The Influence of CeO2-Doping of Nanosized Cadmium Ferrite on Catalytic Conversion of Ethanol

Author(s): Abdelrahman A. Badawy*, Ahmed M. Rashad, Shaimaa M. Ibrahim, Sahar M. El-Khouly

Journal Name: Recent Innovations in Chemical Engineering
Formerly: Recent Patents on Chemical Engineering

Volume 13 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The role of CeO2-doping (0.75-3 mol%) and calcination temperature on solid-solid interaction between ferric and cadmium oxides yielding cadmium ferrites was examined.

Methods and Results: The results exposed that ceria improves the ferrite formation by heating at 600-700ºC via the dissolution of some dopant cation in the lattice of CdO with the subsequent creation of anionic vacancies and/or formation of higher valency cadmium cation (Cd(2+δ)+). SBET of solids calcined at 500oC increased by CeO2-doping, while opposite trend for solids calcined at 600 and 700oC. The magnetic hysteresis loops of all samples showed room-temperature ferromagnetism with different hysteresis loop shapes.

Conclusion: Magnetization increased by CeO2-doping that might be due to the enhancement of cadmium ferrite formation. Ethanol conversion increased by increasing CeO2-doping. Dehydrogenation product (acetaldehyde) was mainly the yield of ethanol conversion. The maximum yield of acetaldehyde (92.97%) carried out for solids doped with 3 mol% CeO2.

Keywords: Cadmium ferrite, ethanol conversion, ionic vacancies, CeO2- doping, dehydrogenation of ethanol, solids calcined.

[1]
Nakajima T, Nameta H, Mishima S, Matsuzaki I, Tanabe K. A highly active and highly selective oxide catalyst for the conversion of ethanol to acetone in the presence of water vapour. J Mater Chem 1994; 4(6): 853-8.
[2]
Yee A, Morrison S, Idriss H. The reactions of ethanol over M/CeO2 catalysts: Evidence of carbon-carbon bond dissociation at low temperatures over Rh/CeO2. Catal Today 2000; 63(2-4): 327-35.
[3]
Grabchenko MV, Mamontov GV, Zaikovskii VI, La Parola V, Liotta LF, Vodyankina OV. Design of Ag-CeO2/SiO2 catalyst for oxidative dehydrogenation of ethanol: Control of Ag-CeO2 interfacial interaction. Catal Today 2019; 333(1): 2-9.
[4]
Rodrigues CP, Zonetti PC, Silva CG, Gaspar AB, Appel LG. Chemicals from ethanol-The acetone one-pot synthesis. Appl Catal A 2013; 458(1): 111-8.
[5]
Lima AFF, Zonetti PC, Rodrigues CP, Appel LG. The first step of the propylene generation from renewable raw material: Acetone from ethanol employing CeO2 doped by Ag. Catal Today 2016; 279(1): 252-9.
[6]
Sun J, Zhu K, Gao F, et al. Direct conversion of bio-ethanol to isobutene on nanosized ZnxZryOz mixed oxides with balanced acid-base sites. J Am Chem Soc 2011; 133(1): 11096-9.
[7]
Guan Y, Hensen EJM. Selective oxidation of ethanol to acetaldehyde by Au- Ir catalysts. J Catal 2013; 305(1): 135-45.
[8]
Sobolev VI, Koltunov KY, Simakova OA, Leinod AR, Murzin DYu. Low temperature gas-phase oxidation of ethanol over Au/TiO2. Appl Catal A 2012; 43(3-4): 88-95.
[9]
Liu P, Hensen EJM. Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. J Am Chem Soc 2013; 135(38): 14032-5.
[10]
Koltunov KY, Sobolev VI. Selective gas-phase oxidation of ethanol by molecular oxygen over oxide and gold-containing catalysts. Catal Ind 2012; 4(4): 247-52.
[11]
Takei T, Iguchi N, Haruta M. Synthesis of acetoaldehyde, acetic acid, and others by the dehydrogenation and oxidation of ethanol. Catal Surv Asia 2011; 15(2): 80-8.
[12]
Freitas IC, Gallo JMR, Bueno JMC, Marques CMP. The effect of Ag in the Cu/ZrO2 performance for the ethanol conversion. Top Catal 2016; 59(2-4): 357-65.
[13]
Scalbert J, Thibault-Starzyk F, Jacquot R, Morvan D, Meunier F. Ethanol condensation to butanol at high temperatures over a basic heterogeneous catalyst: How relevant is acetaldehyde self-aldolization? J Catal 2014; 311(1): 28-32.
[14]
Ogo S, Onda A, Yanagisawa K. Selective synthesis of 1-butanol from ethanol over strontium phosphate hydroxyapatite catalysts. Appl Catal A 2011; 402(1-2): 188-95.
[15]
Kozlowski JT, Davis RJ. Sodium modification of zirconia catalysts for ethanol coupling to 1-butanol. J Energy Chem 2013; 22(1): 58-64.
[16]
Sushkevich VL, Ivanova II, Ordomsky VV, Taarning E. Design of a metal‐promoted oxide catalyst for the selective synthesis of butadiene from ethanol. ChemSusChem 2014; 7(9): 2527-36.
[17]
He Z, Wang X. Intrinsic properties of active sites for hydrogen production from alcohols without coke formation. J Energy Chem 2013; 22(3): 436-45.
[18]
Siqueira T, Raimundo M, Neto CR, et al. Ethanol conversion at low temperature over CeO2-supported Ni-based catalysts. Effect of Pt addition to Ni catalyst. Appl Catal B 2016; 181(1): 754-68.
[19]
Gazsi A, Koys A, Bansagi T, Solymosi F. Adsorption and decomposition of ethanol on supported Au catalysts. Catal Today 2011; 160(1): 70-8.
[20]
Guan Y, Hensen EJM. Ethanol dehydrogenation by gold catalysts: The effect of the gold particle size and the presence of oxygen. Appl Catal A 2009; 361(1-2): 49-56.
[21]
Chang FW, Yang H, Kuo WY. Ethanol dehydrogenation over copper catalysts on rice husk ash prepared by ion exchange. Appl Catal A 2006; 304(1): 30-9.
[22]
Redina EA, Greish AA, Mishin IV, et al. Selective oxidation of ethanol to acetaldehyde over Au-Cu catalysts prepared by a redox method. Catal Today 2015; 241(1): 246-54.
[23]
Xua J, Xua X-C, Yang X-J, Han Y-F. Silver/ hydroxyapatite foam as a highly selective catalyst for acetaldehyde production via ethanol oxidation. Catal Today 2016; 276(1): 19-27.
