Bioactive Secondary Metabolites from Endophytic Fungi

Author(s): Elena Ancheeva, Georgios Daletos*, Peter Proksch*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 11 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Background: Endophytes represent a complex community of microorganisms colonizing asymptomatically internal tissues of higher plants. Several reports have shown that endophytes enhance the fitness of their host plants by direct production of bioactive secondary metabolites, which are involved in protecting the host against herbivores and pathogenic microbes. In addition, it is increasingly apparent that endophytes are able to biosynthesize medicinally important “phytochemicals”, originally believed to be produced only by their host plants.

Objective: The present review provides an overview of secondary metabolites from endophytic fungi with pronounced biological activities covering the literature between 2010 and 2017. Special focus is given on studies aiming at exploration of the mode of action of these metabolites towards the discovery of leads from endophytic fungi. Moreover, this review critically evaluates the potential of endophytic fungi as alternative sources of bioactive “plant metabolites”.

Results: Over the past few years, several promising lead structures from endophytic fungi have been described in the literature. In this review, 65 metabolites are outlined with pronounced biological activities, primarily as antimicrobial and cytotoxic agents. Some of these metabolites have shown to be highly selective or to possess novel mechanisms of action, which hold great promises as potential drug candidates.

Conclusion: Endophytes represent an inexhaustible reservoir of pharmacologically important compounds. Moreover, endophytic fungi could be exploited for the sustainable production of bioactive “plant metabolites” in the future. Towards this aim, further insights into the dynamic endophyte - host plant interactions and origin of endophytic fungal genes would be of utmost importance.

Keywords: Endophytes, host plants, natural products, plant metabolites, biological activity, mode of action, lead structures.

[1]
Tan, R.X.; Zou, W.X. Endophytes: a rich source of functional metabolites. Nat. Prod. Rep., 2001, 18(4), 448-459.
[http://dx.doi.org/10.1039/b100918o] [PMID: 11548053]
[2]
Jia, M.; Chen, L.; Xin, H.L.; Zheng, C.J.; Rahman, K.; Han, T.; Qin, L.P. A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front. Microbiol., 2016, 7, 906.
[http://dx.doi.org/10.3389/fmicb.2016.00906] [PMID: 27375610]
[3]
Kogel, K.H.; Franken, P.; Hückelhoven, R. Endophyte or parasite--what decides? Curr. Opin. Plant Biol., 2006, 9(4), 358-363.
[http://dx.doi.org/10.1016/j.pbi.2006.05.001] [PMID: 16713330]
[4]
Gutierrez, R.M.; Gonzalez, A.M.; Ramirez, A.M. Compounds derived from endophytes: a review of phytochemistry and pharmacology. Curr. Med. Chem., 2012, 19(18), 2992-3030.
[http://dx.doi.org/10.2174/092986712800672111] [PMID: 22489725]
[5]
Zhang, H.W.; Song, Y.C.; Tan, R.X. Biology and chemistry of endophytes. Nat. Prod. Rep., 2006, 23(5), 753-771.
[http://dx.doi.org/10.1039/b609472b] [PMID: 17003908]
[6]
Spiteller, P. Chemical ecology of fungi. Nat. Prod. Rep., 2015, 32(7), 971-993.
[http://dx.doi.org/10.1039/C4NP00166D] [PMID: 26038303]
[7]
Kharwar, R.N.; Mishra, A.; Gond, S.K.; Stierle, A.; Stierle, D. Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat. Prod. Rep., 2011, 28(7), 1208-1228.
[http://dx.doi.org/10.1039/c1np00008j] [PMID: 21455524]
[8]
Ludwig-Müller, J. Plants and endophytes: equal partners in secondary metabolite production? Biotechnol. Lett., 2015, 37(7), 1325-1334.
[http://dx.doi.org/10.1007/s10529-015-1814-4] [PMID: 25792513]
[9]
Qawasmeh, A.; Obied, H.K.; Raman, A.; Wheatley, W. Influence of fungal endophyte infection on phenolic content and antioxidant activity in grasses: interaction between Lolium perenne and different strains of Neotyphodium lolii. J. Agric. Food Chem., 2012, 60(13), 3381-3388.
[http://dx.doi.org/10.1021/jf204105k] [PMID: 22435921]
[10]
Gokhale, M.; Gupta, D.; Gupta, U.; Faraz, R.; Sandhu, S.S. Patents on endophytic fungi. Recent Pat. Biotechnol., 2017, 11(2), 120-140.
[http://dx.doi.org/10.2174/1872208311666170215151834] [PMID: 28215141]
[11]
Aly, A.H.; Debbab, A.; Proksch, P. Fungal endophytes: unique plant inhabitants with great promises. Appl. Microbiol. Biotechnol., 2011, 90(6), 1829-1845.
[http://dx.doi.org/10.1007/s00253-011-3270-y] [PMID: 21523479]
[12]
Yang, X.L.; Zhang, J.Z.; Luo, D.Q. The taxonomy, biology and chemistry of the fungal Pestalotiopsis genus. Nat. Prod. Rep., 2012, 29(6), 622-641.
[http://dx.doi.org/10.1039/c2np00073c] [PMID: 22249927]
[13]
Alvin, A.; Miller, K.I.; Neilan, B.A. Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol. Res., 2014, 169(7-8), 483-495.
[http://dx.doi.org/10.1016/j.micres.2013.12.009] [PMID: 24582778]
[14]
Tomlinson, P.B. Ecology. In: The Botany of Mangroves., 2nd ed. Cambridge University Press: Cambridge, UK, . 2016, 11-28.
[http://dx.doi.org/10.1017/CBO9781139946575.003]
[15]
Ancheeva, E.; Daletos, G.; Proksch, P. Lead compounds from mangrove-associated microorganisms. Mar. Drugs, 2018, 16(9)e319
[http://dx.doi.org/10.3390/md16090319] [PMID: 30205507]
[16]
Frank, M.; Niemann, H.; Böhler, P.; Stork, B.; Wesselborg, S.; Lin, W.; Proksch, P. Phomoxanthone A - from mangrove forests to anticancer therapy. Curr. Med. Chem., 2015, 22(30), 3523-3532.
[http://dx.doi.org/10.2174/0929867322666150716115300] [PMID: 26179997]
[17]
Thatoi, H.; Behera, B.C.; Mishra, R.R.; Dutta, S.K. Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: a review. Ann. Microbiol., 2013, 63, 1-19.
[http://dx.doi.org/10.1007/s13213-012-0442-7]
[18]
Xu, J. Bioactive natural products derived from mangrove-associated microbes. RSC Advances, 2015, 5, 841-892.
[http://dx.doi.org/10.1039/C4RA11756E]
[19]
Wu, J.; Xiao, Q.; Xu, J.; Li, M.Y.; Pan, J.Y.; Yang, M.H. Natural products from true mangrove flora: source, chemistry and bioactivities. Nat. Prod. Rep., 2008, 25(5), 955-981.
[http://dx.doi.org/10.1039/b807365a] [PMID: 18820760]
[20]
Rönsberg, D.; Debbab, A.; Mándi, A.; Vasylyeva, V.; Böhler, P.; Stork, B.; Engelke, L.; Hamacher, A.; Sawadogo, R.; Diederich, M.; Wray, V.; Lin, W.; Kassack, M.U.; Janiak, C.; Scheu, S.; Wesselborg, S.; Kurtán, T.; Aly, A.H.; Proksch, P. Pro-apoptotic and immunostimulatory tetrahydroxanthone dimers from the endophytic fungus Phomopsis longicolla. J. Org. Chem., 2013, 78(24), 12409-12425.
