Antimicrobial Activity of Biosynthesized Metal Nanoparticles

Author(s): Tina Nasrin, Parsha S. Karim, Soni Shaikh*

Journal Name: Current Nanomedicine
Formerly Recent Patents on Nanomedicine

Volume 10 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

It has been well documented that microbes are able to create self-defense against conventional antibiotics. Such drug-resistant property of the microbes always inspired the researchers to develop an alternative strategy to control the growth of pathogenic microbes. Nanoparticles have received major importance because of their distinctive property over corresponding bulk material. For such unique property, from the recent past, research has been focused on the nanotechnology to uplift the biomedical sciences but hazardous byproducts of nanoparticle synthesis makes always retardation. In this review, we emphasized and elaborated the biosynthesis process of metal nanoparticles and how such particles can be considered for anti-microbial context.

Keywords: Antimicrobial, antifungal, antibacterial, biosynthesis, nanoparticle, microorganism.

[1]
Satoshi H, Serpone N. Introduction to Nanoparticles. 3rd ed. Wiley-VCH 2013; pp. 1-24.
[2]
Faraday M. Experimental relations of gold (and other metals) to light. Philos Trans 1857; 147: 145-81.
[http://dx.doi.org/10.1098/rstl.1857.0011]
[3]
Taniguchi N. On the basic concept of “Nano-Technology”. Proc Intl Conf Prod Eng 1974; 18-23.
[4]
Drexler KE. Molecular engineering: An approach to the development of general capabilities for molecular manipulation. Proc Natl Acad Sci USA 1981; 78(9): 5275-8.
[http://dx.doi.org/10.1073/pnas.78.9.5275] [PMID: 16593078]
[5]
Garg A, Visht S, Sharma PK, et al. Formulation, characterization and application on nanoparticle: A review. Pharm Sin 2011; 2: 17-26.
[6]
Mohanraj V, Chen Y. Nanoparticles-a review. Trop J Pharm Res 2006; 5: 561-73.
[7]
Haynes CL, Van Duyne RP. Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 2001; 105: 5599-611.
[http://dx.doi.org/10.1021/jp010657m]
[8]
Cundliffe E, Demain AL. Avoidance of suicide in antibiotic-producing microbes. J Ind Microbiol Biotechnol 2010; 37(7): 643-72.
[http://dx.doi.org/10.1007/s10295-010-0721-x] [PMID: 20446033]
[9]
Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small 2008; 4(1): 26-49.
[http://dx.doi.org/10.1002/smll.200700595] [PMID: 18165959]
[10]
AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009; 3(2): 279-90.
[http://dx.doi.org/10.1021/nn800596w] [PMID: 19236062]
[11]
Ayyappan S, Srinivasa GR, Subbanna GN, et al. Nanoparticles of Ag, Au, Pd, and Cu produced by alcohol reduction of the salts. J Mater Res 1997; 12: 398-401.
[http://dx.doi.org/10.1557/JMR.1997.0057]
[12]
Longenberger L, Mills G. Formation of metal particles in aqueous solutions by reactions of metal complexes with polymers. J Phys Chem 1995; 99: 475-8.
[http://dx.doi.org/10.1021/j100002a001]
[13]
Mann S. Biomineralization and biomimetic materials chemistry Biomimetic materials chemistry,. VCH: New York 1996; pp. 1-40.
[14]
Beveridge TJ, Murray RG. Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 1980; 141(2): 876-87.
[PMID: 6767692]
[15]
Brierley JA. Biosorption of Heavy Metals 1990; 305-11.
[16]
Huang CP, Juang CP, Morehart K, et al. The removal of copper (II) from dilute aqueous solutions by Saccharromyces cerevisiae. Water Res 1990; 24: 433-9.
[http://dx.doi.org/10.1016/0043-1354(90)90225-U]
[17]
Sakaguchi T, Tsuji T, Nakajima A, et al. Accumulation of cadmium by green microalgae. Eur J Appl Microbiol 1997; 8: 207-15.
[http://dx.doi.org/10.1007/BF00506184]
[18]
Tobin JM, Cooper DG, Neufeld RJ. Uptake of metal ions by Rhizopus arrhizus biomass. Appl Environ Microbiol 1984; 47(4): 821-4.
[PMID: 16346521]
[19]
Klaus T, Joerger R, Olsson E, Granqvist CG. Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 1999; 96(24): 13611-4.
[http://dx.doi.org/10.1073/pnas.96.24.13611] [PMID: 10570120]
[20]
Mukherjee P, Senapati S, Mandal D, et al. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 2002; 3(5): 461-3.
[http://dx.doi.org/10.1002/1439-7633(20020503)3:5<461:AID-CBIC461>3.0.CO;2-X] [PMID: 12007181]
[21]
Nair B, Pradeep T. Coalescence of nanoclusters and the formation of sub-micron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2002; 2: 293-8.
[http://dx.doi.org/10.1021/cg0255164]
[22]
Oremland RS, Herbel MJ, Blum JS, et al. Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl Environ Microbiol 2004; 70(1): 52-60.
[http://dx.doi.org/10.1128/AEM.70.1.52-60.2004] [PMID: 14711625]
[23]
Karthick V, Kumar VG, Dhas TS, Govindaraju K, Sinha S, Singaravelu G. Biosynthesis of gold nanoparticles and identification of capping agent using gas chromatography-mass spectrometry and matrix assisted laser desorption ionization-mass spectrometry. J Nanosci Nanotechnol 2015; 15(6): 4052-7.
[http://dx.doi.org/10.1166/jnn.2015.9157] [PMID: 26369012]
[24]
Aswathy Aromal S, Philip D. Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim Acta A Mol Biomol Spectrosc 2012; 97: 1-5.
[http://dx.doi.org/10.1016/j.saa.2012.05.083] [PMID: 22743607]
[25]
Ravindra BM, Seema LN, Neelambika TM, et al. Silver nanoparticles synthesized by in-vitro derived plants and Callus culture of Clitoria ternatea; evaluation of antimicrobial activity. Res Biotechnol 2012; 3: 26-38.
[26]
Gardea-Torresdey JL, Parsons JG, Gomez E, et al. Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2001; 2: 397-401.
[http://dx.doi.org/10.1021/nl015673+]
[27]
Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, et al. Alfalfa Sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir 2003; 19: 1357-61.
[http://dx.doi.org/10.1021/la020835i]
[28]
Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 2006; 22(2): 577-83.
[http://dx.doi.org/10.1021/bp0501423] [PMID: 16599579]
[29]
Shameli K, Bin Ahmad M, Jaffar Al-Mulla EA, et al. Green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extraction. Molecules 2012; 17(7): 8506-17.
[http://dx.doi.org/10.3390/molecules17078506] [PMID: 22801364]
[30]
Vanaja M, Rajeshkumar S, Paulkumar K, et al. Phytosynthesis and characterization of silver nanoparticles using stem extract of Coleus aromaticus. Int J Mater Biomat Appl 2013; 3: 1-4.
[31]
Armendariz V, Herrera I, Peralta-Videa JR, et al. Size controlled gold nanoparticle formation by Avena sativa biomass, use of plants in nanobiotechnology. J Nanopart Res 2004; 6: 377-82.
[http://dx.doi.org/10.1007/s11051-004-0741-4]
[32]
Shankar SS, Rai A, Ahmad A, Sastry M. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 2004; 275(2): 496-502.
[http://dx.doi.org/10.1016/j.jcis.2004.03.003] [PMID: 15178278]
[33]
Medda S, Hajra A, Dey U, et al. Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. Appl Nanosci 2015; 5: 875-80.
[http://dx.doi.org/10.1007/s13204-014-0387-1]
[34]
Huang J, Li Q, Sun D, et al. Biosynthesis of silver and gold nanoparticles by novel sun dried Cinnamomum camphora leaf. Nanotechnology 2007; 18: 1-11.
[http://dx.doi.org/10.1088/0957-4484/18/10/105104]
[35]
Gan PP, Ng SH, Huang Y, Li SF. Green synthesis of gold nanoparticles using palm oil mill effluent (POME): a low-cost and eco-friendly viable approach. Bioresour Technol 2012; 113: 132-5.
[http://dx.doi.org/10.1016/j.biortech.2012.01.015] [PMID: 22297042]
[36]
VanderJagt TJ, Ghattas R, VanderJagt DJ, Crossey M, Glew RH. Comparison of the total antioxidant content of 30 widely used medicinal plants of New Mexico. Life Sci 2002; 70(9): 1035-40.
[http://dx.doi.org/10.1016/S0024-3205(01)01481-3] [PMID: 11860152]
[37]
Rodríguez-León E, Iñiguez-Palomares R, Navarro RE, et al. Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Res Lett 2013; 8(1): 318.
[http://dx.doi.org/10.1186/1556-276X-8-318] [PMID: 23841946]
[38]
Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A Mol Biomol Spectrosc 2007; 67(3-4): 1003-6.
[http://dx.doi.org/10.1016/j.saa.2006.09.028] [PMID: 17084659]
[39]
Bhattacharya R, Mukherjee P. Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 2008; 60(11): 1289-306.
[http://dx.doi.org/10.1016/j.addr.2008.03.013] [PMID: 18501989]
[40]
Simkiss K, Wilbur KM. Biomineralization. 1st ed. Elsevier 2012; pp. 21-33.
[http://dx.doi.org/10.1016/B978-0-08-092584- 4.50008-1]
[41]
Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P. The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 2006; 69(5): 485-92.
[http://dx.doi.org/10.1007/s00253-005-0179-3] [PMID: 16317546]
[42]
Mehra RK, Winge DR. Metal ion resistance in fungi: molecular mechanisms and their regulated expression. J Cell Biochem 1991; 45(1): 30-40.
[http://dx.doi.org/10.1002/jcb.240450109] [PMID: 2005182]
[43]
Zhang X, Yan S, Tyagi RD, Surampalli RY. Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 2011; 82(4): 489-94.
[http://dx.doi.org/10.1016/j.chemosphere.2010.10.023] [PMID: 21055786]
[44]
Sastry M, Ahmad A, Khan MI, et al. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 2003; 85: 162-70.
[45]
He S, Guo Z, Zhang Y, et al. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate. Mater Lett 2007; 61: 3984-7.
[http://dx.doi.org/10.1016/j.matlet.2007.01.018]
[46]
Johnston CW, Wyatt MA, Li X, et al. Gold biomineralization by a metallophore from a gold-associated microbe. Nat Chem Biol 2013; 9(4): 241-3.
[http://dx.doi.org/10.1038/nchembio.1179] [PMID: 23377039]
[47]
Yong P, Rowson NA, Farr JP, Harris IR, Macaskie LE. Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol Bioeng 2002; 80(4): 369-79.
[http://dx.doi.org/10.1002/bit.10369] [PMID: 12325145]
[48]
Lloyd JR, Yong P, Macaskie LE. Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl Environ Microbiol 1998; 64(11): 4607-9.
[PMID: 9797331]
[49]
Kalimuthu K, Suresh Babu R, Venkataraman D, Bilal M, Gurunathan S. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerfaces 2008; 65(1): 150-3.
[http://dx.doi.org/10.1016/j.colsurfb.2008.02.018] [PMID: 18406112]
[50]
Vaidyanathan R, Gopalram S, Kalishwaralal K, Deepak V, Pandian SR, Gurunathan S. Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity. Colloids Surf B Biointerfaces 2010; 75(1): 335-41.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.006] [PMID: 19796922]
[51]
Fu JK, Zhang WD, Liu YY, et al. Characterization of adsorption and reduction of noble metal ions by bacteria. Chem J Chinese 1999; 20: 1452-4.
[52]
Fu M, Li Q, Sun D, et al. Rapid preparation process of silver nanoparticles by bioreduction and their characterizations. Chin J Chem Eng 2006; 14: 114.
[http://dx.doi.org/10.1016/S1004-9541(06)60046-3]
[53]
Debabov VG, Voeikova TA, Shebanova AS, et al. Bacterial synthesis of silver sulfide nanoparticles. Nanotechnol Russ 2013; 8: 269-76.
[http://dx.doi.org/10.1134/S1995078013020043]
[54]
Zhang H, Li Q, Lu Y, et al. Biosorption and bioreduction of diamine silver complex by Corynebacterium. J Chem Technol Biotechnol 2005; 80: 285-90.
[http://dx.doi.org/10.1002/jctb.1191]
[55]
Dhoondia ZH, Chakraborty H. Lactobacillus mediated synthesis of silver oxide nanoparticles. Nanomater Nanotechnol 2012; 2: 1-7.
[http://dx.doi.org/10.5772/55741]
[56]
Ramanathan R, Field MR, O’Mullane AP, Smooker PM, Bhargava SK, Bansal V. Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems. Nanoscale 2013; 5(6): 2300-6.
[http://dx.doi.org/10.1039/C2NR32887A] [PMID: 23223802]
[57]
Okami Y, Hotta K. In: Goodfellow M, Williams S.T,Mordarski M, Eds. Search and discovery of new antibiotics,Actinomycetes in biotechnology, Academic Press, London 1988; 33-67.
[http://dx.doi.org/10.1016/b978-0-12-289673-6.50007-5]
[58]
Procópio RE, Silva IR, Martins MK, Azevedo JL, Araújo JM. Antibiotics produced by Streptomyces. Braz J Infect Dis 2012; 16(5): 466-71.
[http://dx.doi.org/10.1016/j.bjid.2012.08.014] [PMID: 22975171]
[59]
Ahmad A, Mukherjee P, Senapati S, et al. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 2003; 28: 313-8.
[http://dx.doi.org/10.1016/S0927-7765(02)00174-1]
[60]
Balagurunathan R, Radhakrisnan M, Rajendran RB. et al.Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10. Ind J Biochem Biophys 2011; 148: 331-5.
[61]
Kurtzman CP, Fell JW. Péter G, Rosa C, Eds Yeast systematics and phylogeny - Implications of molecular identification methods for studies in ecology Biodiversity and ecophysiology of yeasts The Yeast Handbook. Springer: Berlin, Heidelberg 2006; pp. 11-30.
[62]
Breierová E, Vajcziková I, Sasinková V, et al. Biosorption of cadmium ions by different yeast species. Z Natforsch C J Biosci 2002; 57(7-8): 634-9.
[http://dx.doi.org/10.1515/znc-2002-7-815] [PMID: 12240989]
[63]
Dameron CT, Reese RN, Mehra RK, et al. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 1983; 338: 596-7.
[http://dx.doi.org/10.1038/338596a0]
[64]
Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM. Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 2002; 78(5): 583-8.
