Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Biomimetic Nanostructures with Compositional Gradient Grown by Combinatorial Matrix-Assisted Pulsed Laser Evaporation for Tissue Engineering

Author(s): Emanuel Axente* and Felix Sima*

Volume 27, Issue 6, 2020

Page: [903 - 918] Pages: 16

DOI: 10.2174/0929867326666190916145455

Price: $65

Abstract

There is permanent progress with the fabrication of smart bioactive surfaces that could govern tissue regeneration. Thin coatings of two or more materials with compositional gradient allow the construction of arrays with different chemical and physical features on a solid substrate. With such intelligent bio-platforms, cells can be exposed to a tissue-like biomimetic micro-environment with precise characteristics that directs cells fate towards specific phenotypes.

We have introduced combinatorial matrix-assisted pulsed laser evaporation (C-MAPLE) as an alternative approach for the fabrication in a single-step process of either organic or inorganic thin and nanostructured coatings with variable composition. A continuous reciprocal gradient of two biomolecules can be achieved by C-MAPLE with discrete areas exhibiting physicochemical specificity that modulates intracellular signaling events.

Herein, we present a review of the current combinatorial laser strategies and methods for fabricating thin organic and inorganic films with compositional gradient with emphasis on the surface influence on cell responsiveness. In particular, the specific biological potential of surface functionalization with thin coatings of biopolymers, proteins and drugs will be discussed. Laser deposition combinatorial processes are considered an emerging unconventional technology that can be widely applied to produce composite multilayers and micro-patterns for faster cell colonization and tissue engineering.

Keywords: Laser synthesis, biomimetic coatings, compositional gradient, combinatorial maps, composite layers, Combinatorial-MAPLE, tissue engineering, nanomedicine.

[1]
Ning, C.; Zhou, L.; Tan, G. Fourth-generation biomedical materials. Mater. Today, 2016, 19(1), 2-3.
[http://dx.doi.org/10.1016/j.mattod.2015.11.005]
[2]
Griffin, M.; Ravi, K.; Butler, P. A review of current concepts in using nanotechnology to improve regenerative medicine strategies to treat cartilage damage. Open Orthop. J., 2016, 10(1), 862-876.
[http://dx.doi.org/10.2174/1874325001610010862] [PMID: 28217211 ]
[3]
Hench, L.L.; Polak, J.M. Third-generation biomedical materials. Science, 2002, 295(5557), 1014-1017.
[http://dx.doi.org/10.1126/science.1067404] [PMID: 11834817 ]
[4]
Nguyen, T.D.; Deshmukh, N.; Nagarah, J.M.; Kramer, T.; Purohit, P.K.; Berry, M.J.; McAlpine, M.C. Piezoelectric nanoribbons for monitoring cellular deformations. Nat. Nanotechnol., 2012, 7(9), 587-593.
[http://dx.doi.org/10.1038/nnano.2012.112] [PMID: 22796742 ]
[5]
Cohen, D.J.; Nelson, W.J.; Maharbiz, M.M. Galvanotactic control of collective cell migration in epithelial monolayers. Nat. Mater., 2014, 13(4), 409-417.
[http://dx.doi.org/10.1038/nmat3891] [PMID: 24608142 ]
[6]
Liu, J.; Fu, T-M.; Cheng, Z.; Hong, G.; Zhou, T.; Jin, L.; Duvvuri, M.; Jiang, Z.; Kruskal, P.; Xie, C.; Suo, Z.; Fang, Y.; Lieber, C.M. Syringe-injectable electronics. Nat. Nanotechnol., 2015, 10(7), 629-636.
[http://dx.doi.org/10.1038/nnano.2015.115] [PMID: 26053995 ]
[7]
Negut, I.; Grumezescu, V.; Sima, L.E.; Axente, E. Carbon nanomaterials for electroanalysis in pharmaceutical applications in: Fullerens, Graphenes and Nanotubes: A Pharmaceutical Approach; Grumezescu, A., Ed.; Elsevier, 2018, p. 700.
[8]
Qadri, M.F.; Malviya, R.; Sharma, P.K. Biomedical applications of interpenetrating polymer network system. Open Pharm. Sci. J., 2015, 2(1)
[http://dx.doi.org/10.2174/1874844901502010021]
[9]
Holban, A.M.; Gestal, M.C.; Grumezescu, A.M. New molecular strategies for reducing implantable medical devices associated infections. Curr. Med. Chem., 2014, 21(29), 3375-3382.