[http://dx.doi.org/10.1021/jo402066b] [PMID: 24295452]
[21]
Böhler, P.; Stuhldreier, F.; Anand, R.; Kondadi, A.K.; Schlütermann, D.; Berleth, N.; Deitersen, J.; Wallot-Hieke, N.; Wu, W.; Frank, M.; Niemann, H.; Wesbuer, E.; Barbian, A.; Luyten, T.; Parys, J.B.; Weidtkamp-Peters, S.; Borchardt, A.; Reichert, A.S.; Peña-Blanco, A.; García-Sáez, A.J.; Itskanov, S.; van der Bliek, A.M.; Proksch, P.; Wesselborg, S.; Stork, B. The mycotoxin phomoxanthone A disturbs the form and function of the inner mitochondrial membrane. Cell Death Dis., 2018, 9(3), 286.
[http://dx.doi.org/10.1038/s41419-018-0312-8] [PMID: 29459714]
[22]
Ebrahim, W.; Aly, A.H.; Wray, V.; Mándi, A.; Teiten, M-H.; Gaascht, F.; Orlikova, B.; Kassack, M.U.; Lin, W.; Diederich, M.; Kurtán, T.; Debbab, A.; Proksch, P. Embellicines A and B: absolute configuration and NF-κB transcriptional inhibitory activity. J. Med. Chem., 2013, 56(7), 2991-2999.
[http://dx.doi.org/10.1021/jm400034b] [PMID: 23484593]
[23]
Uesugi, S.; Fujisawa, N.; Yoshida, J.; Watanabe, M.; Dan, S.; Yamori, T.; Shiono, Y.; Kimura, K. Pyrrocidine A, a metabolite of endophytic fungi, has a potent apoptosis-inducing activity against HL60 cells through caspase activation via the Michael addition. J. Antibiot. (Tokyo), 2016, 69(3), 133-140.
[http://dx.doi.org/10.1038/ja.2015.103] [PMID: 26506860]
[24]
Kumar, M.; Qadri, M.; Sharma, P.R.; Kumar, A.; Andotra, S.S.; Kaur, T.; Kapoor, K.; Gupta, V.K.; Kant, R.; Hamid, A.; Johri, S.; Taneja, S.C.; Vishwakarma, R.A.; Riyaz-Ul-Hassan, S.; Shah, B.A. Tubulin inhibitors from an endophytic fungus isolated from Cedrus deodara. J. Nat. Prod., 2013, 76(2), 194-199.
[http://dx.doi.org/10.1021/np3006666] [PMID: 23387901]
[25]
El Amrani, M.; Lai, D.; Debbab, A.; Aly, A.H.; Siems, K.; Seidel, C.; Schnekenburger, M.; Gaigneaux, A.; Diederich, M.; Feger, D.; Lin, W.; Proksch, P. Protein kinase and HDAC inhibitors from the endophytic fungus Epicoccum nigrum. J. Nat. Prod., 2014, 77(1), 49-56.
[http://dx.doi.org/10.1021/np4005745] [PMID: 24328302]
[26]
McClure, J.J.; Li, X.; Chou, C.J. Chapter six - advances and challenges of HDAC inhibitors in cancer therapeutics. Adv. Cancer Res., 2018, 138, 183-211.
[http://dx.doi.org/10.1016/bs.acr.2018.02.006] [PMID: 29551127]
[27]
Gallo, M.B.C.; Falso, M.J.S.; Balem, F.; Menezes, D.; Rocha, N.; Balachandran, R.; Sturgeon, T.S.; Pupo, M.T.; Day, B.W. The anti-promyelocytic leukemia mode of action of two endophytic secondary metabolites unveiled by a proteomic approach. Planta Med., 2014, 80(6), 473-481.
[http://dx.doi.org/10.1055/s-0034-1368301] [PMID: 24710897]
[28]
Krokan, H.; Wist, E.; Krokan, R.H. Aphidicolin inhibits DNA synthesis by DNA polymerase alpha and isolated nuclei by a similar mechanism. Nucleic Acids Res., 1981, 9(18), 4709-4719.