[http://dx.doi.org/10.1002/bit.10233] [PMID: 12115128]
[65]
Seshadri S, Saranya K, Kowshik M. Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnol Prog 2011; 27(5): 1464-9.
[http://dx.doi.org/10.1002/btpr.651] [PMID: 21710608]
[66]
Gericke M, Pinches A. Microbial production of gold nanoparticles. Gold Bull 2006; 39: 22-8.
[http://dx.doi.org/10.1007/BF03215529]
[67]
Kowshik M, Ashtaputre S, Kharrazi S, et al. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 2003; 14: 95-100.
[http://dx.doi.org/10.1088/0957-4484/14/1/321]
[68]
Agnihotri M, Joshi S, Kumar AR, et al. Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 2009; 63: 1231-4.
[http://dx.doi.org/10.1016/j.matlet.2009.02.042]
[69]
Pimprikar PS, Joshi SS, Kumar AR, Zinjarde SS, Kulkarni SK. Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf B Biointerfaces 2009; 74(1): 309-16.
[http://dx.doi.org/10.1016/j.colsurfb.2009.07.040] [PMID: 19700266]
[70]
Blackwell M. The fungi: 1, 2, 3 ... 5.1 million species? Am J Bot 2011; 98(3): 426-38.
[http://dx.doi.org/10.3732/ajb.1000298] [PMID: 21613136]
[71]
Adrio JL, Demain AL. Barredo JL, EdsMicrobial cells and enzymes a century of progress Microbial enzymes and biotransformations methods in biotechnology. vol. 17.Humana Press. 2005; pp. 1-27.
[72]
Vahabi K, Mansoori GA, Karimi S. Biosynthesis of silver nanoparticles by fungus trichoderma reesei. Insciences J 2011; 1: 65-79.
[http://dx.doi.org/10.5640/insc.010165]
[73]
Thakker JN, Dalwadi P, Dhandhukia PC. Biosynthesis of gold nanoparticles using fusarium oxysporum f. sp. cubense JT1, a plant pathogenic fungus. ISRN Biotechnol 2012; 2013515091
[PMID: 25969773]
[74]
Bansal V, Rautray D, Ahamd A, et al. Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 2004; 14: 3303-5.
[http://dx.doi.org/10.1039/b407904c]
[75]
Raliya R, Tarafdar JC. Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: an eco-friendly approach. Int Nano Lett 2014; 4: 93.
[http://dx.doi.org/10.1007/s40089-014-0093-8]
[76]
Syed A, Ahmad A. Extracellular biosynthesis of platinum nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 2012; 97: 27-31.
[http://dx.doi.org/10.1016/j.colsurfb.2012.03.026] [PMID: 22580481]
[77]
Ahmad A, Mukherjee P, Mandal D, et al. Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 2002; 124(41): 12108-9.
[http://dx.doi.org/10.1021/ja027296o] [PMID: 12371846]
[78]
Rajeshkumar S, Ponnanikajamideen M, Malarkodi C, et al. Microbe-mediated synthesis of antimicrobial semiconductor nanoparticles by marine bacteria. J Nanostruct Chem 2014; 4: 96.
[http://dx.doi.org/10.1007/s40097-014-0096-z]
[79]
Nasrin T, Patra M, Escudey M, Das TK. Biosynthesized CdS nanoparticles disturb E. coli growth through reactive oxygen production. Microb Pathog 2019; 135103639
[http://dx.doi.org/10.1016/j.micpath.2019.103639] [PMID: 31330264]
[80]
Nasrin T, Das TK. Photo-catalytic activity of Aspergillus foetidus mediated bio-synthesized CdS nanoparticles on methylene blue dye. J Biochem Biophys 2016; 53: 44-50.
[81]
Nasrin T, Sadhukhan R, Das TK. BSA and DNA binding studies of Aspergillus foetidus mediated biosynthesized CdS nanoparticles. Curr Nanosci 2016; 12: 781-8.
[http://dx.doi.org/10.2174/1573413712666160630131356]
[82]
Moazeni M, Shahverdi AR, Nabili M, et al. Green synthesis of silver nanoparticles: The reasons for and against Aspergillus parasiticus. J Nanomedicine 2014; 1: 267-75.
[83]
Bhainsa KC, D’Souza SF. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 2006; 47(2): 160-4.
[http://dx.doi.org/10.1016/j.colsurfb.2005.11.026] [PMID: 16420977]
[84]
Prabhu N, Revathi N, Darsana R, et al. Antibacterial activities of silver nanoparticles synthesized by Aspergillus fumigatus. Icfai Univ J Biotechnol 2009; 2: 50-5.
[85]
Pavani KV, Srujana N, Preethi G, et al. Synthesis of copper nanoparticles by Aspergillus species. Lett Appl Nanobiosci 2013; 2: 110-3.
[86]
Pavani KV, Kumar NS, Sangameswaran BB. Synthesis of lead nanoparticles by Aspergillus species. Pol J Microbiol 2012; 61(1): 61-3.