[24]
Mamontov GV, Magaev OV, Knyazev AS, Vodyankina OV. Influence of phosphate addition on activity of Ag and Cu catalysts for partial oxidation of alcohols. Catal Today 2013; 203(1): 122-6.
[25]
Nawle AC, Humbe AV, Babrekar MK, Deshmukh SS, Jadhav KM. Deposition, characterization, magnetic and optical properties of Zn doped CuFe2O4 thin films. J Alloys Compd 2017; 695(1): 1573-82.
[26]
Raut AV, Khirade PP, Humbe A, Jadhav SA, Shengule DR. Structural, electrical, dielectric and magnetic properties of Al3+ substituted Ni-Zn ferrite. J Superconductivity and Novel Magnetism 2016; 29(1): 1331-7.
[27]
Kefeni KK, Mamba BB, Msagati TA. Application of spinel ferrite nanoparticles in water and wastewater treatment: A review. Sep Pur Technol 2017; 188(1): 399-422.
[28]
Nidheesh P. Heterogeneous fenton catalysts for the abatement of organic pollutants from aqueous solution: A review. Rsc Adv 2015; 5(51): 40552-77.
[29]
Gubbala S, Nathani H, Koizol K, Misra RDK. Magnetic properties of nanocrystalline Ni-Zn, Zn-Mn, and Ni-Mn ferrites synthesized by reverse micelle technique. Physica B: Cond Matt 2004; 348(1-4): 317-28.
[30]
Saafan SA, Meaz TM, El-Ghazzawy EH, El Nimr MK, Ayad MM, Bakr M. AC and DC conductivity of NiZn ferrite nanoparticles in wet and dry conditions J Magn Magn Mater 2010; 322(16): 2369-74.
[31]
Singhal S, Chandra K. Cation distribution and magnetic properties in chromium-substituted nickel ferrites prepared using aerosol route. J Solid State Chem 2007; 180(1): 296-300.
[32]
Zhang F, Wei C, Hu Y, Wu H. Zinc ferrite catalysts for ozonation of aqueous organic contaminants: Phenol and bio-treated coking wastewater. Sep Purif Tech 2015; 156(1): 625-35.
[33]
Ding Y, Zhu L, Wang N, Tang H. Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate. Appl Catysis B: Environ 2013; 129(1): 153-62.
[34]
Silva O, Morais PC. Investigation of anisotropy in cadmium ferrite-based ionic magnetic fluid using magnetic resonance. J Magn Magn Mater 2005; 289(1): 136-8.
[35]
Shi W, Liu X, Zhang T, Wang Q, Zhang L. Magnetic nano-sized cadmium ferrite as an efficient catalyst for the degradation of Congo red in the presence of microwave irradiation. RSC Adv 2015; 5(63): 51027-34.
[36]
Ragab SS, Badawy AA, El Nazer HA. A green approach to the synthesis of 2,3‐diaminophenazine using a photocatalytic system of CdFe2O4/TiO2 nanoparticles. J Chinese Chem Soc 2019; 66(1): 719-24.
[37]
Albanese G, Deriu A, Calestani G, Leccabue F, Wattas BE. Formation of cadmium-containing W-type hexagonal ferrite. J Mater Sci 1992; 27(22): 6146-50.
[38]
Ravindar D, Rao SS, Shalini P. Room temperature electric properties of cadmium-substituted nickel ferrites. Mater Lett 2003; 57(24-25): 4040-2.
[39]
Palma V, Ruocco C, Meloni E, Ricca A. Oxidative reforming of ethanol over CeO2-SiO2 based catalysts in a fluidized bed reactor. Chem Eng Process 2018; 124(1): 319-27.
[40]
Sun C, Zheng Z, Wang S, et al. Yolk-shell structured Pt-CeO2@ Ni-SiO2 as an efficient catalyst for enhanced hydrogen production from ethanol steam reforming. Ceram Int 2018; 44(2): 1438-42.
[41]
Zheng J, Junlong H, Qian Y, et al. Fabrications of novel solid phase micro-extraction fiber coatings based on new materials for high enrichment capability. Trends in Anal Chem 2018; 108(1): 135-53.
[42]
He L, Berntsen H, Ochoa-Fernández E, Walmsley JC, Blekkan EA, Chen D. Co-Ni catalysts derived from hydrotalcite-like materials for hydrogen production by ethanol steam reforming. Top Catal 2009; 52: 206-17.
[43]
Palma V, Ruocco C, Ricca A. Oxidative steam reforming of ethanol in a fluidized bed over CeO2-SiO2 supported catalysts: Effect of catalytic formulation. Renew Energy 2018; 125(1): 356-64.
[44]
Zhao S, Cai W, Li Y, Yu H, Zhang S, Cui L. Syngas production from ethanol dry reforming over Rh/CeO2 catalyst. J Saudi Chem Soc 2018; 22(1): 58-65.
[45]
Zaki T. Catalytic dehydration of ethanol using transition metal oxide catalysts. J Colloid Interface Sci 2005; 284(1): 606-13.
[46]
Litt G, Almquist C. An investigation of CuO/Fe2O3 catalysts for the gas-phase oxidation of ethanol. Appl Catal B 2009; 90(1): 10-7.
[47]
Channei D, Inceesungvorn B, Wetchakun N, et al. Photocatalytic activity under visible light of Fe-doped CeO2 nanoparticles synthesized by flame spray pyrolysis. Ceram Int 2013; 39(1): 3129-34.
[48]
Badawy AA, Rashad AM, Yehia NS. Physicochemical and Catalytic Conversion of Iso-propanol over NiO-doping/nanosized ZnO-Fe2O3 system. Egypt J Chem 2017; 60(1): 619-25.
[49]
Cullity BD. Publishing Cos, 2nd ed., Elements of Xray diffraction: Addison-Wesley, Reading, MA, 1978, pp.102.
[50]
El-Hafiz DRA, Riad M, Mikhail S. Nano-structured Mn-Al and Co-Al oxide materials for catalytic ethanol conversion. J Nanostructure in Chem 2015; 5(1): 393-403.
[51]
Kröger FA. Chemistry of Imperfect Crystals, North- Holland, Amesterdam, 1964; 2.
[52]
Table of Periodic Properties of the Elements. Sargent- Welch Scientific Company, 7300 Linder Avenue, Skokie, Illinois 60076, USA.
[53]
Thommes M, Kaneko K, Neimark AV, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 2015; 87(9-10): 1051-69.
[54]
El-Shobaky GA, Hassan HMA, Yehia NS, Badawy AA. Effect of CeO2-doping on surface and catalytic properties of CuO-ZnO system. J Non-Cryst Solids 2010; 356(1): 32-8.
[55]
Tehrani FS, Daadmehr V, Rezakhani AT, Akbarnejad RH, Gholipour S. Structural, magnetic, and optical properties of zinc-and copper-substituted nickel ferrite nanocrystals. J superconductivity and novel magnetism 2012; 25(1): 2443-55.
[56]
Yokoyama M, Ohta E, Sato T. Magnetic properties of ultrafine particles and bulk material of cadmium ferrite. J Magn Magn Mater 1998; 183(2): 173-80.
[57]
Dube GR, Darshane VS. Decomposition of 1-octanol on the spinel system Ga1-x FexCuMnO4. J Mol Catal 1993; 79(1): 285-96.
[58]
Reddy BM, Sreekanth PM, Reddy EP, et al. J Phys Chem B 2002; 106(1): 5695-700.
[59]
Wu XD, Fan J, Ran R, Yang J, Weng D. Surface characterization of La2O3- TiO2 and V2O5/La2O3- TiO2. Catalysts J Alloys Compd 2005; 395(1): 135-40.
[60]
Noriyoshi K, Satoshi I, Takeshi E, Keisuke M, Hironobu O, Takanori M. Oxidation behavior of reduced (CeO2) 1- x-(ZrO2) x (x= 0, 0.2, 0.5) catalysts. J Alloys Compd 2006; 408-12: 1078-83.
[61]
Bueno-Lopez A, Krishna K, Makkee M. Oxygen exchange mechanism between isotopic CO2 and Pt/CeO2. Appl Catal A Gen 2008; 342(2): 144-9.
[62]
Jia L, Shen M, Hao J, Rao T, Wang J. Dynamic oxygen storage and release over Mn0.1Ce0.9Ox and Mn0.1Ce0.6Zr0.3Ox complex compounds and structural characterization. J Alloys Compd 2008; 454(1): 321-6.
[63]
Adamopoulos O, Bjorkman E, Zhang Y, Muhammed M, Bog TS, Mussmann L. A nanophase oxygen storage material: Alumina-coated metal-based ceria. J Eur Ceram Soc 2009; 29(1): 677-89.
[64]
Doheim MM, Hanafy SA, El-Shobaky GA. Catalytic conversion of ethanol and isopropanol over the Mn2O3/Al2O3 system doped with Na2O. Mater Lett 2002; 55(5): 304-11.
[65]
Mahmoud HR. Effect of hydrothermal treatment on catalytic activity of amorphous mesoporous Cr2O3- ZrO2 nanomaterials for ethanol oxidation. Mater Chem Phys 2015; 162(1): 50-8.
[66]
Phung TK, Busca G. Diethyl ether cracking and ethanol dehydration: Acid catalysis and reaction paths. Chem Eng 2015; 272(1): 92-101.
[67]
Mahmoud HR. Novel mesoporous Gd3+ doped Cr2O3 nanomaterials: Synthesis, characterization, catalytic and antitumor applications. Adv Powder Technol 2016; 27(1): 1446-52.
[68]
Xie Y, Yuan C, Li X. Photosensitized and photo catalyzed degradation of azo dye using Lnn+-TiO2 sol in aqueous solution under visible light irradiation. Mater Sci Eng B 2005; 117(1): 325-33.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 13
ISSUE: 2
Year: 2020
Page: [156 - 169]
Pages: 14
DOI: 10.2174/2405520412666190919155906
Price: $65

Article Metrics

PDF: 12
HTML: 3
PRC: 1