[http://dx.doi.org/10.2174/0929867321666140304103810] [PMID: 24606502 ]
[10]
Sekuła, M.; Zuba‐Surma, E.K. Biomaterials and stem cells: promising tools in tissue engineering and biomedical applications. Bio.Reg. Med., 2018.
[http://dx.doi.org/10.5772/intechopen.70122]
[11]
Drevelle, O.; Faucheux, N. 1 Laboratory of cells-biomaterials biohybrid systems, universite de sherbrooke, department of chemical engineering and biotechnological engineering, 2500, Blvd Universite, Sherbrooke, Quebec, Canada, J1K 2R1. Front. Biosci., 2013, 5, 369-395.
[http://dx.doi.org/10.2741/S378]
[12]
Liu, Y.; Wu, G.; de Groot, K. Biomimetic coatings for bone tissue engineering of critical-sized defects. Journal of the Royal Society Interface, 2010.
[http://dx.doi.org/10.1098/rsif.2010.0115.focus]
[13]
Tobin, E.J. Recent coating developments for combination devices in orthopedic and dental applications: A literature review. Adv. Drug Deliv. Rev., 2017, 112, 88-100.
[http://dx.doi.org/10.1016/j.addr.2017.01.007] [PMID: 28159606]
[14]
Axente, E.; Sima, F.; Ristoscu, C.; Mihailescu, N.; Mihailescu, I.N. Biopolymer thin films synthesized by advanced pulsed laser techniques.Recent Advances in Biopolymers, In Tech; , 2016.
[http://dx.doi.org/10.5772/61734]
[15]
Nazar, H. Developing biomaterials for tissue engineering and regenerative medicine. Stroke, 2018, 13, 57.
[16]
Aguado, B.A.; Grim, J.C.; Rosales, A.M.; Watson-Capps, J.J.; Anseth, K.S. Engineering precision biomaterials for personalized medicine. Sci. Transl. Med., 2018, 10(424) eaam8645
[http://dx.doi.org/10.1126/scitranslmed.aam8645] [PMID: 29343626]
[17]
Zou, Y.; Zhang, L.; Yang, L.; Zhu, F.; Ding, M.; Lin, F.; Wang, Z.; Li, Y. “Click” chemistry in polymeric scaffolds: Bioactive materials for tissue engineering. J. Control. Release, 2018, 273, 160-179.
[http://dx.doi.org/10.1016/j.jconrel.2018.01.023] [PMID: 29382547]
[18]
Schmidt, V.; Belegratis, M.R. Introduction and scope of the book in: Laser Technology in Biomimetics; Schmidt, V; Belegratis, M.R., Ed.; Springer, 2013, pp. 1-12.
[http://dx.doi.org/10.1007/978-3-642-41341-4]
[19]
Axente, E.; Sopronyi, M.; Matei Ghimbeu, C.; Nita, C.; Airoudj, A.; Schrodj, G.; Sima, F. Matrix-assisted pulsed laser evaporation: a novel approach to design mesoporous carbon films. Carbon, 2017, 122, 484-495.
[http://dx.doi.org/10.1016/j.carbon.2017.06.098]
[20]
Sima, F.; Axente, E.; Ristoscu, C.; Gallet, O.; Anselme, K.; Mihailescu, I. Bioresponsive surfaces and interfaces fabricated by innovative laser approaches. Adv. Mater. Interfaces, 2016, 427-462.
[http://dx.doi.org/10.1002/9781119242604.ch12]
[21]
Brigaud, I.; Agniel, R.; Leroy-Dudal, J.; Kellouche, S.; Ponche, A.; Bouceba, T.; Mihailescu, N.; Sopronyi, M.; Viguier, E.; Ristoscu, C.; Sima, F.; Mihailescu, I.N.; Carreira, A.C.O.; Sogayar, M.C.; Gallet, O.; Anselme, K. Synergistic effects of BMP-2, BMP-6 or BMP-7 with human plasma fibronectin onto hydroxyapatite coatings: A comparative study. Acta Biomater., 2017, 55, 481-492.