[PMID: 22708348]
[87]
Ninganagouda S, Rathod V, Singh D. Characterization and biosynthesis of silver nanoparticles using a fungus Aspergillus niger. Inter Lett Nat Sci 2014; 10: 49-57.
[http://dx.doi.org/10.18052/www.scipress.com/ILNS.15.49]
[88]
Abdel-Hadi A, Awad MF, Abo-Dahab N, et al. Extracellular synthesis of silver nanoparticles by Aspergillus terreus: biosynthesis, characterization and biological activity. Biosci Biotechnol Res Asia 2014; 11: 1179-86.
[http://dx.doi.org/10.13005/bbra/1503]
[89]
Roy S, Mukherjee T, Chakraborty S, et al. Biosynthesis, characterization & antifungal activity of silver nanoparticles synthesized by the fungus Aspergillus Foetidus mtcc 8876. Dig J Nanomat Bios 2013; 8: 197-205.
[90]
Sneha K, Sathishkumar M, Mao J, et al. Corynebacterium glutamicum-mediated crystallization of silver ions through sorption and reduction processes. Chem Eng J 2010; 162: 989-96.
[http://dx.doi.org/10.1016/j.cej.2010.07.006]
[91]
Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces 2009; 68(1): 88-92.
[http://dx.doi.org/10.1016/j.colsurfb.2008.09.022] [PMID: 18995994]
[92]
Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R. Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small 2005; 1(5): 517-20.
[http://dx.doi.org/10.1002/smll.200400053] [PMID: 17193479]
[93]
Govender Y, Riddin T, Gericke M, Whiteley CG. Bioreduction of platinum salts into nanoparticles: a mechanistic perspective. Biotechnol Lett 2009; 31(1): 95-100.
[http://dx.doi.org/10.1007/s10529-008-9825-z] [PMID: 18773149]
[94]
Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 2010; 156(1-2): 1-13.
[http://dx.doi.org/10.1016/j.cis.2010.02.001] [PMID: 20181326]
[95]
Walker CB. The acquisition of antibiotic resistance in the periodontal microflora. Periodontol 2000 1996; 10: 79-88.
[http://dx.doi.org/10.1111/j.1600-0757.1996.tb00069.x] [PMID: 9567938]
[96]
Awad HM, Kamal YES, Aziz R, et al. Antibiotics as microbial secondary metabolites: Production and application. J Teknol 2012; 59: 101-11.
[97]
Huh AJ, Kwon YJ. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 2011; 156(2): 128-45.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.002] [PMID: 21763369]
[98]
Schmieder R, Edwards R. Insights into antibiotic resistance through metagenomic approaches. Future Microbiol 2012; 7(1): 73-89.
[http://dx.doi.org/10.2217/fmb.11.135] [PMID: 22191448]
[99]
Greenberger PA. Allergic bronchopulmonary aspergillosis. J Allergy Clin Immunol 2002; 110(5): 685-92.
[http://dx.doi.org/10.1067/mai.2002.130179] [PMID: 12417875]
[100]
Giannousi K, Lafazanis K, Arvanitidis J, Pantazaki A, Dendrinou-Samara C. Hydrothermal synthesis of copper based nanoparticles: antimicrobial screening and interaction with DNA. J Inorg Biochem 2014; 133: 24-32.
[http://dx.doi.org/10.1016/j.jinorgbio.2013.12.009] [PMID: 24441110]
[101]
Annamalai A, Christina VL, Sudha D, Kalpana M, Lakshmi PT. Green synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta L. leaf extract. Colloids Surf B Biointerfaces 2013; 108: 60-5.
[http://dx.doi.org/10.1016/j.colsurfb.2013.02.012] [PMID: 23528605]
[102]
Lipovsky A, Nitzan Y, Gedanken A, Lubart R. Antifungal activity of ZnO nanoparticles--the role of ROS mediated cell injury. Nanotechnology 2011; 22(10)105101
[http://dx.doi.org/10.1088/0957-4484/22/10/105101] [PMID: 21289395]
[103]
Malarkodi C, Rajeshkumar S, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G. Biosynthesis and antimicrobial activity of semiconductor nanoparticles against oral pathogens. Bioinorg Chem Appl 2014; 2014347167
[http://dx.doi.org/10.1155/2014/347167] [PMID: 24860280]
[104]
Whitesides GM. Nanoscience, nanotechnology, and chemistry. Small 2005; 1(2): 172-9.
[http://dx.doi.org/10.1002/smll.200400130] [PMID: 17193427]
[105]
Kathiresan K, Alikunhi NM, Pathmanaban S, Nabikhan A, Kandasamy S. Analysis of antimicrobial silver nanoparticles synthesized by coastal strains of Escherichia coli and Aspergillus niger. Can J Microbiol 2010; 56(12): 1050-9.
[http://dx.doi.org/10.1139/W10-094] [PMID: 21164575]
[106]
Mohammed Fayaz A, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R. Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 2009; 57(14): 6246-52.
[http://dx.doi.org/10.1021/jf900337h] [PMID: 19552418]
[107]
Rajakumar G, Rahuman AA, Roopan SM, et al. Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta A Mol Biomol Spectrosc 2012; 91: 23-9.
[http://dx.doi.org/10.1016/j.saa.2012.01.011] [PMID: 22349888]
[108]
Jaidev LR, Narasimha G. Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surf B Biointerfaces 2010; 81(2): 430-3.
[http://dx.doi.org/10.1016/j.colsurfb.2010.07.033] [PMID: 20708910]
[109]
Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine (Lond) 2009; 5(4): 382-6.
[http://dx.doi.org/10.1016/j.nano.2009.06.005] [PMID: 19616127]
[110]
Shivashankarappa A, Sanjay KR. Study on biological synthesis of cadmium sulfide nanoparticles by bacillus licheniformis and its antimicrobial properties against food borne pathogens. Nanosci Nanotechnol Res 2015; 3: 6-15.
[111]
Malarkodi C, Rajeshkumar S, Paulkumar K, et al. Biosynthesis of semiconductor nanoparticles by using sulfur reducing bacteria. Serratia Nematodiphila Adv Nano Res 2013; 1: 83-91.
[http://dx.doi.org/10.12989/anr.2013.1.2.083]
[112]
Jayaseelan C, Rahuman AA, Kirthi AV, et al. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc 2012; 90: 78-84.
[http://dx.doi.org/10.1016/j.saa.2012.01.006] [PMID: 22321514]
[113]
El-Shanshoury AERR, El Silk SE, Ebeid ME. Extracellular biosynthesis of silver nanoparticles using escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633, and streptococcus thermophilus ESh1 and their antimicrobial activities. Inter Schol Res Net 2011; 2011: 1-7.
[http://dx.doi.org/10.5402/2011/385480]
[114]
Abboud Y, Saffaj T, Chagraoui A, et al. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcate). Appl Nanosci 2014; 4: 571-6.
[http://dx.doi.org/10.1007/s13204-013-0233-x]
[115]
Sadhasivam S, Shanmugam P, Yun K. Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surf B Biointerfaces 2010; 81(1): 358-62.
[http://dx.doi.org/10.1016/j.colsurfb.2010.07.036] [PMID: 20705438]
[116]
MubarakAli D, Thajuddin N, Jeganathan K, Gunasekaran M. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf B Biointerfaces 2011; 85(2): 360-5.
[http://dx.doi.org/10.1016/j.colsurfb.2011.03.009] [PMID: 21466948]
[117]
Bankar A, Joshi B, Kumar AR, Zinjarde S. Banana peel extract mediated synthesis of gold nanoparticles. Colloids Surf B Biointerfaces 2010; 80(1): 45-50.
[http://dx.doi.org/10.1016/j.colsurfb.2010.05.029] [PMID: 20620890]
[118]
Khaleghi M, Khorrami S, Ravan H. Identification of Bacillus thuringiensis bacterial strain isolated from the mine soil as a robust agent in the biosynthesis of silver nanoparticles with strong antibacterial and anti-biofilm activities. Biocatal Agric Biotechnol 2019; 101047
[http://dx.doi.org/10.1016/j.bcab.2019.101047]
[119]
Khorrami S, Zarrabi A, Khaleghi M, Danaei M, Mozafari MR. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int J Nanomedicine 2018; 13: 8013-24.
[http://dx.doi.org/10.2147/IJN.S189295] [PMID: 30568442]
[120]
Thill A, Zeyons O, Spalla O, et al. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 2006; 40(19): 6151-6.
[http://dx.doi.org/10.1021/es060999b] [PMID: 17051814]
[121]
Pisanic TR, Jin S, Shubayev VI. In: Sahu SC, Casciano DA, Eds Iron oxide magnetic nanoparticle nanotoxicity: Incidence and mechanisms John Wiley & Sons, Ltd. 2009; pp. 397-425.
[http://dx.doi.org/10.1002/9780470747803.ch20 ] [PMID: 17051814]
[122]
Lok CN, Ho CM, Chen R, et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 2006; 5(4): 916-24.
[http://dx.doi.org/10.1021/pr0504079] [PMID: 16602699]
[123]
Rai VR, Bai AJ. In: Méndez Vilas A, Eds Nanoparticles and their potential application as antimicrobials, science against microbial pathogens: communicatingcurrent research and technological advances In: Méndez-Vilas, A, Ed, Formatex, Microbiology Series, No 3, Vol 1, Spain,. 2011; pp. 197-209.
[124]
Franci G, Falanga A, Galdiero S, et al. Silver nanoparticles as potential antibacterial agents. Molecules 2015; 20(5): 8856-74.
[http://dx.doi.org/10.3390/molecules20058856] [PMID: 25993417]
[125]
Reidy B, Haase A, Luch A, Dawson KA, Lynch I. Mechanisms of silver nanoparticle release, transformation and toxicity: A critical review of current knowledge and recommendations for future studies and applications. Materials (Basel) 2013; 6(6): 2295-350.
[http://dx.doi.org/10.3390/ma6062295] [PMID: 28809275]
[126]
Fu PP, Xia Q, Hwang HM, Ray PC, Yu H. Mechanisms of nanotoxicity: generation of reactive oxygen species. Yao Wu Shi Pin Fen Xi 2014; 22(1): 64-75.
[http://dx.doi.org/10.1016/j.jfda.2014.01.005] [PMID: 24673904]
[127]
Yakout SM, Mostafa AA. A novel green synthesis of silver nanoparticles using soluble starch and its antibacterial activity. Int J Clin Exp Med 2015; 8(3): 3538-44.
[PMID: 26064246]
[128]
Kora AJ, Arunachalam J. Assessment of antibacterial activity of silver nanoparticles on Pseudomonas aeruginosa and its mechanism of action. World J Microbiol Biotechnol 2009; 27: 1209-16.
[http://dx.doi.org/10.1007/s11274-010-0569-2]
[129]
Ninganagouda S, Rathod V, Singh D, et al. Growth kinetics and mechanistic action of reactive oxygen species released by silver nanoparticles from Aspergillus niger on Escherichia coli. BioMed Res Int 2014; 2014753419
[http://dx.doi.org/10.1155/2014/753419] [PMID: 25028666]
[130]
Yoon KY, Hoon Byeon J, Park JH, Hwang J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 2007; 373(2-3): 572-5.
[http://dx.doi.org/10.1016/j.scitotenv.2006.11.007] [PMID: 17173953]
[131]
Pramanik A, Laha D, Bhattacharya D, Pramanik P, Karmakar P. A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. Colloids Surf B Biointerfaces 2012; 96: 50-5.
[http://dx.doi.org/10.1016/j.colsurfb.2012.03.021] [PMID: 22521682]
[132]
Wang S, Lawson R, Ray PC, Yu H. Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria. Toxicol Ind Health 2011; 27(6): 547-54.
[http://dx.doi.org/10.1177/0748233710393395] [PMID: 21415096]
[133]
Naika HR, Lingaraju K, Manjunath K, et al. Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J Taibah Univ Sci 2015; 9: 7-12.
[http://dx.doi.org/10.1016/j.jtusci.2014.04.006]
[134]
Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 2006; 6(4): 866-70.
[http://dx.doi.org/10.1021/nl052326h] [PMID: 16608300]
[135]
Khashan KS, Marzoog TR, Mohammed WH, et al. Effect of nanoparticles on the antibacterial activity of antibiotics. Inter J Develop Res 2014; 4: 211-4.
[136]
Kim YH, Lee DK, Jo BG, et al. Synthesis of oleate capped Cu nanoparticles by thermal decomposition. Colloids Surf A Physicochem Eng Asp 2006; 285: 364-8.
[http://dx.doi.org/10.1016/j.colsurfa.2005.10.067]
[137]
Elad Y, Yunis H, Katan T. Multiple fungicide resistance to benzimidazoles, dicarboximides and diethofencarb in field isolates of Botrytis cinerea in Israel. Plant Pathol 1992; 41: 41-6.
[http://dx.doi.org/10.1111/j.1365-3059.1992.tb02314.x]
[138]
Stoimenov PK, Klinger RL, Marchin GL, et al. Metal oxide nanoparticles as bactericidal agents. Langmuir 2002; 18: 6679-86.
[http://dx.doi.org/10.1021/la0202374]
[139]
Porter P, Polikepahad S, Qian Y, et al. Respiratory tract allergic disease and atopy: experimental evidence for a fungal infectious etiology. Med Mycol 2011; 49(Suppl. 1): S158-63.
[http://dx.doi.org/10.3109/13693786.2010.509743] [PMID: 20807032]
[140]
Guinea J, Torres-Narbona M, Gijón P, et al. Pulmonary aspergillosis in patients with chronic obstructive pulmonary disease: incidence, risk factors, and outcome. Clin Microbiol Infect 2010; 16(7): 870-7.
[http://dx.doi.org/10.1111/j.1469-0691.2009.03015.x] [PMID: 19906275]
[141]
Chen J, Yang Q, Huang J, Li L. Risk factors for invasive pulmonary aspergillosis and hospital mortality in acute-on-chronic liver failure patients: a retrospective-cohort study. Int J Med Sci 2013; 10(12): 1625-31.
[http://dx.doi.org/10.7150/ijms.6824] [PMID: 24151434]
[142]
Choi CH, Zuckerman JE, Webster P, Davis ME. Targeting kidney mesangium by nanoparticles of defined size. Proc Natl Acad Sci USA 2011; 108(16): 6656-61.
[http://dx.doi.org/10.1073/pnas.1103573108] [PMID: 21464325]
[143]
Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V. Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm 2005; 2(3): 194-205.
[http://dx.doi.org/10.1021/mp0500014] [PMID: 15934780]
[144]
Pereira L, Dias N, Carvalho J, Fernandes S, Santos C, Lima N. Synthesis, characterization and antifungal activity of chemically and fungal-produced silver nanoparticles against Trichophyton rubrum. J Appl Microbiol 2014; 117(6): 1601-13.
[http://dx.doi.org/10.1111/jam.12652] [PMID: 25234047]
[145]
Mallmann EJ, Cunha FA, Castro BN, Maciel AM, Menezes EA, Fechine PB. Antifungal activity of silver nanoparticles obtained by green synthesis. Rev Inst Med Trop São Paulo 2015; 57(2): 165-7.
[http://dx.doi.org/10.1590/S0036-46652015000200011] [PMID: 25923897]
[146]
Ogar A, Tylko G, Turnau K. Antifungal properties of silver nanoparticles against indoor mould growth. Sci Total Environ 2015; 521-522: 305-14.
[http://dx.doi.org/10.1016/j.scitotenv.2015.03.101] [PMID: 25847174]
[147]
Panácek A, Kolár M, Vecerová R, et al. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 2009; 30(31): 6333-40.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.065] [PMID: 19698988]
[148]
Pulit J, Banach M, Szczygłowska R, Bryk M. Nanosilver against fungi. Silver nanoparticles as an effective biocidal factor. Acta Biochim Pol 2013; 60(4): 795-8.
[PMID: 24432334]
[149]
Khalil NM. Biogenic silver nanoparticles by Aspergillus terreus as a powerful nano weapon against Aspergillus fumigatus. Afr J Microbiol Res 2013; 7: 5645-51.
[http://dx.doi.org/10.5897/AJMR2013.6429]
[150]
Petranovskii V, Panina L, Bogomolova E, et al. Microbiologically active nanocomposite media. Proc SPIE 2003; 5218: 244-55.
[http://dx.doi.org/10.1117/12.506532]
[151]
Mahapatra SS, Karak N. Hyperbranched polyamine/Cu nanoparticles for epoxy thermoset. J Macromol Sci 2009; 46: 296-303.
[http://dx.doi.org/10.1080/10601320802637375]
[152]
Ramyadevi J, Jeyasubramanian K, Marikani A, et al. Copper nanoparticles synthesized by polyol process used to control hematophagous parasites. Parasitol Res 2011; 109(5): 1403-15.
[http://dx.doi.org/10.1007/s00436-011-2387-3] [PMID: 21526405]
[153]
Abdeen S, Geo S, Sukanya PK, et al. Biosynthesis of silver nanoparticles from actinomycetes for therapeutic applications. Int J Nanodimens 2014; 5: 155-62.
[154]
Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS. Application of silver nanoparticles for the control of colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 2011; 39(3): 194-9.
[http://dx.doi.org/10.5941/MYCO.2011.39.3.194] [PMID: 22783103]
[155]
Narayanan KB, Park HH. Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens. Eur J Plant 2014; 140: 185-92.
[http://dx.doi.org/10.1007/s10658-014-0399-4]
[156]
Kim SW, Kim KS, Lamsal K, et al. An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 2009; 19(8): 760-4.
[PMID: 19734712]
[157]
Shafaghat A. Synthesis and characterization of silver nanoparticles by phytosynthesis method and their biological activity. Synth React Inorg Met-Org Nano-Met Chem 2015; 45: 381-7.
[http://dx.doi.org/10.1080/15533174.2013.819900]
[158]
Thenmozhi M, Kannabiran K, Kumar R, Gopiesh Khanna V. Antifungal activity of Streptomyces sp. VITSTK7 and its synthesized Ag2O/Ag nanoparticles against medically important Aspergillus pathogens. J Mycol Med 2013; 23(2): 97-103.
[http://dx.doi.org/10.1016/j.mycmed.2013.04.005] [PMID: 23706303]
[159]
Jo YK, Kim BH, Jung G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 2009; 93(10): 1037-43.
[http://dx.doi.org/10.1094/PDIS-93-10-1037] [PMID: 30754381]
[160]
Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 2004; 275(1): 177-82.
[http://dx.doi.org/10.1016/j.jcis.2004.02.012] [PMID: 15158396]
[161]
Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 2000; 52(4): 662-8.
[http://dx.doi.org/10.1002/1097-4636(20001215)52:4<662:AID-JBM10>3.0.CO;2-3] [PMID: 11033548]
[162]
Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A. Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 2013; 62: 677-83.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.10.012] [PMID: 24141067]
[163]
Pacheco Y, Ponchon M, Lebecque S, et al. Granulomatous lung inflammation is nanoparticle type-dependent. Exp Lung Res 2018; 44(1): 25-39.
[http://dx.doi.org/10.1080/01902148.2017.1412541] [PMID: 29324063]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 1
Year: 2020
Page: [20 - 35]
Pages: 16
DOI: 10.2174/2468187309666190920095734

Article Metrics

PDF: 15
HTML: 1