Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

Effects of Stearic Acid on Proliferation, Differentiation, Apoptosis, and Autophagy in Porcine Intestinal Epithelial Cells

Author(s): Yuan Yang, Jin Huang, Jianzhong Li, Huansheng Yang* and Yulong Yin

Volume 20, Issue 2, 2020

Page: [157 - 166] Pages: 10

DOI: 10.2174/1566524019666190917144127

Price: $65

Abstract

Background: Stearic acid (SA), a saturated long-chain fatty acid consisting of 18 carbon atoms, is widely found in feed ingredients, such as corn, soybeans, and wheat. However, the roles of SA in the renewal of intestinal epithelial cells remain unclear.

Methods and Results: In the present study, we found that 0.01-0.1 mM SA promoted IPEC-J2 cell differentiation and did not affect IPEC-J2 cell viability. In addition, the results showed that the viability of IPEC-J2 cells was inhibited by SA in a time- and dose-dependent manner at high concentrations. Flow cytometry and western blot analysis suggested that SA induced apoptosis, autophagy and ER stress in cells. In addition, the amounts of triglyceride were significantly increased upon challenge with SA. Moreover, the decrease in the viability of cells induced by SA could be attenuated by 4-PBA, an inhibitor of ER stress.

Conclusion: In summary, SA accelerated IPEC-J2 cell differentiation at 0.01-0.1 mM. Furthermore, SA induced IPEC-J2 cell apoptosis and autophagy by causing ER stress.

Keywords: Stearic acid, IPEC-J2 cells, ER stress, apoptosis, autophagy, triglyceride.

[1]
US Department of Agriculture A R S. USDA national nutrient database for standard reference. 2013.
[2]
Yao Y, Eshun JK, Lu S, Berschneider HM, Black DD. Regulation of triacylglycerol and phospholipid trafficking by fatty acids in newborn swine enterocytes. Am J Physiol Gastrointest Liver Physiol 2002; 282(5): G817-24.
[http://dx.doi.org/10.1152/ajpgi.00397.2001] [PMID: 11960778]
[3]
Gatlin LA, Odle J, Soede J, Hansent JA. Dietary medium- or long-chain triglycerides improve body condition of lean-genotype sows and increase suckling pig growth. J Anim Sci 2002; 80(1): 38-44.
[http://dx.doi.org/10.2527/2002.80138x] [PMID: 11831528]
[4]
Mensink RP. Effects of stearic acid on plasma lipid and lipoproteins in humans. Lipids 2005; 40(12): 1201-5.
[http://dx.doi.org/10.1007/s11745-005-1486-x] [PMID: 16477803]
[5]
Hennig B, Ramasamy S, Alvarado A, et al. Selective disruption of endothelial barrier function in culture by pure fatty acids and fatty acids derived from animal and plant fats. J Nutr 1993; 123(7): 1208-16.
[http://dx.doi.org/10.1093/jn/123.7.1208] [PMID: 8320562]
[6]
Wang S, Xiang N, Yang L, et al. Linoleic acid and stearic acid elicit opposite effects on AgRP expression and secretion via TLR4-dependent signaling pathways in immortalized hypothalamic N38 cells. Biochem Biophys Res Commun 2016; 471(4): 566-71.
[http://dx.doi.org/10.1016/j.bbrc.2016.02.031] [PMID: 26879142]
[7]
Chamberlain MB, DePeters EJ. Impacts of feeding lipid supplements high in palmitic acid or stearic acid on performance of lactating dairy cows. J Appl Anim Res 2017; 45(1): 126-35.
[http://dx.doi.org/10.1080/09712119.2015.1124327]
[8]
Liu Y, Chen F, Odle J, et al. Fish oil enhances intestinal integrity and inhibits TLR4 and NOD2 signaling pathways in weaned pigs after LPS challenge. J Nutr 2012; 142(11): 2017-24.
[http://dx.doi.org/10.3945/jn.112.164947] [PMID: 23014495]
[9]
Liu Y. Fatty acids, inflammation and intestinal health in pigs. J Anim Sci Biotechnol 2015; 6(1): 41.
[http://dx.doi.org/10.1186/s40104-015-0040-1] [PMID: 26361542]
[10]
Gabler NK, Spencer JD, Webel DM, Spurlock ME. In utero and postnatal exposure to long chain (n-3) PUFA enhances intestinal glucose absorption and energy stores in weanling pigs. J Nutr 2007; 137(11): 2351-8.
[http://dx.doi.org/10.1093/jn/137.11.2351] [PMID: 17951469]
[11]
Gregory PC, Rayner V, Wenham G. The influence of intestinal infusion of fats on small intestinal motility and digesta transit in pigs. J Physiol 1986; 379: 27-37.
[http://dx.doi.org/10.1113/jphysiol.1986.sp016239] [PMID: 3559994]
[12]
Kang JX, Wan JB, He C. Concise review: Regulation of stem cell proliferation and differentiation by essential fatty acids and their metabolites. Stem Cells 2014; 32(5): 1092-8.
[http://dx.doi.org/10.1002/stem.1620] [PMID: 24356924]
[13]
Kan I, Melamed E, Offen D, Green P. Docosahexaenoic acid and arachidonic acid are fundamental supplements for the induction of neuronal differentiation. J Lipid Res 2007; 48(3): 513-7.
[http://dx.doi.org/10.1194/jlr.C600022-JLR200] [PMID: 17185746]
[14]
Katakura M, Hashimoto M, Shahdat HM, et al. Docosahexaenoic acid promotes neuronal differentiation by regulating basic helix-loop-helix transcription factors and cell cycle in neural stem cells. Neuroscience 2009; 160(3): 651-60.
[http://dx.doi.org/10.1016/j.neuroscience.2009.02.057] [PMID: 19272428]
[15]
Diesing AK, Nossol C, Panther P, et al. Mycotoxin deoxynivalenol (DON) mediates biphasic cellular response in intestinal porcine epithelial cell lines IPEC-1 and IPEC-J2. Toxicol Lett 2011; 200(1-2): 8-18.
[http://dx.doi.org/10.1016/j.toxlet.2010.10.006] [PMID: 20937367]
[16]
Hendzel MJ, Wei Y, Mancini MA, et al. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 1997; 106(6): 348-60.
[http://dx.doi.org/10.1007/s004120050256] [PMID: 9362543]
[17]
Rayamajhi M, Zhang Y, Miao EA. Detection of pyroptosis by measuring released lactate dehydrogenase activity. Methods Mol Biol 2013; 1040: 85-90.
[http://dx.doi.org/10.1007/978-1-62703-523-1_7] [PMID: 23852598]
[18]
Hinnebusch BF, Siddique A, Henderson JW, et al. Entero-cyte differentiation marker intestinal alkaline phosphatase is a target gene of the gut-enriched Kruppel-like factor. Am J Physiol Gastrointest Liver Physiol 2004; 286(1): G23-30.
[http://dx.doi.org/10.1152/ajpgi.00203.2003] [PMID: 12919939]
[19]
Van Herreweghe F, Festjens N, Declercq W, Vandenabeele P. Tumor necrosis factor-mediated cell death: to break or to burst, that’s the question. Cell Mol Life Sci 2010; 67(10): 1567-79.
[http://dx.doi.org/10.1007/s00018-010-0283-0] [PMID: 20198502]
[20]
Tsujimoto Y, Shimizu S. Another way to die: autophagic programmed cell death. Cell Death Differ 2005; 12(Suppl. 2): 1528-34.
[http://dx.doi.org/10.1038/sj.cdd.4401777] [PMID: 16247500]
[21]
Ravikumar B, Vacher C, Berger Z, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 2004; 36(6): 585-95.
[http://dx.doi.org/10.1038/ng1362] [PMID: 15146184]
[22]
Artwohl M, Roden M, Waldhäusl W, Freudenthaler A, Baumgartner-Parzer SM. Free fatty acids trigger apoptosis and inhibit cell cycle progression in human vascular endothelial cells. FASEB J 2004; 18(1): 146-8.
[http://dx.doi.org/10.1096/fj.03-0301fje] [PMID: 14597560]
[23]
Gorjão R, Cury-Boaventura MF, de Lima TM, Curi R. Regulation of human lymphocyte proliferation by fatty acids. Cell Biochem Funct 2007; 25(3): 305-15.
[http://dx.doi.org/10.1002/cbf.1388] [PMID: 17195961]
[24]
Spigoni V, Fantuzzi F, Fontana A, et al. Stearic acid at physiologic concentrations induces in vitro lipotoxicity in circulating angiogenic cells. Atherosclerosis 2017; 265: 162-71.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.09.004] [PMID: 28892713]
[25]
Hu P, Wang T, Xu Q, et al. Genotoxicity evaluation of stearic acid grafted chitosan oligosaccharide nanomicelles. Mutat Res 2013; 751(2): 116-26.
[http://dx.doi.org/10.1016/j.mrgentox.2012.12.004] [PMID: 23274307]
[26]
Ulloth JE, Casiano CA, De Leon M. Palmitic and stearic fatty acids induce caspase-dependent and -independent cell death in nerve growth factor differentiated PC12 cells. J Neurochem 2003; 84(4): 655-68.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01571.x] [PMID: 12562510]
[27]
Cury-Boaventura MF, Curi R. Regulation of reactive oxygen species (ROS) production by C18 fatty acids in Jurkat and Raji cells. Clin Sci (Lond) 2005; 108(3): 245-53.
[http://dx.doi.org/10.1042/CS20040281] [PMID: 15563273]
[28]
Rosca MG, Vazquez EJ, Chen Q, Kerner J, Kern TS, Hoppel CL. Oxidation of fatty acids is the source of increased mitochondrial reactive oxygen species production in kidney cortical tubules in early diabetes. Diabetes 2012; 61(8): 2074-83.
[http://dx.doi.org/10.2337/db11-1437] [PMID: 22586586]
[29]
Li BH, Liao SQ, Yin YW, et al. Telmisartan-induced PPARγ activity attenuates lipid accumulation in VSMCs via induction of autophagy. Mol Biol Rep 2015; 42(1): 179-86.
[http://dx.doi.org/10.1007/s11033-014-3757-6] [PMID: 25249228]
[30]
Sekar S, Wu X, Friis T, Crawford R, Prasadam I, Xiao Y. Saturated fatty acids promote chondrocyte matrix remodeling through reprogramming of autophagy pathways. Nutrition 2018; 54: 144-52.
[http://dx.doi.org/10.1016/j.nut.2018.02.018] [PMID: 29852453]
[31]
Han J, Kaufman RJ. The role of ER stress in lipid metabolism and lipotoxicity. J Lipid Res 2016; 57(8): 1329-38.
[http://dx.doi.org/10.1194/jlr.R067595] [PMID: 27146479]
[32]
Rabkin SW, Lodhia P. Stearic acid-induced cardiac lipotoxicity is independent of cellular lipid and is mitigated by the fatty acids oleic and capric acid but not by the PPAR agonist troglitazone. Exp Physiol 2009; 94(8): 877-87.
[http://dx.doi.org/10.1113/expphysiol.2009.048082] [PMID: 19482900]
[33]
Listenberger LL, Han X, Lewis SE, et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA 2003; 100(6): 3077-82.
[http://dx.doi.org/10.1073/pnas.0630588100] [PMID: 12629214]
[34]
Zeng J, Zhang Y, Hao J, et al. Stearic acid induces CD11c expression in proinflammatory macrophages via epidermal fatty acid binding protein. J Immunol 2018; 200(10): 3407-19.
[http://dx.doi.org/10.4049/jimmunol.1701416] [PMID: 29626089]
[35]
Newberry EP, Xie Y, Kennedy S, et al. Decreased hepatic triglyceride accumulation and altered fatty acid uptake in mice with deletion of the liver fatty acid-binding protein gene. J Biol Chem 2003; 278(51): 51664-72.
[http://dx.doi.org/10.1074/jbc.M309377200] [PMID: 14534295]
[36]
Ciechomska IA, Gabrusiewicz K, Szczepankiewicz AA, Kaminska B. Endoplasmic reticulum stress triggers auto-phagy in malignant glioma cells undergoing cyclosporine a-induced cell death. Oncogene 2013; 32(12): 1518-29.
[http://dx.doi.org/10.1038/onc.2012.174] [PMID: 22580614]
[37]
Habib NA, Wood CB, Apostolov K, et al. Stearic acid and carcinogenesis. Br J Cancer 1987; 56(4): 455-8.
[http://dx.doi.org/10.1038/bjc.1987.223] [PMID: 3689663]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy