Polymer-Bound Triphenylphosphine and 4,4′-Dinitroazobenzene as a Coupling Reagents for Chromatography-Free Esterification Reaction

Author(s): Diparjun Das, Kalyani Rajkumari, Lalthazuala Rokhum*

Journal Name: Current Organic Synthesis

Volume 16 , Issue 7 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Aim and Objective: Sustainable production of fine chemicals both in industries and pharmaceuticals heavily depends on the application of solid-phase synthesis route coupled with microwave technologies due to their environmentally benign nature. In this report, a microwave-assisted esterification reaction using polymer-bound triphenylphosphine and 4,4′-dinitroazobenzene reagent system was investigated.

Materials and Methods: The solvents were obtained from Merck India. Polymer-bound triphenylphosphine (~3 mmol triphenylphosphine moiety/g) was acquired from Sigma-Aldrich. The progress of the reaction was observed by thin-layer chromatography. All the reactions were performed in Milestones StartSYNTH microwave. The NMR spectra were recorded on Bruker Avance III 300, 400, and 500 MHz FT NMR Spectrometers. Using azo compound and polymer-bound triphenyl phosphine as a coupling reagent, esterification of different carboxylic acids with alcohols was performed under microwave irradiation.

Results: Esterification of benzoic acid with 1-propanol under microwave irradiation gave a high yield of 92% propyl benzoate in 60 minutes only. Isolation of the ester products was relatively simple as both the byproducts polymer-bound triphenylphosphine oxide and hydrazine could be removed by simple filtration. The rates of reactions were found to be directly proportional to the pKa of the benzoic acids.

Conclusion: 4,4′-Dinitroazobenzene was introduced as a novel coupling reagent, in conjugation with polymer-bound triphenylphosphine, for esterification reactions under microwave irradiation. The low moisture sensitivity of the reaction system, easy separation of the byproducts, and column chromatographyfree isolation of esters help our methods with application significance, particularly from the ‘Sustainable Chemistry’ perspective.

Keywords: Esterification reaction, chemoselective, retention, chromatography-free, microwave irradiation, simple filtration.

[1]
Hughes, D.L. Progress in the Mitsunobu reaction. A review. Org. Prep. Proced. Int., 1996, 28, 127-164. [http://dx.doi.org/10.1080/00304949609356516].
[2]
Twibanire, J.D.A.K.; Grindley, T.B. Efficient and controllably selective preparation of esters using uronium-based coupling agents. Org. Lett., 2011, 13(12), 2988-2991. [http://dx.doi.org/10.1021/ol201005s]. [PMID: 21591807].
[3]
Han, S.Y.; Kim, Y.A. Recent development of peptide coupling reagents in organic synthesis. Tetrahedron, 2004, 60(11), 2447-2467. [http://dx.doi.org/10.1016/j.tet.2004.01.020].
[4]
Montalbetti, C.A.G.N.; Falque, V. Amide bond formation and peptide coupling. Tetrahedron, 2005, 61(46), 10827-10852. [http://dx.doi.org/10.1016/j.tet.2005.08.031].
[5]
Miyamura, H.; Yasukawa, T.; Kobayashi, S. Aerobic oxidative esterification of alcohols catalyzed by polymer-incarcerated gold nanoclusters under ambient conditions. Green Chem., 2010, 12(5), 776-778. [http://dx.doi.org/10.1039/b926877d].
[6]
Pathak, G.; Rokhum, L. Selective monoesterification of symmetrical diols using resin-bound triphenylphosphine. ACS Comb. Sci., 2015, 17(9), 483-487. [http://dx.doi.org/10.1021/acscombsci.5b00086]. [PMID: 26226065].
[7]
Matković, M.; Veljković, J.; Mlinarić-Majerski, K.; Molčanov, K.; Kojić-Prodić, B. Design of a depside with a lipophilic adamantane moiety: Synthesis, crystal structure and molecular conformation. J. Mol. Struct., 2007, 832(1–3), 191-198. [http://dx.doi.org/10.1016/j.molstruc.2006.08.022].
[8]
Weininger, S.J.; Stermitz, F.R. Organic Chemistry; , 1984, p. 1121.
[9]
Dhimitruka, I.; Santalucia, J., Jr Investigation of the Yamaguchi esterification mechanism. Synthesis of a lux-s enzyme inhibitor using an improved esterification method. Org. Lett., 2006, 8(1), 47-50. [http://dx.doi.org/10.1021/ol0524048]. [PMID: 16381564].
[10]
Kuisle, O.; Quiñoá, E.; Riguera, R. A general methodology for automated solid-phase synthesis of depsides and depsipeptides. Preparation of a valinomycin analogue. J. Org. Chem., 1999, 64(22), 8063-8075. [http://dx.doi.org/10.1021/jo981580+]. [PMID: 11674717].
[11]
Rodrigues, R.D.C.; Barros, I.M.A.; Lima, E.L.S. Mild one-pot conversion of carboxylic acids to amides or esters with Ph3P/trichloroisocyanuric acid. Tetrahedron Lett., 2005, 46(35), 5945-5947. [http://dx.doi.org/10.1016/j.tetlet.2005.06.127].
[12]
Dong, H.; Pei, Z.; Byström, S.; Ramström, O. Reagent-dependent regioselective control in multiple carbohydrate esterifications. J. Org. Chem., 2007, 72(4), 1499-1502. [http://dx.doi.org/10.1021/jo0620821]. [PMID: 17288394].
[13]
Dai, C.; Zhang, A.; Li, J.; Hou, K.; Liu, M.; Song, C.; Guo, X. Synthesis of yolk-shell HPW@Hollow silicalite-1 for esterification reaction. Chem. Commun. (Camb.), 2014, 50(37), 4846-4848. [http://dx.doi.org/10.1039/c4cc00693c]. [PMID: 24686392].
[14]
Mamidi, N.; Manna, D. Zn(OTf)2-promoted chemoselective esterification of hydroxyl group bearing carboxylic acids. J. Org. Chem., 2013, 78(6), 2386-2396. [http://dx.doi.org/10.1021/jo302502r]. [PMID: 23350970].
[15]
Salomé, C.; Kohn, H. Triphenylphosphine dibromide: A simple one-pot esterification reagent. Tetrahedron, 2009, 65(2), 456-460. [http://dx.doi.org/10.1016/j.tet.2008.10.062]. [PMID: 20066025].
[16]
Mitsunobu, O.; Yamada, M. Preparation of esters of carboxylic and phosphoric acid via quaternary phosphonium salts. Bull. Chem. Soc. Jpn., 1967, 40(10), 2380-2382. [http://dx.doi.org/10.1246/bcsj.40.2380].
[17]
Swamy, K.C.K.; Kumar, N.N.B.; Balaraman, E.; Kumar, K.V.P.P. Mitsunobu and related reactions: advances and applications. Chem. Rev., 2009, 109(6), 2551-2651. [http://dx.doi.org/10.1021/cr800278z]. [PMID: 19382806].
[18]
Nowrouzi, N.; Mehranpour, A.M.; Rad, J.A. A simple and convenient method for preparation of carboxylic acid alkyl esters, phenolic and thioesters using chlorodiphenylphosphine/I2 and imidazole reagent system. Tetrahedron, 2010, 66(50), 9596-9601. [http://dx.doi.org/10.1016/j.tet.2010.10.022].
[19]
Hirose, D.; Gazvoda, M.; Košmrlj, J.; Taniguchi, T. Advances and mechanistic insight on the catalytic Mitsunobu reaction using recyclable azo reagents. Chem. Sci. (Camb.), 2016, 7(8), 5148-5159. [http://dx.doi.org/10.1039/C6SC00308G]. [PMID: 30155165].
[20]
Hashimoto, T.; Hirose, D.; Taniguchi, T. Catalytic aerobic oxidation of arylhydrazides with iron phthalocyanine. Adv. Synth. Catal., 2015, 357(14–15), 3346-3352. [http://dx.doi.org/10.1002/adsc.201500459].
[21]
Lipshutz, B.H.; Chung, D.W.; Rich, B.; Corral, R. Simplification of the Mitsunobu reaction. Di-p-chlorobenzyl azodicarboxylate: A new azodicarboxylate. Org. Lett., 2006, 8(22), 5069-5072. [http://dx.doi.org/10.1021/ol0618757]. [PMID: 17048845].
[22]
Kato, T.; Matsuoka, S.; Suzuki, M. N-Heterocyclic carbene-mediated redox condensation of alcohols. Chem. Commun. (Camb.), 2016, 52(55), 8569-8572. [http://dx.doi.org/10.1039/C6CC04154J]. [PMID: 27319401].
[23]
But, T.Y.S.; Toy, P.H. Organocatalytic Mitsunobu reactions. J. Am. Chem. Soc., 2006, 128(30), 9636-9637. [http://dx.doi.org/10.1021/ja063141v]. [PMID: 16866510].
[24]
Tunoori, A.R.; Dutta, D.; Georg, G.I. Polymer-bound triphenylphosphine as traceless reagent for Mitsunobu reactions in combinatorial chemistry: Synthesis of aryl ethers from phenols and alcohols. Tetrahedron Lett., 1998, 39(48), 8751-8754. [http://dx.doi.org/10.1016/S0040-4039(98)01988-1].
[25]
Barrett, A.G.; Roberts, R.S.; Schröder, J. Impurity annihilation: chromatography-free parallel Mitsunobu reactions. Org. Lett., 2000, 2(19), 2999-3001. [http://dx.doi.org/10.1021/ol006313g]. [PMID: 10986092].
[26]
Lanning, M.E.; Fletcher, S. Azodicarbonyl dimorpholide (ADDM): An effective, versatile, and water-soluble Mitsunobu reagent. Tetrahedron Lett., 2013, 54(35), 4624-4628. [http://dx.doi.org/10.1016/j.tetlet.2013.06.049].
[27]
Dandapani, S.; Curran, D.P. Separation-friendly Mitsunobu reactions: a microcosm of recent developments in separation strategies. Chemistry, 2004, 10(13), 3130-3138. [http://dx.doi.org/10.1002/chem.200400363]. [PMID: 15224321].
[28]
Kappe, C.O. Kontrolliertes Erhitzen mit Mikrowellen in der modernen organischen Synthese. Angew. Chem., 2004, 116(46), 6408-6443. [http://dx.doi.org/10.1002/ange.200400655].
[29]
de la Hoz, A.; Díaz-Ortiz, A.; Moreno, A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev., 2005, 34(2), 164-178. [http://dx.doi.org/10.1039/B411438H]. [PMID: 15672180].
[30]
Pathak, G.; Das, D.; Rokhum, L. A microwave-assisted highly practical chemoselective esterification and amidation of carboxylic acids. RSC Advances, 2016, 6(96), 93729-93740. [http://dx.doi.org/10.1039/C6RA22558F].
[31]
Kappe, C.O.; Dallinger, D.; Murphree, S.S. Practical Microwave Synthesis For Organic Chemists: Strategies, Instruments, and Protocols Wiley VCH Verlag GmbH & Co. KGaA: Weinheim,; , 2009.
[32]
Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett., 1986, 27(3), 279-282. [http://dx.doi.org/10.1016/S0040-4039(00)83996-9].
[33]
Lai, G.; Guo, F.; Zheng, Y.; Fang, Y.; Song, H.; Xu, K.; Wang, S.; Zha, Z.; Wang, Z. Highly enantioselective Henry reactions in water catalyzed by a copper tertiary amine complex and applied in the synthesis of (S)-N-trans-feruloyl octopamine. Chemistry, 2011, 17(4), 1114-1117. [http://dx.doi.org/10.1002/chem.201002915]. [PMID: 21243676].
[34]
Boas, U.; Brask, J.; Jensen, K.J. Backbone amide linker in solid-phase synthesis. Chem. Rev., 2009, 109(5), 2092-2118. [http://dx.doi.org/10.1021/cr068206r]. [PMID: 19290595].
[35]
Das, D.; Pathak, G.; Rokhum, L. Polymer supported DMAP: an easily recyclable organocatalyst for highly atom-economical Henry reaction under solvent-free conditions. RSC Advances, 2016, 6(106), 104154-104163. [http://dx.doi.org/10.1039/C6RA23696K].
[36]
Balkenhohl, F.; Von dem Bussche-Hünnefeld, C.; Lansky, A.; Zechel, C. Combinatorial synthesis of small organic molecules. Angew. Chem. Int. Ed. Engl., 1996, 35(20), 2288-2337. [http://dx.doi.org/10.1002/anie.199622881].
[37]
Das, D.; Anal, J.M.H.; Rokhum, L. A mild and highly chemoselective iodination of alcohol using polymer supported DMAP. J. Chem. Sci., 2016, 128(11), 1695-1701. [http://dx.doi.org/10.1007/s12039-016-1158-1].
[38]
Harned, A.M.; Mukherjee, S.; Flynn, D.L.; Hanson, P.R. Ring-opening metathesis phase-trafficking (ROMpt) synthesis: Multistep synthesis on soluble ROM supports. Org. Lett., 2003, 5(1), 15-18. [http://dx.doi.org/10.1021/ol0270327]. [PMID: 12509879].
[39]
Mothana, S.; Chahal, N.; Vanneste, S.; Hall, D.G. Phase-switch synthesis with boronic acids as productive tags. J. Comb. Chem., 2007, 9(2), 193-196. [http://dx.doi.org/10.1021/cc060149s]. [PMID: 17348725].
[40]
Huestls, L. Sodium perborate oxidation of an aromatic amine. J. Chem. Educ., 1977, I(5), 98447.
[41]
Zhang, C.; Jiao, N. Copper-catalyzed aerobic oxidative dehydrogenative coupling of anilines leading to aromatic azo compounds using dioxygen as an oxidant. Angew. Chem. Int. Ed. Engl., 2010, 49(35), 6174-6177. [http://dx.doi.org/10.1002/anie.201001651]. [PMID: 20652918].
[42]
Regen, S.L.; Lee, D.P. Solid phase phosphorus reagents. Conversion of alcohols to alkyl chlorides. J. Org. Chem., 1975, 40(11), 11-12. [http://dx.doi.org/10.1021/jo00899a042].
[43]
Chatterjee, S. Dhanurdhar; Rokhum, L. Extraction of a cardanol based liquid bio-fuel from waste natural resource and decarboxylation using a silverbased catalyst. Renew. Sustain. Energy Rev., 2017, 72, 560-564. [http://dx.doi.org/10.1016/j.rser.2017.01.035].
[44]
Rokhum, L.; Bez, G. One-pot solid phase synthesis of (E) -nitroalkenes. Tetrahedron Lett., 2013, 54(40), 5500-5504. [http://dx.doi.org/10.1016/j.tetlet.2013.07.146].
[45]
Das, D.; Chanda, T.; Rokhum, L. Application of “Click” chemistry in solid phase synthesis of alkyl halides. Acta Chim. Slov., 2015, 62(4), 775-783. [PMID: 26680704].
[46]
Taniguchi, T.; Hirose, D.; Ishibashi, H. Esterification via iron-catalyzed activation of triphenylphosphine with air. ACS Catal., 2011, 1(11), 1469-1474. [http://dx.doi.org/10.1021/cs2003824].
[47]
McNulty, J.; Capretta, A.; Laritchev, V.; Dyck, J.; Robertson, A.J. Dimethylmalonyltrialkylphosphoranes: New general reagents for esterification reactions allowing controlled inversion or retention of configuration on chiral alcohols. J. Org. Chem., 2003, 68(4), 1597-1600. [http://dx.doi.org/10.1021/jo026639y]. [PMID: 12585914].
[48]
Gómez-Vidal, J.A.; Forrester, M.T.; Silverman, R.B. Mild and selective sodium azide mediated cleavage of p-nitrobenzoic esters. Org. Lett., 2001, 3(16), 2477-2479. [http://dx.doi.org/10.1021/ol016104b]. [PMID: 11483039].
[49]
Iranpoor, N.; Firouzabadi, H.; Khalili, D.; Motevalli, S. Easily prepared azopyridines as potent and recyclable reagents for facile esterification reactions. An efficient modified mitsunobu reaction. J. Org. Chem., 2008, 73(13), 4882-4887. [http://dx.doi.org/10.1021/jo8000782]. [PMID: 18512992].
[50]
Dodge, J.A.; Trujillo, J.I.; Presnell, M. Effect of the acidic component on the Mitsunobu inversion of a sterically hindered alcohol. J. Org. Chem., 1994, 59(1), 234-236. [http://dx.doi.org/10.1021/jo00080a039].
[51]
McNulty, J.; Capretta, A.; Laritchev, V.; Dyck, J.; Robertson, A.J. The role of acyloxyphosphonium ions and the stereochemical influence of base in the phosphorane-mediated esterification of alcohols. Angew. Chem. Int. Ed. Engl., 2003, 42(34), 4051-4054. [http://dx.doi.org/10.1002/anie.200351209]. [PMID: 12973767].
[52]
Smith, A.B., III; Safonov, I.G.; Corbett, R.M.; Pennsyl, V. Total syntheses of (+)-zampanolide and (+)-dactylolide exploiting a unified strategy. J. Am. Chem. Soc., 2002, 124(37), 11102-11113. [http://dx.doi.org/10.1021/ja020635t]. [PMID: 12224958].


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 7
Year: 2019
Page: [1024 - 1031]
Pages: 8
DOI: 10.2174/1570179416666190919152424
Price: $65

Article Metrics

PDF: 16
HTML: 5