[http://dx.doi.org/10.1016/j.actbio.2017.04.013] [PMID: 28434979]
[22]
Stiff-Roberts, A.D.; Ge, W. Organic/hybrid thin films deposited by matrix-assisted pulsed laser evaporation (MAPLE). Appl. Phys. Rev., 2017, 4(4) 041303
[http://dx.doi.org/10.1063/1.5000509]
[23]
Mihailescu, I.N.; Bigi, A.; Gyorgy, E.; Ristoscu, C.; Sima, F.; Oner, E.T. Biomaterial thin films by soft pulsed laser technologies for biomedical applications in: Non-Thermal Material Response to Laser Energy Deposition; Castillejo, M.; Ossi, P; Zhigilei, L., Ed.; Springer, 2014, pp. 271-294.
[http://dx.doi.org/10.1007/978-3-319-02898-9_11]
[24]
Ganjali, M.; Yazdanpanah, A.; Mozafari, M. Laser deposition of nano coatings on biomedical implants in: Emerging Applications of Nanoparticles and Architecture Nanostructures; Barhoum, A; Makhlouf, A.S.H., Ed.; Elsevier, 2018, pp. 235-254.
[http://dx.doi.org/10.1016/B978-0-323-51254-1.00008-7]
[25]
Koo, S.; Santoni, S.M.; Gao, B.Z.; Grigoropoulos, C.P.; Ma, Z. Laser-assisted biofabrication in tissue engineering and regenerative medicine. J. Mater. Res., 2017, 32(1), 128-142.
[http://dx.doi.org/10.1557/jmr.2016.452]
[26]
Dinca, V.; Sima, L.E.; Rusen, L.; Bonciu, A.; Lippert, T.; Dinescu, M.; Farsari, M. Bio-interfaces engineering using laser-based methods for controlled regulation of mesenchymal stem cell response in vitro. Recent Advances in Biopolymers; InTech, 2016.
[http://dx.doi.org/10.5772/61516]
[27]
Popescu-Pelin, G-F.; Ristoscu, C-G.; Badiceanu, M.; Mihailescu, I.N. Protected laser evaporation/ablation and deposition of organic/biological materials: thin films deposition for nano-biomedical applications. Laser Ablation-From Fundamentals to Applications; InTech, 2017.
[http://dx.doi.org/10.5772/intechopen.70615]
[28]
Sima, F.; Axente, E.; Sima, L.; Tuyel, U.; Eroglu, M.; Serban, N.; Ristoscu, C.; Petrescu, S.; Toksoy Oner, E.; Mihailescu, I. Combinatorial matrix-assisted pulsed laser evaporation: single-step synthesis of biopolymer compositional gradient thin film assemblies. Appl. Phys. Lett., 2012, 101(23) 233705
[http://dx.doi.org/10.1063/1.4769987]
[29]
Sima, F.; Axente, E.; Iordache, I.; Luculescu, C.; Gallet, O.; Anselme, K.; Mihailescu, I. Combinatorial matrix assisted pulsed laser evaporation of a biodegradable polymer and fibronectin for protein immobilization and controlled release. Appl. Surf. Sci., 2014, 306, 75-79.
[http://dx.doi.org/10.1016/j.apsusc.2014.03.056]
[30]
Axente, E.; Sima, F.; Elena Sima, L.; Erginer, M.; Eroglu, M.S.; Serban, N.; Ristoscu, C.; Petrescu, S.M.; Toksoy Oner, E.; Mihailescu, I.N. Combinatorial MAPLE gradient thin film assemblies signalling to human osteoblasts. Biofabrication, 2014, 6(3) 035010
[http://dx.doi.org/10.1088/1758-5082/6/3/035010] [PMID: 24867882]
[31]
Boanini, E.; Torricelli, P.; Sima, F.; Axente, E.; Fini, M.; Mihailescu, I.N.; Bigi, A. Strontium and zoledronate hydroxyapatites graded composite coatings for bone prostheses. J. Colloid Interface Sci., 2015, 448, 1-7.
