: 4709332]
[8]
Armstrong, M.D.; Stave, U. A study of plasma free amino acid levels. II. Normal values for children and adults. Metabolism, 1973, 22(4), 561-569.
[http://dx.doi.org/10.1016/0026-0495(73)90069-3] [PMID: 4696900]
[9]
Deyl, Z.; Hyanek, J.; Horakova, M. Profiling of amino acids in body fluids and tissues by means of liquid chromatography. J. Chromatogr. A, 1986, 379, 177-250.
[http://dx.doi.org/10.1016/S0378-4347(00)80685-4] [PMID: 3525589]
[10]
Kim, Y.S.; Maruvada, P.; Milner, J.A. Metabolomics in biomarker discovery: future uses for cancer prevention. Future Oncol., 2008, 4(1)
[http://dx.doi.org/10.2217/14796694.4.1.93] [http://dx.doi.org/10.2217/14796694.4.1.93]
[11]
Miyagi, Y.; Higashiyama, M.; Gochi, A.; Akaike, M.; Ishikawa, T.; Miura, T.; Saruki, N.; Bando, E.; Kimura, H.; Imamura, F.; Moriyama, M.; Ikeda, I.; Chiba, A.; Oshita, F.; Imaizumi, A.; Yamamoto, H.; Miyano, H.; Horimoto, K.; Tochikubo, O.; Mitsushima, T.; Yamakado, M.; Okamoto, N. Plasma free amino acid profiling of five types of cancer patients and its application for early detection. PLoS One, 2011, 6(9)e24143
[http://dx.doi.org/10.1371/journal.pone.0024143] [PMID: 21915291]
[12]
Watanabe, A.; Higashi, T.; Sakata, T.; Nagashima, H. Serum amino acid levels in patients with hepatocellular carcinoma. Cancer, 1984, 54(9), 1875-1882.
[http://dx.doi.org/10.1002/1097-0142(19841101)54:9<1875:AID-CNCR2820540918>3.0.CO;2-O] [PMID: 6090002]
[13]
Hasim, A.; Aili, A.; Maimaiti, A.; Mamtimin, B.; Abudula, A.; Upur, H. Plasma-free amino acid profiling of cervical cancer and cervical intraepithelial neoplasia patients and its application for early detection. Mol. Biol. Rep., 2013, 40(10), 5853-5859.
[http://dx.doi.org/10.1007/s11033-013-2691-3] [PMID: 24068431]
[14]
Cascino, A.; Muscaritoli, M.; Cangiano, C.; Conversano, L.; Laviano, A.; Ariemma, S.; Meguid, M.M.; Rossi Fanelli, F. Plasma amino acid imbalance in patients with lung and breast cancer. Anticancer Res., 1995, 15(2), 507-510.
[PMID: 7763031]
[15]
Mustafa, A.; Gupta, S.; Hudes, G.R.; Egleston, B.L.; Uzzo, R.G.; Kruger, W.D. Serum amino acid levels as a biomarker for renal cell carcinoma. J. Urol., 2011, 186(4), 1206-1212.
[http://dx.doi.org/10.1016/j.juro.2011.05.085] [PMID: 21849193]
[16]
Bi, X.; Henry, C.J. Plasma-free amino acid profiles are predictors of cancer and diabetes development. Nutr. Diabetes, 2017, 7(3)e249
[http://dx.doi.org/10.1038/nutd.2016.55] [PMID: 28287627]
[17]
Tochikubo, O.; Nakamura, H.; Jinzu, H.; Nagao, K.; Yoshida, H.; Kageyama, N.; Miyano, H. Weight loss is associated with plasma free amino acid alterations in subjects with metabolic syndrome. Nutr. Diabetes, 2016, 6(2)e197
[http://dx.doi.org/10.1038/nutd.2016.5] [PMID: 26926588]
[18]
Holm, E.; Sedlaczek, O.; Grips, E. Amino acid metabolism in liver disease. Curr. Opin. Clin. Nutr. Metab. Care, 1999, 2(1), 47-53.
[http://dx.doi.org/10.1097/00075197-199901000-00009] [PMID: 10453330]
[19]
Kinny-Köster, B.; Bartels, M.; Becker, S.; Scholz, M.; Thiery, J.; Ceglarek, U.; Kaiser, T. Plasma amino acid concentrations predict mortality in patients with end-stage liver disease. PLoS One, 2016, 11(7)e0159205
[http://dx.doi.org/10.1371/journal.pone.0159205] [PMID: 27410482]
[20]
Hong, S-Y.; Yang, D-H.; Chang, S-K. The relationship between plasma homocysteine and amino acid concentrations in patients with end-stage renal disease. J. Ren. Nutr., 1998, 8(1), 34-39.
[http://dx.doi.org/10.1016/S1051-2276(98)90035-8] [PMID: 9724828]
[21]
Chen, R.; Zou, Y.; Mao, D.; Sun, D.; Gao, G.; Shi, J.; Liu, X.; Zhu, C.; Yang, M.; Ye, W.; Hao, Q.; Li, R.; Yu, L. The general amino acid control pathway regulates mTOR and autophagy during serum/glutamine starvation. J. Cell Biol., 2014, 206(2), 173-182.
[http://dx.doi.org/10.1083/jcb.201403009] [PMID: 25049270]
[22]
Koyuncu, I.; Gonel, A.; Kocyigit, A.; Temiz, E.; Durgun, M.; Supuran, C.T. Selective inhibition of carbonic anhydrase-IX by sulphonamide derivatives induces pH and reactive oxygen species-mediated apoptosis in cervical cancer HeLa cells. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1137-1149.
[http://dx.doi.org/10.1080/14756366.2018.1481403] [PMID: 30001631]
[23]
Lee, S.H.; Kim, W.S.; Lee, S.H.; Oh, J.W.; Lee, H.M.; Jung, H.H.; Jang, J.W.; Jun, Y.J.; Cho, W.J.; Jhun, H.S. Expression and distribution of thioredoxin and thioredoxin reductase in human nasal mucosa and nasal polyp. Acta Otolaryngol., 2005, 125(8), 877-882.
[http://dx.doi.org/10.1080/00016480510029293] [PMID: 16158536]
[24]
Rhee, S.Y.; Jung, E.S.; Park, H.M.; Jeong, S.J.; Kim, K.; Chon, S.; Yu, S-Y.; Woo, J-T.; Lee, C.H. Plasma glutamine and glutamic acid are potential biomarkers for predicting diabetic retinopathy. Metabolomics, 2018, 14(7), 89.
[http://dx.doi.org/10.1007/s11306-018-1383-3] [PMID: 29950956]
[25]
Rossi Fanelli, F.; Cangiano, C.; Muscaritoli, M.; Conversano, L.; Torelli, G.F.; Cascino, A. Tumor-induced changes in host metabolism: A possible marker of neoplastic disease. Nutrition, 1995, 11(5), 595-600.
[PMID: 8748231]
[26]
Hack, V.; Schmid, D.; Breitkreutz, R.; Stahl-Henning, C.; Drings, P.; Kinscherf, R.; Taut, F.; Holm, E.; Dröge, W. Cystine levels, cystine flux, and protein catabolism in cancer cachexia, HIV/SIV infection, and senescence. FASEB J., 1997, 11(1), 84-92.
[http://dx.doi.org/10.1096/fasebj.11.1.9034170] [PMID: 9034170]
[27]
Kaufmann, Y.; Luo, S.; Johnson, A.; Babb, K.; Klimberg, V.S. Timing of oral glutamine on DMBA-induced tumorigenesis. J. Surg. Res., 2003, 111(1), 158-165.
[http://dx.doi.org/10.1016/S0022-4804(03)00090-8] [PMID: 12842461]
[28]
Lamb, D.J.; Puxeddu, E.; Malik, N.; Stenoien, D.L.; Nigam, R.; Saleh, G.Y.; Mancini, M.; Weigel, N.L.; Marcelli, M. Molecular analysis of the androgen receptor in ten prostate cancer specimens obtained before and after androgen ablation. J. Androl., 2003, 24(2), 215-225.
[http://dx.doi.org/10.1002/j.1939-4640.2003.tb02665.x] [PMID: 12634308]
[29]
Shen, M-R.; Chou, C-Y.; Ellory, J.C. Swelling-activated taurine and K+ transport in human cervical cancer cells: Association with cell cycle progression. Pflugers Arch., 2001, 441(6), 787-795.
[http://dx.doi.org/10.1007/s004240000476] [PMID: 11316262]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 22
ISSUE: 9
Year: 2019
Page: [657 - 662]
Pages: 6
DOI: 10.2174/1386207322666190920110324
Price: $65

Article Metrics

PDF: 23
HTML: 4
PRC: 1