[http://dx.doi.org/10.1093/nar/9.18.4709] [PMID: 6795595]
[29]
O’Dwyer, P.J.; Moyer, J.D.; Suffness, M.; Harrison, S.D., Jr; Cysyk, R.; Hamilton, T.C.; Plowman, J. Antitumor activity and biochemical effects of aphidicolin glycinate (NSC 303812) alone and in combination with cisplatin in vivo. Cancer Res., 1994, 54(3), 724-729.
[PMID: 8306334]
[30]
Schimke, R.T.; Kung, A.; Sherwood, S.S.; Sheridan, J.; Sharma, R. Life, death and genomic change in perturbed cell cycles. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1994, 345(1313), 311-317.
[http://dx.doi.org/10.1098/rstb.1994.0111] [PMID: 7846128]
[31]
Rocha, O.; Ansari, K.; Doohan, F.M. Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food Addit. Contam., 2005, 22(4), 369-378.
[http://dx.doi.org/10.1080/02652030500058403] [PMID: 16019807]
[32]
Thompson, W.L.; Wannemacher, R.W., Jr Detection and quantitation of T-2 mycotoxin with a simplified protein synthesis inhibition assay. Appl. Environ. Microbiol., 1984, 48(6), 1176-1180.
[http://dx.doi.org/10.1128/AEM.48.6.1176-1180.1984] [PMID: 6517584]
[33]
Lin, T.; Wang, G.; Zhou, Y.; Zeng, D.; Liu, X.; Ding, R.; Jiang, X.; Zhu, D.; Shan, W.; Chen, H. Structure elucidation and biological activity of two new trichothecenes from an endophyte, Myrothecium roridum. J. Agric. Food Chem., 2014, 62(25), 5993-6000.
[http://dx.doi.org/10.1021/jf501724a] [PMID: 24909753]
[34]
Liu, Y.; Stuhldreier, F.; Kurtán, T.; Mándi, A.; Arumugam, S.; Lin, W.; Stork, B.; Wesselborg, S.; Weber, H.; Henrich, B.; Daletos, G.; Proksch, P. Daldinone derivatives from the mangrove derived endophytic fungus Annulohypoxylon sp. RSC Advances, 2017, 7, 5381-5393.
[http://dx.doi.org/10.1039/C6RA27306H]
[35]
Bashyal, B.P.; Wijeratne, E.M.K.; Tillotson, J.; Arnold, A.E.; Chapman, E.; Gunatilaka, A.A.L. Chlorinated dehydrocurvularins and alterperylenepoxide A from Alternaria sp. AST0039, a fungal endophyte of Astragalus lentiginosus. J. Nat. Prod., 2017, 80(2), 427-433.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00960] [PMID: 28139929]
[36]
Koul, M.; Kumar, A.; Deshidi, R.; Sharma, V.; Singh, R.D.; Singh, J.; Sharma, P.R.; Shah, B.A.; Jaglan, S.; Singh, S. Cladosporol A triggers apoptosis sensitivity by ROS-mediated autophagic flux in human breast cancer cells. BMC Cell Biol., 2017, 18(1), 26.
[http://dx.doi.org/10.1186/s12860-017-0141-0] [PMID: 28728544]
[37]
Alexandre, J.; Hu, Y.; Lu, W.; Pelicano, H.; Huang, P. Novel action of paclitaxel against cancer cells: bystander effect mediated by reactive oxygen species. Cancer Res., 2007, 67(8), 3512-3517.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3914] [PMID: 17440056]
[38]
Zhou, L.; Qin, J.; Ma, L.; Li, H.; Li, L.; Ning, C.; Gao, W.; Yu, H.; Han, L. Rosoloactone: A natural diterpenoid inducing apoptosis in human cervical cancer cells through endoplasmic reticulum stress and mitochondrial damage. Biomed. Pharmacother., 2017, 95, 355-362.
[http://dx.doi.org/10.1016/j.biopha.2017.08.069] [PMID: 28858734]
[39]
Bara, R.; Zerfass, I.; Aly, A.H.; Goldbach-Gecke, H.; Raghavan, V.; Sass, P.; Mándi, A.; Wray, V.; Polavarapu, P.L.; Pretsch, A.; Lin, W.; Kurtán, T.; Debbab, A.; Brötz-Oesterhelt, H.; Proksch, P. Atropisomeric dihydroanthracenones as inhibitors of multiresistant Staphylococcus aureus. J. Med. Chem., 2013, 56(8), 3257-3272.
[http://dx.doi.org/10.1021/jm301816a] [PMID: 23534483]
[40]
Wang, W-X.; Kusari, S.; Laatsch, H.; Golz, C.; Kusari, P.; Strohmann, C.; Kayser, O.; Spiteller, M. Antibacterial azaphilones from an endophytic fungus, Colletotrichum sp. BS4. J. Nat. Prod., 2016, 79(4), 704-710.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00436] [PMID: 26905687]
[41]
Rehberg, N.; Akone, H.S.; Ioerger, T.R.; Erlenkamp, G.; Daletos, G.; Gohlke, H.; Proksch, P.; Kalscheuer, R. Chlorflavonin targets acetohydroxyacid synthase catalytic subunit IlvB1for synergistic killing of Mycobacterium tuberculosis. ACS Infect. Dis., 2018, 4(2), 123-134.
[http://dx.doi.org/10.1021/acsinfecdis.7b00055] [PMID: 29108416]
[42]
Xu, Y.M.; Espinosa-Artiles, P.; Liu, M.X.; Arnold, A.E.; Gunatilaka, A.A.L. Secoemestrin D, a cytotoxic epitetrathiodioxopiperizine, and emericellenes A-E, five sesterterpenoids from Emericella sp. AST0036, a fungal endophyte of Astragalus lentiginosus1. J. Nat. Prod., 2013, 76(12), 2330-2336.
[http://dx.doi.org/10.1021/np400762k] [PMID: 24251417]
[43]
Zhang, Q.; Xiao, J.; Sun, Q.Q.; Qin, J.C.; Pescitelli, G.; Gao, J.M. Characterization of cytochalasins from the endophytic Xylaria sp. and their biological functions. J. Agric. Food Chem., 2014, 62(45), 10962-10969.
[http://dx.doi.org/10.1021/jf503846z] [PMID: 25350301]
[44]
Li, H.; Xiao, J.; Gao, Y.Q.; Tang, J.J.; Zhang, A.L.; Gao, J.M. Chaetoglobosins from Chaetomium globosum, an endophytic fungus in Ginkgo biloba, and their phytotoxic and cytotoxic activities. J. Agric. Food Chem., 2014, 62(17), 3734-3741.
[http://dx.doi.org/10.1021/jf500390h] [PMID: 24708412]
[45]
Shan, T.; Tian, J.; Wang, X.; Mou, Y.; Mao, Z.; Lai, D.; Dai, J.; Peng, Y.; Zhou, L.; Wang, M. Bioactive spirobisnaphthalenes from the endophytic fungus Berkleasmium sp. J. Nat. Prod., 2014, 77(10), 2151-2160.
[http://dx.doi.org/10.1021/np400988a] [PMID: 25237727]
[46]
Xu, Y.M.; Mafezoli, J.; Oliveira, M.C.F.; U’Ren, J.M.; Arnold, A.E.; Gunatilaka, A.A. L. Anteaglonialides A-F and palmarumycins CE1-CE3 from Anteaglonium sp. FL0768, a fungal endophyte of the spikemoss Selaginella arenicola. J. Nat. Prod., 2015, 78(11), 2738-2747.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00717] [PMID: 26539727]
[47]
Nalli, Y.; Mirza, D.N.; Wani, Z.A.; Wadhwa, B.; Mallik, F.A.; Raina, C.; Chaubey, A.; Riyaz-Ul-Hassan, S.; Ali, A. Phialomustin A–D, new antimicrobial and cytotoxic metabolites from an endophytic fungus, Phialophora mustea. RSC Advances, 2015, 5(115), 95307-95312.
[http://dx.doi.org/10.1039/C5RA18121F]
[48]
Chowdhury, N.S.; Sohrab, M.H.; Rana, M.S.; Hasan, C.M.; Jamshidi, S.; Rahman, K.M. Cytotoxic naphthoquinone andazaanthraquinone derivatives from an endophytic Fusarium solani. J. Nat. Prod., 2017, 80(4), 1173-1177.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00610] [PMID: 28257197]
[49]
Li, G.; Kusari, S.; Lamshöft, M.; Schüffler, A.; Laatsch, H.; Spiteller, M. Antibacterial secondary metabolites from an endophytic fungus, Eupenicillium sp. LG41. J. Nat. Prod., 2014, 77(11), 2335-2341.
[http://dx.doi.org/10.1021/np500111w] [PMID: 25356913]
[50]
Li, G.; Kusari, S.; Kusari, P.; Kayser, O.; Spiteller, M. Endophytic Diaporthe sp. LG23 produces a potent antibacterial tetracyclic triterpenoid. J. Nat. Prod., 2015, 78(8), 2128-2132.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00170] [PMID: 26186257]
[51]
Leyte-Lugo, M.; González-Andrade, M.; González, Mdel.C.; Glenn, A.E.; Cerda-García-Rojas, C.M.; Mata, R. (+)-Ascosalitoxin and vermelhotin, a calmodulin inhibitor, from an endophytic fungus isolated from Hintonia latiflora. J. Nat. Prod., 2012, 75(9), 1571-1577.
[http://dx.doi.org/10.1021/np300327y] [PMID: 22924467]
[52]
Amand, S.; Langenfeld, A.; Blond, A.; Dupont, J.; Nay, B.; Prado, S. Guaiane sesquiterpenes from Biscogniauxia nummularia featuring potent antigerminative activity. J. Nat. Prod., 2012, 75(4), 798-801.
[http://dx.doi.org/10.1021/np2009913] [PMID: 22486738]
[53]
Hu, Y.; Zhang, W.; Zhang, P.; Ruan, W.; Zhu, X. Nematicidal activity of chaetoglobosin A poduced by Chaetomium globosum NK102 against Meloidogyne incognita. J. Agric. Food Chem., 2013, 61(1), 41-46.
[http://dx.doi.org/10.1021/jf304314g] [PMID: 23214998]
[54]
Youn, U.J.; Sripisut, T.; Park, E-J.; Kondratyuk, T.P.; Fatima, N.; Simmons, C.J.; Wall, M.M.; Sun, D.; Pezzuto, J.M.; Chang, L.C. Determination of the absolute configuration of chaetoviridins and other bioactive azaphilones from the endophytic fungus Chaetomium globosum. Bioorg. Med. Chem. Lett., 2015, 25(21), 4719-4723.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.063] [PMID: 26343828]
[55]
Liu, Y.; Li, Y.; Liu, Z.; Li, L.; Qu, J.; Ma, S.; Chen, R.; Dai, J.; Yu, S. Sesquiterpenes from the endophyte Glomerel lacingulata. J. Nat. Prod., 2017, 80(10), 2609-2614.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00054] [PMID: 29035525]
[56]
Wani, M.C.; Taylor, H.L.; Wall, M.E.; Coggon, P.; McPhail, A.T. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc., 1971, 93(9), 2325-2327.
[http://dx.doi.org/10.1021/ja00738a045] [PMID: 5553076]
[57]
Stierle, A.; Strobel, G.; Stierle, D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science, 1993, 260(5105), 214-216.
[http://dx.doi.org/10.1126/science.8097061] [PMID: 8097061]
[58]
Zaiyou, J.; Li, M.; Guifang, X.; Xiuren, Z. Isolation of an endophytic fungus producing baccatin III from Taxus wallichiana var. mairei. J. Ind. Microbiol. Biotechnol., 2013, 40(11), 1297-1302.
[http://dx.doi.org/10.1007/s10295-013-1320-4] [PMID: 23958913]
[59]
Zhang, P.; Zhou, P.P.; Yu, L.J. An endophytic taxol-producing fungus from Taxus media, Cladosporium cladosporioides MD2. Curr. Microbiol., 2009, 59(3), 227-232.
[http://dx.doi.org/10.1007/s00284-008-9270-1] [PMID: 19484305]
[60]
Strobel, G.; Yang, X.; Sears, J.; Kramer, R.; Sidhu, R.S.; Hess, W.M. Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology, 1996, 142(Pt 2), 435-440.
[http://dx.doi.org/10.1099/13500872-142-2-435] [PMID: 8932715]
[61]
Eyberger, A.L.; Dondapati, R.; Porter, J.R. Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J. Nat. Prod., 2006, 69(8), 1121-1124.
[http://dx.doi.org/10.1021/np060174f] [PMID: 16933860]
[62]
Pu, X.; Qu, X.; Chen, F.; Bao, J.; Zhang, G.; Luo, Y. Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: isolation, identification, and fermentation conditions optimization for camptothecin production. Appl. Microbiol. Biotechnol., 2013, 97(21), 9365-9375.
[http://dx.doi.org/10.1007/s00253-013-5163-8] [PMID: 23949997]
[63]
Kusari, S.; Lamshöft, M.; Zühlke, S.; Spiteller, M. An endophytic fungus from Hypericum perforatum that produces hypericin. J. Nat. Prod., 2008, 71(2), 159-162.
[http://dx.doi.org/10.1021/np070669k] [PMID: 18220354]
[64]
Shweta, S.; Zuehlke, S.; Ramesha, B.T.; Priti, V.; Mohana Kumar, P.; Ravikanth, G.; Spiteller, M.; Vasudeva, R.; Uma Shaanker, R. Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry, 2010, 71(1), 117-122.
[http://dx.doi.org/10.1016/j.phytochem.2009.09.030] [PMID: 19863979]
[65]
Kusari, S.; Zühlke, S.; Spiteller, M. An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J. Nat. Prod., 2009, 72(1), 2-7.
[http://dx.doi.org/10.1021/np800455b] [PMID: 19119919]
[66]
Kusari, S.; Spiteller, M. Are we ready for industrial production of bioactive plant secondary metabolites utilizing endophytes? Nat. Prod. Rep., 2011, 28(7), 1203-1207.
[http://dx.doi.org/10.1039/c1np00030f] [PMID: 21629952]
[67]
Shinozuka, H.; Hettiarachchige, I.K.; Shinozuka, M.; Cogan, N.O.I.; Spangenberg, G.C.; Cocks, B.G.; Forster, J.W.; Sawbridge, T.I. Horizontal transfer of a ß-1,6-glucanase gene from an ancestral species of fungal endophyte to a cool-season grass host. Sci. Rep., 2017, 7(1), 9024.
[http://dx.doi.org/10.1038/s41598-017-07886-2] [PMID: 28831055]
[68]
Heinig, U.; Scholz, S.; Jennewein, S. Getting to the bottom of Taxol biosynthesis by fungi. Fungal Divers., 2013, 60, 161-170.
[http://dx.doi.org/10.1007/s13225-013-0228-7]
[69]
Vasundhara, M.; Kumar, A.; Reddy, M.S. Molecular approaches to screen bioactive compounds from endophytic fungi. Front. Microbiol., 2016, 7, 1774.
[http://dx.doi.org/10.3389/fmicb.2016.01774] [PMID: 27895623]
[70]
Strobel, G.; Hess, W.; Ford, E.; Sidhu, R.; Yang, X. Taxol from fungal endophytes and the issue of biodiversity. J. Ind. Microbiol., 1996, 17, 417-423.
[http://dx.doi.org/10.1007/BF01574772]
[71]
Gangadevi, V.; Muthumary, J. Taxol, an anticancer drug produced by an endophytic fungus Bartalinia robillardoides Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb. World J. Microbiol. Biotechnol., 2008, 24(5), 717-724.
[http://dx.doi.org/10.1007/s11274-007-9530-4]
[72]
Yang, Y.; Zhao, H.; Barrero, R.A.; Zhang, B.; Sun, G.; Wilson, I.W.; Xie, F.; Walker, K.D.; Parks, J.W.; Bruce, R.; Guo, G.; Chen, L.; Zhang, Y.; Huang, X.; Tang, Q.; Liu, H.; Bellgard, M.I.; Qiu, D.; Lai, J.; Hoffman, A. Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Genomics, 2014, 15, 69.
[http://dx.doi.org/10.1186/1471-2164-15-69] [PMID: 24460898]
[73]
Tudzynski, B.; Hölter, K. Gibberellin biosynthetic pathway in Gibberella fujikuroi: evidence for a gene cluster. Fungal Genet. Biol., 1998, 25(3), 157-170.
[http://dx.doi.org/10.1006/fgbi.1998.1095] [PMID: 9917370]
[74]
Bömke, C.; Tudzynski, B. Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry, 2009, 70(15-16), 1876-1893.
[http://dx.doi.org/10.1016/j.phytochem.2009.05.020] [PMID: 19560174]
[75]
Kusari, S.; Singh, S.; Jayabaskaran, C. Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol., 2014, 32(6), 297-303.
[http://dx.doi.org/10.1016/j.tibtech.2014.03.009] [PMID: 24703621]
[76]
Kaul, S.; Sharma, T.; K Dhar, M. M. “Omics” tools for better understanding the plant-endophyte interactions. Front. Plant Sci., 2016, 7, 955.
[http://dx.doi.org/10.3389/fpls.2016.00955] [PMID: 27446181]
[77]
Kusari, S.; Zühlke, S.; Spiteller, M. Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on camptothecin biosynthesis. J. Nat. Prod., 2011, 74(4), 764-775.
[http://dx.doi.org/10.1021/np1008398] [PMID: 21348469]
[78]
Aly, A.H.; Debbab, A.; Proksch, P. Fungal endophytes - secret producers of bioactive plant metabolites. Pharmazie, 2013, 68(7), 499-505.
[PMID: 23923629]
[79]
El-Elimat, T.; Raja, H.A.; Graf, T.N.; Faeth, S.H.; Cech, N.B.; Oberlies, N.H. Flavonolignans from Aspergillus iizukae, a fungal endophyte of milk thistle (Silybum marianum). J. Nat. Prod., 2014, 77(2), 193-199.
[http://dx.doi.org/10.1021/np400955q] [PMID: 24456525]
[80]
Soliman, S.S.; Raizada, M.N. Interactions between co-habitating fungi elicit synthesis of taxol from an endophytic fungus in host Taxus plants. Front. Microbiol., 2013, 4, 3.
[http://dx.doi.org/10.3389/fmicb.2013.00003] [PMID: 23346084]
[81]
Daletos, G.; Ebrahim, W.; Ancheeva, E.; El-Neketi, M.; Lin, W.; Proksch, P. Microbial co-culture and OSMAC approach as strategies to induce cryptic fungal biogenetic gene clusters. In: Chemical Biology of Natural Products; , 2017; 8, pp. 233-284.
[http://dx.doi.org/10.1201/9781315117089-9]
[82]
Porras-Alfaro, A.; Bayman, P. Hidden fungi, emergent properties: endophytes and microbiomes. Annu. Rev. Phytopathol., 2011, 49, 291-315.
[http://dx.doi.org/10.1146/annurev-phyto-080508-081831] [PMID: 19400639]
[83]
Kusari, S.; Hertweck, C.; Spiteller, M. Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem. Biol., 2012, 19(7), 792-798.
[http://dx.doi.org/10.1016/j.chembiol.2012.06.004] [PMID: 22840767]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 11
Year: 2020
Page: [1836 - 1854]
Pages: 19
DOI: 10.2174/0929867326666190916144709
Price: $65

Article Metrics

PDF: 39
HTML: 6