[http://dx.doi.org/10.1016/j.jcis.2015.01.088] [PMID: 25706198]
[32]
Visan, A.; Stan, G.E.; Ristoscu, C.; Popescu-Pelin, G.; Sopronyi, M.; Besleaga, C.; Luculescu, C.; Chifiriuc, M.C.; Hussien, M.D.; Marsan, O.; Kergourlay, E.; Grossin, D.; Brouillet, F.; Mihailescu, I.N. Combinatorial MAPLE deposition of antimicrobial orthopedic maps fabricated from chitosan and biomimetic apatite powders. Int. J. Pharm., 2016, 511(1), 505-515.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.015] [PMID: 27418570]
[33]
Boanini, E.; Torricelli, P.; Sima, F.; Axente, E.; Fini, M.; Mihailescu, I.N.; Bigi, A. Gradient coatings of strontium hydroxyapatite/zinc β-tricalcium phosphate as a tool to modulate osteoblast/osteoclast response. J. Inorg. Biochem., 2018, 183, 1-8.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.02.024] [PMID: 29525694]
[34]
Håkanson, M.; Cukierman, E.; Charnley, M. Miniaturized pre-clinical cancer models as research and diagnostic tools. Adv. Drug Deliv. Rev., 2014, 69-70, 52-66.
[http://dx.doi.org/10.1016/j.addr.2013.11.010] [PMID: 24295904]
[35]
Liu, R.; Li, X.; Xiao, W.; Lam, K.S. Tumor-targeting peptides from combinatorial libraries. Adv. Drug Deliv. Rev., 2017, 110-111, 13-37.
[http://dx.doi.org/10.1016/j.addr.2016.05.009] [PMID: 27210583]
[36]
Moy, A.J.; Tunnell, J.W. Combinatorial immunotherapy and nanoparticle mediated hyperthermia. Adv. Drug Deliv. Rev., 2017, 114, 175-183.
[http://dx.doi.org/10.1016/j.addr.2017.06.008] [PMID: 28625829]
[37]
Xiang, X.D.; Sun, X.; Briceño, G.; Lou, Y.; Wang, K.A.; Chang, H.; Wallace-Freedman, W.G.; Chen, S.W.; Schultz, P.G. A combinatorial approach to materials discovery. Science, 1995, 268(5218), 1738-1740.
[http://dx.doi.org/10.1126/science.268.5218.1738] [PMID: 17834993]
[38]
Buenconsejo, P.J.S.; Zarnetta, R.; König, D.; Savan, A.; Thienhaus, S.; Ludwig, A. A new prototype two‐phase (TiNi)–(β‐W) SMA system with tailorable thermal hysteresis. Adv. Funct. Mater., 2011, 21(1), 113-118.
[http://dx.doi.org/10.1002/adfm.201001697]
[39]
Takeuchi, I. Combinatorial pulsed laser deposition in: Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials; Eason, R., Ed.; , 2006, pp. 161-176.
[http://dx.doi.org/10.1002/0470052120]
[40]
Craciun, D.; Socol, G.; Stefan, N.; Miroiu, M.; Mihailescu, I.N.; Galca, A-C.; Craciun, V. Structural investigations of ITO-ZnO films grown by the combinatorial pulsed laser deposition technique. Appl. Surf. Sci., 2009, 255(10), 5288-5291.
[http://dx.doi.org/10.1016/j.apsusc.2008.07.120]
[41]
Sloyan, K.A.; May-Smith, T.C.; Zervas, M.; Eason, R.W.; Huband, S.; Walker, D.; Thomas, P.A. Growth of crystalline garnet mixed films, superlattices and multilayers for optical applications via shuttered combinatorial pulsed laser deposition. Opt. Express, 2010, 18(24), 24679-24687.
[http://dx.doi.org/10.1364/OE.18.024679] [PMID: 21164814]
[42]
Socol, G.; Socol, M.; Sima, L.; Petrescu, S.; Enculescu, M.; Sima, F.; Miroiu, M.; Popescu-Pelin, G.; Stefan, N.; Cristescu, R. Combinatorial pulsed laser deposition of Ag-containing calcium phosphate coatings. Dig. J. Nanomater. Biostruct., 2012, 7(2), 563-576.
[43]
Mihailescu, I.N.; Bociaga, D.; Socol, G.; Stan, G.E.; Chifiriuc, M-C.; Bleotu, C.; Husanu, M.A.; Popescu-Pelin, G.; Duta, L.; Luculescu, C.R.; Negut, I.; Hapenciuc, C.; Besleaga, C.; Zgura, I.; Miculescu, F. Fabrication of antimicrobial silver-doped carbon structures by combinatorial pulsed laser deposition. Int. J. Pharm., 2016, 515(1-2), 592-606.
[http://dx.doi.org/10.1016/j.ijpharm.2016.10.041] [PMID: 27773854]
[44]
Sima, F.; Davidson, P.; Pauthe, E.; Sima, L.E.; Gallet, O.; Mihailescu, I.N.; Anselme, K. Fibronectin layers by matrix-assisted pulsed laser evaporation from saline buffer-based cryogenic targets. Acta Biomater., 2011, 7(10), 3780-3788.
[http://dx.doi.org/10.1016/j.actbio.2011.06.016] [PMID: 21704740]
[45]
Smausz, T.; Megyeri, G.; Kékesi, R.; Vass, C.; György, E.; Sima, F.; Mihailescu, I.N.; Hopp, B. Comparative study on pulsed laser deposition and matrix assisted pulsed laser evaporation of urease thin films. Thin Solid Films, 2009, 517(15), 4299-4302.
[http://dx.doi.org/10.1016/j.tsf.2008.11.141]
[46]
Xing, H.; Zhao, B.; Wang, Y.; Zhang, X.; Ren, Y.; Yan, N.; Gao, T.; Li, J.; Zhang, L.; Wang, H. Rapid construction of Fe-Co-Ni composition-phase map by combinatorial materials chip approach. ACS Comb. Sci., 2018, 20(3), 127-131.
[http://dx.doi.org/10.1021/acscombsci.7b00171] [PMID: 29381327]
[47]
Surmeian, A.; Diplasu, C.; Atanasiu, C.; Ganciu, M. Monitoring the evolution of the p-3(2) neon metastable level density in temporal afterglow plasma by absorption spectroscopy using a pulsed hollow cathode spectral source. Rom. J. Phys., 2014, 59(5-6), 570-581. Available at: . https://www.southampton.ac.uk/chemistry/research/projects/physical_vapour_deposition.page
[48]
Motemani, Y.; Khare, C.; Savan, A.; Hans, M.; Paulsen, A.; Frenzel, J.; Somsen, C.; Mücklich, F.; Eggeler, G.; Ludwig, A. Nanostructured Ti-Ta thin films synthesized by combinatorial glancing angle sputter deposition. Nanotechnology, 2016, 27(49) 495604
[http://dx.doi.org/10.1088/0957-4484/27/49/495604] [PMID: 27834309]
[49]
Sun, F.; Sask, K.N.; Brash, J.L.; Zhitomirsky, I. Surface modifications of Nitinol for biomedical applications. Colloids Surf. B Biointerfaces, 2008, 67(1), 132-139.
[http://dx.doi.org/10.1016/j.colsurfb.2008.08.008] [PMID: 18815014]
[50]
Hoogenboom, R.; Meier, M.A.; Schubert, U.S. Combinatorial methods, automated synthesis and high‐throughput screening in polymer research: past and present. Macromol. Rapid Commun., 2003, 24(1), 15-32.
[http://dx.doi.org/10.1002/marc.200390013]
[51]
Meredith, J.C.; Smith, A.P.; Karim, A.; Amis, E.J. Combinatorial materials science for polymer thin-film dewetting. Macromolecules, 2000, 33(26), 9747-9756.
[http://dx.doi.org/10.1021/ma001298g]
[52]
Sima, F.; Axente, E.; Ristoscu, C.; Mihailescu, I.N.; Kononenko, T.V.; Nagovitsin, I.A.; Chudinova, G.; Konov, V.I.; Socol, M.; Enculescu, I.; Sima, L.E.; Petrescu, S.M. Tailoring immobilization of immunoglobulin by excimer laser for biosensor applications. J. Biomed. Mater. Res. A, 2011, 96(2), 384-394.
[http://dx.doi.org/10.1002/jbm.a.32991] [PMID: 21171158]
[53]
Motoc, M.M.; Axente, E.; Popescu, C.; Sima, L.E.; Petrescu, S.M.; Mihailescu, I.N.; Gyorgy, E. Active protein and calcium hydroxyapatite bilayers grown by laser techniques for therapeutic applications. J. Biomed. Mater. Res. A, 2013, 101(9), 2706-2711.
[http://dx.doi.org/10.1002/jbm.a.34572] [PMID: 23427118]
[54]
Sarilmiser, H.K.; Oner, E.T. Investigation of anti-cancer activity of linear and aldehyde-activated levan from Halomonas smyrnensis AAD6T. Biochem. Eng. J., 2014, 92, 28-34.
[http://dx.doi.org/10.1016/j.bej.2014.06.020]
[55]
Sezer, A.D.; Kazak Sarılmışer, H.; Rayaman, E.; Çevikbaş, A.; Öner, E.T.; Akbuğa, J. Development and characterization of vancomycin-loaded levan-based microparticular system for drug delivery. Pharm. Dev. Technol., 2017, 22(5), 627-634.
[http://dx.doi.org/10.3109/10837450.2015.1116564] [PMID: 26607946]
[56]
Erginer, M.; Akcay, A.; Coskunkan, B.; Morova, T.; Rende, D.; Bucak, S.; Baysal, N.; Ozisik, R.; Eroglu, M.S.; Agirbasli, M.; Toksoy Oner, E. Sulfated levan from Halomonas smyrnensis as a bioactive, heparin-mimetic glycan for cardiac tissue engineering applications. Carbohydr. Polym., 2016, 149, 289-296.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.092] [PMID: 27261753]
[57]
Queiroz, E.A.I.F.; Fortes, Z.B.; da Cunha, M.A.A.; Sarilmiser, H.K.; Barbosa Dekker, A.M.; Öner, E.T.; Dekker, R.F.H.; Khaper, N. Levan promotes antiproliferative and pro-apoptotic effects in MCF-7 breast cancer cells mediated by oxidative stress. Int. J. Biol. Macromol., 2017, 102, 565-570.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.035] [PMID: 28412340]
[58]
Öner, E.T.; Hernández, L.; Combie, J. Review of Levan polysaccharide: From a century of past experiences to future prospects. Biotechnol. Adv., 2016, 34(5), 827-844.
[http://dx.doi.org/10.1016/j.biotechadv.2016.05.002] [PMID: 27178733]
[59]
Boanini, E.; Gazzano, M.; Bigi, A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater., 2010, 6(6), 1882-1894.
[http://dx.doi.org/10.1016/j.actbio.2009.12.041] [PMID: 20040384]
[60]
Marie, P.J. Strontium ranelate: a novel mode of action optimizing bone formation and resorption. Osteoporos. Int., 2005, 16(Suppl. 1), S7-S10.
[http://dx.doi.org/10.1007/s00198-004-1753-8] [PMID: 15578159]
[61]
Gallacher, S.J.; Dixon, T. Impact of treatments for postmenopausal osteoporosis (bisphosphonates, parathyroid hormone, strontium ranelate, and denosumab) on bone quality: a systematic review. Calcif. Tissue Int., 2010, 87(6), 469-484.
[http://dx.doi.org/10.1007/s00223-010-9420-x] [PMID: 20872215]
[62]
Lynch, R.J. Zinc in the mouth, its interactions with dental enamel and possible effects on caries; a review of the literature. Int. Dent. J., 2011, 61(Suppl. 3), 46-54.
[http://dx.doi.org/10.1111/j.1875-595X.2011.00049.x] [PMID: 21762155]
[63]
Giger, E.V.; Castagner, B.; Leroux, J-C. Biomedical applications of bisphosphonates. J. Control. Release, 2013, 167(2), 175-188.
[http://dx.doi.org/10.1016/j.jconrel.2013.01.032] [PMID: 23395668]
[64]
Boanini, E.; Torricelli, P.; Gazzano, M.; Della Bella, E.; Fini, M.; Bigi, A. Combined effect of strontium and zoledronate on hydroxyapatite structure and bone cell responses. Biomaterials, 2014, 35(21), 5619-5626.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.053] [PMID: 24731709]
[65]
Bose, S.; Tarafder, S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater., 2012, 8(4), 1401-1421.
[http://dx.doi.org/10.1016/j.actbio.2011.11.017] [PMID: 22127225]
[66]
Chou, J.; Hao, J.; Hatoyama, H.; Ben-Nissan, B.; Milthorpe, B.; Otsuka, M. Effect of biomimetic zinc-containing tricalcium phosphate (Zn-TCP) on the growth and osteogenic differentiation of mesenchymal stem cells. J. Tissue Eng. Regen. Med., 2015, 9(7), 852-858.
[http://dx.doi.org/10.1002/term.1901] [PMID: 24737707]
[67]
Stevens, M.M.; George, J.H. Exploring and engineering the cell surface interface. Science, 2005, 310(5751), 1135-1138.
[http://dx.doi.org/10.1126/science.1106587] [PMID: 16293749]
[68]
Schottner, G. Hybrid sol- gel-derived polymers: applications of multifunctional materials. Chem. Mater., 2001, 13(10), 3422-3435.
[http://dx.doi.org/10.1021/cm011060m]
[69]
Decher, G.; Schlenoff, J.B. Multilayer thin films: sequential assembly of nanocomposite materials; John Wiley & Sons, 2006.
[70]
Fisher, O.Z.; Khademhosseini, A.; Langer, R.; Peppas, N.A. Bioinspired materials for controlling stem cell fate. Acc. Chem. Res., 2010, 43(3), 419-428.
[http://dx.doi.org/10.1021/ar900226q] [PMID: 20043634]
[71]
Rădulescu, D.; Grumezescu, V.; Andronescu, E.; Holban, A.M.; Grumezescu, A.M.; Socol, G.; Oprea, A.E.; Rădulescu, M.; Surdu, A.; Trusca, R. Biocompatible cephalosporin-hydroxyapatite-poly (lactic-co-glycolic acid)-coatings fabricated by MAPLE technique for the prevention of bone implant associated infections. Appl. Surf. Sci., 2016, 374, 387-396.
[http://dx.doi.org/10.1016/j.apsusc.2016.02.072]
[72]
Miroiu, F.M.; Stefan, N.; Visan, A.I.; Nita, C.; Luculescu, C.R.; Rasoga, O.; Socol, M.; Zgura, I.; Cristescu, R.; Craciun, D. Composite biodegradable biopolymer coatings of silk fibroin-Poly (3-hydroxybutyric-acid-co-3-hydroxyvaleric-acid) for biomedical applications. Appl. Surf. Sci., 2015, 355, 1123-1131.
[http://dx.doi.org/10.1016/j.apsusc.2015.07.120]
[73]
Rusen, L.; Neacsu, P.; Cimpean, A.; Valentin, I.; Brajnicov, S.; Dumitrescu, L.; Banita, J.; Dinca, V.; Dinescu, M. In vitro evaluation of poly (ethylene glycol)-block-poly (ɛ-caprolactone) methyl ether copolymer coating effects on cells adhesion and proliferation. Appl. Surf. Sci., 2016, 374, 23-30.
[http://dx.doi.org/10.1016/j.apsusc.2015.08.214]
[74]
Rusen, L.; Brajnicov, S.; Neacsu, P.; Marascu, V.; Bonciu, A.; Dinescu, M.; Dinca, V.; Cimpean, A. Novel degradable biointerfacing nanocomposite coatings for modulating the osteoblast response. Surf. Coat. Tech., 2017, 325, 397-409.
[http://dx.doi.org/10.1016/j.surfcoat.2017.06.045]
[75]
Icriverzi, M.; Rusen, L.; Sima, L.E.; Moldovan, A.; Brajnicov, S.; Bonciu, A.; Mihailescu, N.; Dinescu, M.; Cimpean, A.; Roseanu, A. In vitro behavior of human mesenchymal stem cells on poly (N-isopropylacrylamide) based biointerfaces obtained by matrix assisted pulsed laser evaporation. Appl. Surf. Sci., 2018, 440, 712-724.
[http://dx.doi.org/10.1016/j.apsusc.2018.01.200]
[76]
Valentina, G.; Irina, N.; Mihai, G.A.; Anton, F.; Gabriela, D.; Gabriel, S.; Florin, I.; Roxana, T.; Stefan, V.B.; Maria, H.A. MAPLE fabricated coatings based on magnetite nanoparticles embedded into biopolymeric spheres resistant to microbial colonization. Appl. Surf. Sci., 2018, 448(1), 230-236.
[http://dx.doi.org/10.1016/j.apsusc.2018.04.053]
[77]
Meredith, J.C.; Karim, A.; Amis, E.J. High-throughput measurement of polymer blend phase behavior. Macromolecules, 2000, 33(16), 5760-5762.
[http://dx.doi.org/10.1021/ma0004662]
[78]
Sima, F.; Mutlu, E.C.; Eroglu, M.S.; Sima, L.E.; Serban, N.; Ristoscu, C.; Petrescu, S.M.; Oner, E.T.; Mihailescu, I.N. Levan nanostructured thin films by MAPLE assembling. Biomacromolecules, 2011, 12(6), 2251-2256.
[http://dx.doi.org/10.1021/bm200340b] [PMID: 21520921]
[79]
Forte, L.; Torricelli, P.; Bonvicini, F.; Boanini, E.; Gentilomi, G.A.; Lusvardi, G.; Della Bella, E.; Fini, M.; Vecchio Nepita, E.; Bigi, A. Biomimetic fabrication of antibacterial calcium phosphates mediated by polydopamine. J. Inorg. Biochem., 2018, 178, 43-53.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.10.004] [PMID: 29049953]
[80]
Boanini, E.; Torricelli, P.; Bonvicini, F.; Cassani, M.C.; Fini, M.; Gentilomi, G.A.; Bigi, A. A new multifunctionalized material against multi-drug resistant bacteria and abnormal osteoclast activity. Eur. J. Pharm. Biopharm., 2018, 127, 120-129.
[http://dx.doi.org/10.1016/j.ejpb.2018.02.018] [PMID: 29454808]
[81]
Duta, L.; Ristoscu, C.; Stan, G.; Husanu, M.; Besleaga, C.; Chifiriuc, M.; Lazar, V.; Bleotu, C.; Miculescu, F.; Mihailescu, N. New bio-active, antimicrobial and adherent coatings of nanostructured carbon double-reinforced with silver and silicon by matrix-assisted pulsed laser evaporation for medical applications. Appl. Surf. Sci., 2018, 441, 871-883.
[http://dx.doi.org/10.1016/j.apsusc.2018.02.047]
[82]
Bosco, R.; Van Den Beucken, J.; Leeuwenburgh, S.; Jansen, J. Surface engineering for bone implants: a trend from passive to active surfaces. Coatings, 2012, 2(3), 95-119.
[http://dx.doi.org/10.3390/coatings2030095]
[83]
Deligianni, D.D.; Katsala, N.D.; Koutsoukos, P.G.; Missirlis, Y.F. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials, 2001, 22(1), 87-96.
[http://dx.doi.org/10.1016/S0142-9612(00)00174-5] [PMID: 11085388]
[84]
Mavrogenis, A.F.; Dimitriou, R.; Parvizi, J.; Babis, G.C. Biology of implant osseointegration. J. Musculoskelet. Neuronal Interact., 2009, 9(2), 61-71.
[PMID: 19516081]
[85]
Niu, S.; Cao, X.; Zhang, Y.; Zhu, Q.; Zhu, J. The inhibitory effect of alendronate-hydroxyapatite composite coating on wear debris-induced peri-implant high bone turnover. J. Surg. Res., 2013, 179(1), e107-e115.
[http://dx.doi.org/10.1016/j.jss.2012.02.003] [PMID: 22498026]
[86]
Capuccini, C.; Torricelli, P.; Sima, F.; Boanini, E.; Ristoscu, C.; Bracci, B.; Socol, G.; Fini, M.; Mihailescu, I.N.; Bigi, A. Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: in vitro osteoblast and osteoclast response. Acta Biomater., 2008, 4(6), 1885-1893.
[http://dx.doi.org/10.1016/j.actbio.2008.05.005] [PMID: 18554996]
[87]
Webb, K.; Hlady, V.; Tresco, P.A. Relationships among cell attachment, spreading, cytoskeletal organization, and migration rate for anchorage-dependent cells on model surfaces. J. Biomed. Mater. Res., 2000, 49(3), 362-368.
[http://dx.doi.org/10.1002/(SICI)1097-4636(20000305)49:3<362:AID-JBM9>3.0.CO;2-S] [PMID: 10602069]
[88]
Keselowsky, B.G.; Collard, D.M.; García, A.J. Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. J. Biomed. Mater. Res. A, 2003, 66(2), 247-259.
[http://dx.doi.org/10.1002/jbm.a.10537] [PMID: 12888994]
[89]
Darwish, A.M.; Moore, S.; Mohammad, A.; Bastian, T.; Dorlus, W.; Sarkisov, S.; Patel, D.; Mele, P.; Koplitz, B.; Hui, D. Polymer nano-composite films with inorganic upconversion phosphor and electro-optic additives made by concurrent triple-beam matrix assisted and direct pulsed laser deposition. Compos., Part B Eng., 2017, 109, 82-90.
[http://dx.doi.org/10.1016/j.compositesb.2016.10.053]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy