Water Soluble Vitamins and their Role in Diabetes and its Complications

Author(s): Shreeya V. Deshmukh, Bala Prabhakar*, Yogesh A. Kulkarni*

Journal Name: Current Diabetes Reviews

Volume 16 , Issue 7 , 2020

Become EABM
Become Reviewer

Abstract:

Background: Diabetes is a metabolic disorder associated with abnormally high levels of glucose in the blood due to inadequate production of insulin or inadequate sensitivity of cells to the action of insulin. Diabetes has become an increasing challenge in the world. The predicted diabetic population according to the World Health Organization is 8.7% between the age group 20-70 years. There are many complications linked to prolonged high blood glucose levels, such as microvascular complications and macrovascular complications. Vitamins play an important role in glucose metabolism and the potential utility of supplementation is relevant for the prevention and/or management of diabetes mellitus and its complications.

Methods: Literature search was performed using various dataset like PUBMED, EBSCO, ProQuest, Scopus and selected websites like the National Institute of Health and the World Health Organization.

Result: Water-soluble vitamins have been thoroughly studied for their activity in diabetes and diabetic complications.

Conclusion: Water-soluble vitamins like B1, B3, B6, B7, B9 and B12 have notable effects in diabetes mellitus and its related complications like nephropathy, neuropathy, retinopathy and cardiomyopathy.

Keywords: Diabetes mellitus, diabetic nephropathy, diabetic neuropathy, diabetic cardiomyopathy, vitamins, water-soluble vitamins.

[1]
Cho NH, Shaw JE, Karuranga S, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 2018; 138: 271-81.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[2]
American Diabetes Association Economic costs of diabetes in the US in 2017 Diabetes Care. 2018; 41(5): 917-28.
[http://dx.doi.org/10.2337/dci18-0007] [PMID: 29567642]
[3]
Cantley J, Ashcroft FM. Q&A: insulin secretion and type 2 diabetes: why do β-cells fail? BMC Biol 2015; 13: 33.
[http://dx.doi.org/10.1186/s12915-015-0140-6] [PMID: 25982967]
[4]
Kim ES, Jeong JS, Han K, et al. Impact of weight changes on the incidence of diabetes mellitus: a Korean nationwide cohort study. Sci Rep 2018; 8(1): 3735.
[http://dx.doi.org/10.1038/s41598-018-21550-3] [PMID: 29487293]
[5]
Skyler JS, Bakris GL, Bonifacio E, et al. Differentiation of diabetes by pathophysiology, natural history, and prognosis. Diabetes 2017; 66(2): 241-55.
[http://dx.doi.org/10.2337/db16-0806] [PMID: 27980006]
[6]
Cignarelli A, Genchi VA, Caruso I, et al. Diabetes and cancer: Pathophysiological fundamentals of a ‘dangerous affair’. Diabetes Res Clin Pract 2018; 143: 378-88.
[http://dx.doi.org/10.1016/j.diabres.2018.04.002] [PMID: 29679627]
[7]
Lim AKh. Diabetic nephropathy - complications and treatment. Int J Nephrol Renovasc Dis 2014; 7: 361-81.
[http://dx.doi.org/10.2147/IJNRD.S40172] [PMID: 25342915]
[8]
Dewanjee S, Das S, Das AK, et al. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol 2018; 833: 472-523.
[http://dx.doi.org/10.1016/j.ejphar.2018.06.034] [PMID: 29966615]
[9]
Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis (Lond) 2015; 2: 17.
[http://dx.doi.org/10.1186/s40662-015-0026-2] [PMID: 26605370]
[10]
Ali OAS, Al Sawy IR, Salah MA, Kattaria MK. Predictive Value of First Trimester Uric Acid in Development of Gestational Diabetes. Egyptian Journal of Hospital Medicine 2019; 2019(74): 1675-9.
[11]
Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovasc Diabetol 2018; 17(1): 83.
[http://dx.doi.org/10.1186/s12933-018-0728-6] [PMID: 29884191]
[12]
Sundararaghavan V, Mazur MM, Evans B, Liu J, Ebraheim NA. Diabetes and bone health: latest evidence and clinical implications. Ther Adv Musculoskelet Dis 2017; 9(3): 67-74.
[http://dx.doi.org/10.1177/1759720X16687480] [PMID: 28344668]
[13]
Cooke A. Dietary Food‐Additive Phosphate and Human Health Outcomes. Compr Rev Food Sci Food Saf 2017; 16: 906-1021.
[http://dx.doi.org/10.1111/1541-4337.12275]
[14]
Marble A. Diabetes and cancer. N Engl J Med 1934; 211: 339-49.
[http://dx.doi.org/10.1056/NEJM193408232110801]
[15]
Huxley R, Ansary-Moghaddam A, Berrington de González A, Barzi F, Woodward M. Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. Br J Cancer 2005; 92(11): 2076-83.
[http://dx.doi.org/10.1038/sj.bjc.6602619] [PMID: 15886696]
[16]
Ogunleye AA, Ogston SA, Morris AD, Evans JM. A cohort study of the risk of cancer associated with type 2 diabetes. Br J Cancer 2009; 101(7): 1199-201.
[http://dx.doi.org/10.1038/sj.bjc.6605240] [PMID: 19690547]
[17]
Ballotari P, Vicentini M, Manicardi V, et al. Diabetes and risk of cancer incidence: results from a population-based cohort study in northern Italy. BMC Cancer 2017; 17(1): 703.
[http://dx.doi.org/10.1186/s12885-017-3696-4] [PMID: 29070034]
[18]
Andersen DK, Korc M, Petersen GM, et al. Diabetes, pancreatogenic diabetes, and pancreatic cancer. Diabetes 2017; 66(5): 1103-10.
[http://dx.doi.org/10.2337/db16-1477] [PMID: 28507210]
[19]
Kangas-Dick A, Khan U, Awoniyi O, et al. A case of chronic calcific nonalcoholic pancreatitis. Case reports in gastrointestinal medicine 2016; 2016
[http://dx.doi.org/10.1155/2016/2963681]
[20]
Avram MM. High prevalence of pancreatic disease in chronic renal failure. Nephron 1977; 18(1): 68-71.
[http://dx.doi.org/10.1159/000180768] [PMID: 846627]
[21]
Brown RB, Razzaque MS. Dysregulation of phosphate metabolism and conditions associated with phosphate toxicity. Bonekey Rep 2015; 4: 705.
[http://dx.doi.org/10.1038/bonekey.2015.74] [PMID: 26131357]
[22]
Brown RB, Razzaque MS. Phosphate toxicity and tumorigenesis. Biochim Biophys Acta Rev Cancer 2018; 1869(2): 303-9.
[http://dx.doi.org/10.1016/j.bbcan.2018.04.007] [PMID: 29684520]
[23]
Wulaningsih W, Michaelsson K, Garmo H, et al. Inorganic phosphate and the risk of cancer in the Swedish AMORIS study. BMC Cancer 2013; 13: 257.
[http://dx.doi.org/10.1186/1471-2407-13-257] [PMID: 23706176]
[24]
Lorenzo C, Hanley AJ, Rewers MJ, Haffner SM. Calcium and phosphate concentrations and future development of type 2 diabetes: the Insulin Resistance Atherosclerosis Study. Diabetologia 2014; 57(7): 1366-74.
[http://dx.doi.org/10.1007/s00125-014-3241-9] [PMID: 24763850]
[25]
Harding JL, Shaw JE, Peeters A, Cartensen B, Magliano DJ. Cancer risk among people with type 1 and type 2 diabetes: disentangling true associations, detection bias, and reverse causation. Diabetes Care 2015; 38(2): 264-70.
[http://dx.doi.org/10.2337/dc14-1996] [PMID: 25488912]
[26]
Laroche M, Boyer J-F. Phosphate diabetes, tubular phosphate reabsorption and phosphatonins. Joint Bone Spine 2005; 72(5): 376-81.
[http://dx.doi.org/10.1016/j.jbspin.2004.07.013] [PMID: 16214071]
[27]
Ditzel J, Lervang H-H. Disturbance of inorganic phosphate metabolism in diabetes mellitus: clinical manifestations of phosphorus-depletion syndrome during recovery from diabetic ketoacidosis. Diabetes Metab Syndr Obes 2010; 3: 319-24.
[http://dx.doi.org/10.2147/DMSO.S13476] [PMID: 21437101]
[28]
Vorum H, Ditzel J. Disturbance of inorganic phosphate metabolism in diabetes mellitus: its relevance to the pathogenesis of diabetic retinopathy. Journal of ophthalmology 2014; 2014
[http://dx.doi.org/10.1155/2014/135287]
[29]
Liamis G, Liberopoulos E, Barkas F, Elisaf M. Diabetes mellitus and electrolyte disorders. World J Clin Cases 2014; 2(10): 488-96.
[http://dx.doi.org/10.12998/wjcc.v2.i10.488] [PMID: 25325058]
[30]
Louchami K, Zhang Y, Beauwens R, Malaisse WJ, Sener A. Is the glucose-induced phosphate flush in pancreatic islets attributable to gating of volume-sensitive anion channels? Endocrine 2007; 31(1): 1-4.
[http://dx.doi.org/10.1007/s12020-007-0006-y] [PMID: 17709891]
[31]
Kebler R, McDonald FD, Cadnapaphornchai P. Dynamic changes in serum phosphorus levels in diabetic ketoacidosis. Am J Med 1985; 79(5): 571-6.
[http://dx.doi.org/10.1016/0002-9343(85)90053-1] [PMID: 3933341]
[32]
Liamis G, Milionis HJ, Elisaf M. Medication-induced hypophosphatemia: a review. QJM 2010; 103(7): 449-59.
[http://dx.doi.org/10.1093/qjmed/hcq039] [PMID: 20356849]
[33]
Fang L, Li X. Level of serum phosphorus and adult type 2 diabetes mellitus. Zhong nan da xue xue bao. Yi xue ban= Journal of Central South University. Med Sci 2016; 41: 502-6.
[34]
Laville M, Andreelli F. [Mechanisms for weight gain during blood glucose normalization]. Diabetes Metab 2000; 26((Suppl. 3)): 42-5.
[PMID: 10945152]
[35]
Celik N, Andiran N. The relationship between serum phosphate levels with childhood obesity and insulin resistance. J Pediatr Endocrinol Metab 2011; 24(1-2): 81-3.
[http://dx.doi.org/10.1515/jpem.2011.116] [PMID: 21528821]
[36]
Stoian M, Stoica V. The role of distubances of phosphate metabolism in metabolic syndrome. Maedica (Buchar) 2014; 9(3): 255-60.
[PMID: 25705287]
[37]
Palmer BF, Clegg DJ. Electrolyte disturbances in patients with chronic alcohol-use disorder. N Engl J Med 2017; 377(14): 1368-77.
[http://dx.doi.org/10.1056/NEJMra1704724] [PMID: 28976856]
[38]
Yang X, Mei S, Gu H, et al. Exposure to excess insulin (glargine) induces type 2 diabetes mellitus in mice fed on a chow diet. J Endocrinol 2014; 221(3): 469-80.
[http://dx.doi.org/10.1530/JOE-14-0117] [PMID: 24741073]
[39]
Liu H-Y, Cao SY, Hong T, Han J, Liu Z, Cao W. Insulin is a stronger inducer of insulin resistance than hyperglycemia in mice with type 1 diabetes mellitus (T1DM). J Biol Chem 2009; 284(40): 27090-100.
[http://dx.doi.org/10.1074/jbc.M109.016675] [PMID: 19654321]
[40]
Cao W, Ning J, Yang X, Liu Z. Excess exposure to insulin is the primary cause of insulin resistance and its associated atherosclerosis. Curr Mol Pharmacol 2011; 4(3): 154-66.
[http://dx.doi.org/10.2174/1874467211104030154] [PMID: 21241239]
[41]
Rizza RA, Mandarino LJ, Genest J, Baker BA, Gerich JE. Production of insulin resistance by hyperinsulinaemia in man. Diabetologia 1985; 28(2): 70-5.
[PMID: 3884419]
[42]
Stoekenbroek RM, Rensing KL, Bernelot Moens SJ, et al. High daily insulin exposure in patients with type 2 diabetes is associated with increased risk of cardiovascular events. Atherosclerosis 2015; 240(2): 318-23.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.03.040] [PMID: 25864162]
[44]
Nolan CJ, Ruderman NB, Kahn SE, Pedersen O, Prentki M. Insulin resistance as a physiological defense against metabolic stress: implications for the management of subsets of type 2 diabetes. Diabetes 2015; 64(3): 673-86.
[http://dx.doi.org/10.2337/db14-0694] [PMID: 25713189]
[45]
Connor T, Martin SD, Howlett KF, McGee SL. Metabolic remodelling in obesity and type 2 diabetes: pathological or protective mechanisms in response to nutrient excess? Clin Exp Pharmacol Physiol 2015; 42(1): 109-15.
[http://dx.doi.org/10.1111/1440-1681.12315] [PMID: 25443425]
[46]
McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol 2006; 16(14): R551-60.
[http://dx.doi.org/10.1016/j.cub.2006.06.054] [PMID: 16860735]
[47]
Nguyen TT, Quan X, Xu S, et al. Intracellular alkalinization by phosphate uptake via type III sodium-phosphate cotransporter participates in high-phosphate-induced mitochondrial oxidative stress and defective insulin secretion. FASEB J 2016; 30(12): 3979-88.
[http://dx.doi.org/10.1096/fj.201600455RR] [PMID: 27565711]
[48]
Nguyen TT, Quan X, Hwang K-H, et al. Mitochondrial oxidative stress mediates high-phosphate-induced secretory defects and apoptosis in insulin-secreting cells. Am J Physiol Endocrinol Metab 2015; 308(11): E933-41.
[http://dx.doi.org/10.1152/ajpendo.00009.2015] [PMID: 25852001]
[49]
Malyala S, Zhang Y, Strubbe JO, Bazil JN. Calcium phosphate precipitation inhibits mitochondrial energy metabolism. PLOS Comput Biol 2019; 15(1) e1006719
[http://dx.doi.org/10.1371/journal.pcbi.1006719] [PMID: 30615608]
[50]
Panov AV, Andreeva L, Greenamyre JT. Quantitative evaluation of the effects of mitochondrial permeability transition pore modifiers on accumulation of calcium phosphate: comparison of rat liver and brain mitochondria. Arch Biochem Biophys 2004; 424(1): 44-52.
[http://dx.doi.org/10.1016/j.abb.2004.01.013] [PMID: 15019835]
[51]
Bonora M, Pinton P. The mitochondrial permeability transition pore and cancer: molecular mechanisms involved in cell death. Front Oncol 2014; 4: 302.
[http://dx.doi.org/10.3389/fonc.2014.00302] [PMID: 25478322]
[52]
Chen H, Li X, Yue R, Ren X, Zhang X, Ni A. The effects of diabetes mellitus and diabetic nephropathy on bone and mineral metabolism in T2DM patients. Diabetes Res Clin Pract 2013; 100(2): 272-6.
[http://dx.doi.org/10.1016/j.diabres.2013.03.007] [PMID: 23522918]
[53]
Lagari VS, Al-Yatama F, Rodriguez G, Berger HR, Levis S. Under-Recognition of Fractures as Osteoporosis Indicators. Geriatrics (Basel) 2019; 4(1): 9.
[http://dx.doi.org/10.3390/geriatrics4010009] [PMID: 31023977]
[54]
Oei L, Zillikens MC, Dehghan A, et al. High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control: the Rotterdam Study. Diabetes Care 2013; 36(6): 1619-28.
[http://dx.doi.org/10.2337/dc12-1188] [PMID: 23315602]
[55]
Johnston DW. Generalized osteosclerosis associated with diabetes insipidus and neurologic symptoms. Ann Intern Med 1957; 46(3): 619-28.
[http://dx.doi.org/10.7326/0003-4819-46-3-619] [PMID: 13403543]
[56]
Virchow R, Kalk metastasen. Arch Pathol Anat Physiol Klin Med 1855; 8: 103-3.
[http://dx.doi.org/10.1007/BF01935316]
[57]
Juneja P, H. J. Anatomy, Joints In: StatPearls [Internet] Availabe online:. https://www.ncbi.nlm.nih.gov/books/NBK507893/
[58]
Madsen CM, Jørgensen HL, Lind B, et al. Secondary hyperparathyroidism and mortality in hip fracture patients compared to a control group from general practice. Injury 2012; 43(7): 1052-7.
[http://dx.doi.org/10.1016/j.injury.2011.12.025] [PMID: 22261083]
[59]
Meier C, Schwartz AV, Egger A, Lecka-Czernik B. Effects of diabetes drugs on the skeleton. Bone 2016; 82: 93-100.
[http://dx.doi.org/10.1016/j.bone.2015.04.026] [PMID: 25913633]
[60]
Winning L, Patterson CC, Neville CE, Kee F, Linden GJ. Periodontitis and incident type 2 diabetes: a prospective cohort study. J Clin Periodontol 2017; 44(3): 266-74.
[http://dx.doi.org/10.1111/jcpe.12691] [PMID: 28036104]
[61]
Polak D, Shapira L. An update on the evidence for pathogenic mechanisms that may link periodontitis and diabetes. J Clin Periodontol 2018; 45(2): 150-66.
[http://dx.doi.org/10.1111/jcpe.12803] [PMID: 29280184]
[62]
Brown RB. Dysregulated phosphate metabolism, periodontal disease, and cancer: possible global health implications. Dent J (Basel) 2019; 7(1): 18.
[http://dx.doi.org/10.3390/dj7010018] [PMID: 30754693]
[63]
Louati K, Vidal C, Berenbaum F, Sellam J. Association between diabetes mellitus and osteoarthritis: systematic literature review and meta-analysis. RMD Open 2015; 1(1) e000077
[http://dx.doi.org/10.1136/rmdopen-2015-000077] [PMID: 26535137]
[64]
Molsted S, Bjørkman A-SD, Andersen MB, Ekholm O. Diabetes is associated with elevated risks of osteoarthritis, osteoporosis and rheumatoid arthritis. EASD Annual Meeting.
[65]
Dong Q, Liu H, Yang D, Zhang Y. Diabetes mellitus and arthritis: is it a risk factor or comorbidity?: A systematic review and meta-analysis. Medicine (Baltimore) 2017; 96(18) e6627
[http://dx.doi.org/10.1097/MD.0000000000006627] [PMID: 28471959]
[66]
Rodríguez G, Soriano LC, Choi HK. Impact of diabetes against the future risk of developing gout. Ann Rheum Dis 2010; 69(12): 2090-4.
[http://dx.doi.org/10.1136/ard.2010.130013] [PMID: 20570836]
[67]
Stanway J, Marianayagam T, Ellis S. Crystal arthropathies. Medicine (Baltimore) 2018; 46: 181-6.
[http://dx.doi.org/10.1016/j.mpmed.2017.12.003]
[68]
de Boer IH, Bangalore S, Benetos A, et al. Diabetes and hypertension: a position statement by the American Diabetes Association. Diabetes Care 2017; 40(9): 1273-84.
[http://dx.doi.org/10.2337/dci17-0026] [PMID: 28830958]
[69]
Nicoll R, Zhao Y, Ibrahimi P, Olivecrona G, Henein M. Diabetes and hypertension consistently predict the presence and extent of coronary artery calcification in symptomatic patients: a systematic review and meta-analysis. Int J Mol Sci 2016; 17(9): 1481.
[http://dx.doi.org/10.3390/ijms17091481] [PMID: 27608015]
[70]
Brown RB, Haq A, Stanford CF, Razzaque MS. Vitamin D, phosphate, and vasculotoxicity. Can J Physiol Pharmacol 2015; 93(12): 1077-82.
[http://dx.doi.org/10.1139/cjpp-2015-0083] [PMID: 26567479]
[71]
Avogaro A, Fadini GP. Mechanisms of ectopic calcification: implications for diabetic vasculopathy. Cardiovasc Diagn Ther 2015; 5(5): 343-52.
[PMID: 26543821]
[72]
Chonchol M, Dale R, Schrier RW, Estacio R. Serum phosphorus and cardiovascular mortality in type 2 diabetes. Am J Med 2009; 122(4): 380-6.
[http://dx.doi.org/10.1016/j.amjmed.2008.09.039] [PMID: 19332233]
[73]
Wang S, Jiao F, Guo Y, Booz G, Roman R, Fan F. Abstract TP556: Role of Vascular Smooth Muscle Cells in Diabetes-related Vascular Cognitive Impairment. Stroke 2019; 50: ATP556-6.
[http://dx.doi.org/10.1161/str.50.suppl_1.TP556]
[74]
Kapustin A, Galkin A, Furmanik M, Alvarez-Hernandez D, Shanahan C. 19 Elevated calcium and phosphate impair mitochondrial function in calcifying human vascular smooth muscle cell. Heart 2011; 97: e8-8.
[http://dx.doi.org/10.1136/heartjnl-2011-301156.19]
[75]
Cozzolino M, Ciceri P, Galassi A, et al. The key role of phosphate on vascular calcification. Toxins (Basel) 2019; 11(4): 213.
[http://dx.doi.org/10.3390/toxins11040213] [PMID: 30970562]
[76]
Yahagi K, Kolodgie FD, Lutter C, et al. Pathology of human coronary and carotid artery atherosclerosis and vascular calcification in diabetes mellitus. Arterioscler Thromb Vasc Biol 2017; 37(2): 191-204.
[http://dx.doi.org/10.1161/ATVBAHA.116.306256] [PMID: 27908890]
[77]
Li T, Xie Y, Bowe B, Xian H, Al-Aly Z. Serum phosphorus levels and risk of incident dementia. PLoS One 2017; 12(2) e0171377
[http://dx.doi.org/10.1371/journal.pone.0171377] [PMID: 28152028]
[78]
Zhang D, Bi X, Liu Y, et al. High phosphate-induced calcification of vascular smooth muscle cells is associated with the TLR4/NF-κb signaling pathway. Kidney Blood Press Res 2017; 42(6): 1205-15.
[http://dx.doi.org/10.1159/000485874] [PMID: 29227975]
[79]
Lino M, Wan MH, Rocca AS, et al. Diabetic vascular calcification mediated by the collagen receptor discoidin domain receptor 1 via the Phosphoinositide 3-Kinase/Akt/Runt-related transcription factor 2 signaling axis. Arterioscler Thromb Vasc Biol 2018; 38(8): 1878-89.
[http://dx.doi.org/10.1161/ATVBAHA.118.311238] [PMID: 29930002]
[80]
Jin H, Xu C-X, Lim H-T, et al. High dietary inorganic phosphate increases lung tumorigenesis and alters Akt signaling. Am J Respir Crit Care Med 2009; 179(1): 59-68.
[http://dx.doi.org/10.1164/rccm.200802-306OC] [PMID: 18849498]
[81]
Román-García P, Carrillo-López N, Fernández-Martín JL, Naves-Díaz M, Ruiz-Torres MP, Cannata-Andía JB. High phosphorus diet induces vascular calcification, a related decrease in bone mass and changes in the aortic gene expression. Bone 2010; 46(1): 121-8.
[http://dx.doi.org/10.1016/j.bone.2009.09.006] [PMID: 19772957]
[82]
Bendix EF, Johansen E, Ringgaard T, Wolder M, Starup-Linde J. Diabetes and abdominal aortic calcification—a systematic review. Curr Osteoporos Rep 2018; 16(1): 42-57.
[http://dx.doi.org/10.1007/s11914-018-0418-z] [PMID: 29380116]
[83]
Ewence AE, Bootman M, Roderick HL, et al. Calcium phosphate crystals induce cell death in human vascular smooth muscle cells: a potential mechanism in atherosclerotic plaque destabilization. Circ Res 2008; 103(5): e28-34.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.181305] [PMID: 18669918]
[84]
Ramírez-Morros A, Granado-Casas M, Alcubierre N, et al. Calcium phosphate product is associated with subclinical carotid atherosclerosis in Type 2 diabetes. J Diabetes Res 2017; 2017
[http://dx.doi.org/10.1155/2017/3498368]
[85]
Stabley JN, Towler DA. Arterial calcification in diabetes mellitus: preclinical models and translational implications. Arterioscler Thromb Vasc Biol 2017; 37(2): 205-17.
[http://dx.doi.org/10.1161/ATVBAHA.116.306258] [PMID: 28062508]
[86]
Villa-Bellosta R, Hamczyk MR, Andrés V. Novel phosphate-activated macrophages prevent ectopic calcification by increasing extracellular ATP and pyrophosphate. PLoS One 2017; 12(3) e0174998
[http://dx.doi.org/10.1371/journal.pone.0174998] [PMID: 28362852]
[87]
Pan H-C, Chou K-M, Lee C-C, Yang N-I, Sun C-Y. Circulating Klotho levels can predict long-term macrovascular outcomes in type 2 diabetic patients. Atherosclerosis 2018; 276: 83-90.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.07.006] [PMID: 30048945]
[88]
Hayward N, McGovern A, de Lusignan S, Cole N, Hinton W, Jones S. U-shaped relationship between serum phosphate and cardiovascular risk: A retrospective cohort study. PLoS One 2017; 12(11) e0184774
[http://dx.doi.org/10.1371/journal.pone.0184774] [PMID: 29117214]
[89]
Crook MA. Cardiac abnormalities in the refeeding syndrome. Nutrition 2017; 35: 146-7.
[http://dx.doi.org/10.1016/j.nut.2017.01.004] [PMID: 28241984]
[90]
Yarmohammadi H, Uy-Evanado A, Reinier K, et al. Serum calcium and risk of sudden cardiac arrest in the general population. Proceedings of Mayo Clin 1479-85.
[http://dx.doi.org/10.1016/j.mayocp.2017.05.028]
[91]
Westerblad H, Allen DG, Lännergren J. Muscle fatigue: lactic acid or inorganic phosphate the major cause? News Physiol Sci 2002; 17: 17-21.
[http://dx.doi.org/10.1152/physiologyonline.2002.17.1.17] [PMID: 11821531]
[92]
Celebi S, Celebi OO, Aydogdu S, Diker E. A peculiar medical cardioversion of atrial fibrillation with glucose infusion—a rare cause of atrial fibrillation: hypoglycemia. The American journal of emergency medicine 2011; 29, 134.e131-134.e133
[93]
Novodvorsky P, Bernjak A, Chow E, et al. Diurnal differences in risk of cardiac arrhythmias during spontaneous hypoglycemia in young people with type 1 diabetes. Diabetes Care 2017; 40(5): 655-62.
[http://dx.doi.org/10.2337/dc16-2177] [PMID: 28213374]
[94]
Reno CM, Skinner A, Bayles J, Chen YS, Daphna-Iken D, Fisher SJ. Severe hypoglycemia-induced sudden death is mediated by both cardiac arrhythmias and seizures. Am J Physiol Endocrinol Metab 2018; 315(2): E240-9.
[http://dx.doi.org/10.1152/ajpendo.00442.2017] [PMID: 29486140]
[95]
Whitney R, Donner EJ. Risk Factors for Sudden Unexpected Death in Epilepsy (SUDEP) and Their Mitigation. Curr Treat Options Neurol 2019; 21(2): 7.
[http://dx.doi.org/10.1007/s11940-019-0547-4] [PMID: 30758730]
[96]
Baviera M, Roncaglioni MC, Tettamanti M, et al. Diabetes mellitus: a risk factor for seizures in the elderly-a population-based study. Acta Diabetol 2017; 54(9): 863-70.
[http://dx.doi.org/10.1007/s00592-017-1011-0] [PMID: 28631057]
[97]
Chou I-C, Wang C-H, Lin W-D, Tsai F-J, Lin C-C, Kao C-H. Risk of epilepsy in type 1 diabetes mellitus: a population-based cohort study. Diabetologia 2016; 59(6): 1196-203.
[http://dx.doi.org/10.1007/s00125-016-3929-0] [PMID: 27030312]
[98]
Brown RB, Razzaque MS. Endocrine Regulation of Phosphate HomeostasisTextbook of Nephro-Endocrinology. 2nd ed. Academic Press 2018; pp. 539-48.
[http://dx.doi.org/10.1016/B978-0-12-803247-3.00032-5]
[99]
Dolegowska K, Marchelek-Mysliwiec M, Nowosiad-Magda M, Slawinski M, Dolegowska B. FGF19 subfamily members: FGF19 and FGF21. J Physiol Biochem 2019; 75(2): 229-40.
[http://dx.doi.org/10.1007/s13105-019-00675-7] [PMID: 30927227]
[100]
Mashili FL, Austin RL, Deshmukh AS, et al. Direct effects of FGF21 on glucose uptake in human skeletal muscle: implications for type 2 diabetes and obesity. Diabetes Metab Res Rev 2011; 27(3): 286-97.
[http://dx.doi.org/10.1002/dmrr.1177] [PMID: 21309058]
[101]
Semba RD, Sun K, Egan JM, Crasto C, Carlson OD, Ferrucci L. Relationship of serum fibroblast growth factor 21 with abnormal glucose metabolism and insulin resistance: the Baltimore Longitudinal Study of Aging. J Clin Endocrinol Metab 2012; 97(4): 1375-82.
[http://dx.doi.org/10.1210/jc.2011-2823] [PMID: 22344195]
[102]
Pineda C, Rios R, Raya AI, Rodriguez M, Aguilera-Tejero E, Lopez I. Hypocaloric Diet Prevents the Decrease in FGF21 Elicited by High Phosphorus Intake. Nutrients 2018; 10(10): 1496.
[http://dx.doi.org/10.3390/nu10101496] [PMID: 30322116]
[103]
Utsugi T, Ohno T, Ohyama Y, et al. Decreased insulin production and increased insulin sensitivity in the klotho mutant mouse, a novel animal model for human aging. Metabolism 2000; 49(9): 1118-23.
[http://dx.doi.org/10.1053/meta.2000.8606] [PMID: 11016890]
[104]
Morishita K, Shirai A, Kubota M, et al. The progression of aging in klotho mutant mice can be modified by dietary phosphorus and zinc. J Nutr 2001; 131(12): 3182-8.
[http://dx.doi.org/10.1093/jn/131.12.3182] [PMID: 11739863]
[105]
LIN Y, BERGER L, SUN Z. Regulation of Insulin Sensitivity by Phosphorus.Am Diabetes Assoc. 2018.
[106]
Donate-Correa J, Martín-Núñez E, Ferri C, et al. FGF23 and Klotho Levels are Independently Associated with Diabetic Foot Syndrome in Type 2 Diabetes Mellitus. J Clin Med 2019; 8(4): 448.
[http://dx.doi.org/10.3390/jcm8040448] [PMID: 30987161]
[107]
Wang P, Zhou P, Chen W, Peng D. Combined effects of hyperphosphatemia and hyperglycemia on the calcification of cultured human aortic smooth muscle cells. Exp Ther Med 2019; 17(1): 863-8.
[PMID: 30651873]
[108]
Back SH, Kaufman RJ. Endoplasmic reticulum stress and type 2 diabetes. Annu Rev Biochem 2012; 81: 767-93.
[http://dx.doi.org/10.1146/annurev-biochem-072909-095555] [PMID: 22443930]
[109]
Voelkl J, Lang F, Eckardt K-U, et al. Signaling pathways involved in vascular smooth muscle cell calcification during hyperphosphatemia. Cell Mol Life Sci 2019; 76(11): 2077-91.
[http://dx.doi.org/10.1007/s00018-019-03054-z] [PMID: 30887097]
[110]
Shi Y, Wang S, Peng H, et al. Fibroblast Growth Factor 21 Attenuates Vascular Calcification by Alleviating Endoplasmic Reticulum Stress Mediated Apoptosis in Rats. Int J Biol Sci 2019; 15(1): 138-47.
[http://dx.doi.org/10.7150/ijbs.28873] [PMID: 30662354]
[111]
Lin Y, Sun Z. In vivo pancreatic β-cell-specific expression of antiaging gene Klotho: a novel approach for preserving β-cells in type 2 diabetes. Diabetes 2015; 64(4): 1444-58.
[http://dx.doi.org/10.2337/db14-0632] [PMID: 25377875]
[112]
Lin Y, Sun Z. Antiaging gene klotho attenuates pancreatic β-cell apoptosis in type 1 diabetes. Diabetes 2015; 64(12): 4298-311.
[http://dx.doi.org/10.2337/db15-0066] [PMID: 26340932]
[113]
Maltese G, Fountoulakis N, Siow RC, Gnudi L, Karalliedde J. Perturbations of the anti-ageing hormone Klotho in patients with type 1 diabetes and microalbuminuria. Diabetologia 2017; 60(5): 911-4.
[http://dx.doi.org/10.1007/s00125-017-4219-1] [PMID: 28194484]
[114]
Lee H, Oh SW, Heo NJ, et al. Serum phosphorus as a predictor of low-grade albuminuria in a general population without evidence of chronic kidney disease. Nephrol Dial Transplant 2012; 27(7): 2799-806.
[http://dx.doi.org/10.1093/ndt/gfr762] [PMID: 22262737]
[115]
Chang A, Batch BC, McGuire HL, et al. Association of a reduction in central obesity and phosphorus intake with changes in urinary albumin excretion: the PREMIER study. Am J Kidney Dis 2013; 62(5): 900-7.
[http://dx.doi.org/10.1053/j.ajkd.2013.04.022] [PMID: 23810691]
[116]
Finch JL, Lee DH, Liapis H, et al. Phosphate restriction significantly reduces mortality in uremic rats with established vascular calcification. Kidney Int 2013; 84(6): 1145-53.
[http://dx.doi.org/10.1038/ki.2013.213] [PMID: 24107846]
[117]
Filardi T, Carnevale V, Massoud R, et al. High serum osteopontin levels are associated with prevalent fractures and worse lipid profile in post-menopausal women with type 2 diabetes. J Endocrinol Invest 2019; 42(3): 295-301.
[http://dx.doi.org/10.1007/s40618-018-0914-0] [PMID: 29916137]
[118]
Dickerson MT, Vierra NC, Milian SC, Dadi PK, Jacobson DA. Osteopontin activates the diabetes-associated potassium channel TALK-1 in pancreatic β-cells. PLoS One 2017; 12(4) e0175069
[http://dx.doi.org/10.1371/journal.pone.0175069] [PMID: 28403169]
[119]
Talat MA, Sherief LM, El-Saadany HF, Rass AA, Saleh RM, Sakr MMH. The role of osteopontin in the pathogenesis and complications of type 1 diabetes mellitus in children. J Clin Res Pediatr Endocrinol 2016; 8(4): 399-404.
[http://dx.doi.org/10.4274/jcrpe.3082] [PMID: 27353561]
[120]
Abo El-Asrar M, Ismail EAR, Thabet RA, Kamel AS, NehmedAllah S. Osteopontin as a marker of vasculopathy in pediatric patients with type 1 diabetes mellitus: Relation to vascular structure. Pediatr Diabetes 2018; 19: 1107-15.
[http://dx.doi.org/10.1111/pedi.12686]
[121]
Gordin D, Forsblom C, Panduru NM, et al. FinnDiane Study Group. Osteopontin is a strong predictor of incipient diabetic nephropathy, cardiovascular disease, and all-cause mortality in patients with type 1 diabetes Diabetes Care. 2014; 37(9): 2593-600.
[http://dx.doi.org/10.2337/dc14-0065] [PMID: 24969575]
[122]
Afkarian M, Zelnick LR, Hall YN, et al. Clinical manifestations of kidney disease among US adults with diabetes, 1988-2014. JAMA 2016; 316(6): 602-10.
[http://dx.doi.org/10.1001/jama.2016.10924] [PMID: 27532915]
[123]
Jiang S, Pan Y, Qiu D-D, et al. Mp335 hyperphosphatemia: A marker of renal injury and outcome in patiets with early stage diabetic nephropathy. Oxford University Press 2016.
[124]
Titan SM, Zatz R, Graciolli FG, et al. FGF-23 as a predictor of renal outcome in diabetic nephropathy. Clin J Am Soc Nephrol 2011; 6(2): 241-7.
[http://dx.doi.org/10.2215/CJN.04250510] [PMID: 20966122]
[125]
Lim E, Hyun S, Lee JM, et al. Effects of education on low-phosphate diet and phosphate binder intake to control serum phosphate among maintenance hemodialysis patients: A randomized controlled trial. Kidney Res Clin Pract 2018; 37(1): 69-76.
[http://dx.doi.org/10.23876/j.krcp.2018.37.1.69] [PMID: 29629279]
[126]
Sudha MJ, Salam HS, Viveka S, Udupa AL. Assessment of changes in insulin requirement in patients of type 2 diabetes mellitus on maintenance hemodialysis. J Nat Sci Biol Med 2017; 8(1): 64-8.
[http://dx.doi.org/10.4103/0976-9668.198348] [PMID: 28250677]
[127]
Wan Q, He Y, Yuan M. Klotho in diabetes and diabetic nephropathy: a brief update review. Int J Clin Exp Med 2017; 10: 4342-9.
[128]
Hum JM, O’Bryan LM, Tatiparthi AK, et al. Sustained Klotho delivery reduces serum phosphate in a model of diabetic nephropathy. J Appl Physiol 2019; 126(4): 854-62.
[http://dx.doi.org/10.1152/japplphysiol.00838.2018] [PMID: 30605400]
[129]
Flemming NB, Gallo LA, Forbes JM. Mitochondrial dysfunction and signaling in diabetic kidney disease: oxidative stress and beyond. Proceedings of Semin 101-10.
[http://dx.doi.org/10.1016/j.semnephrol.2018.01.001]
[130]
Priante G, Ceol M, Gianesello L, Furlan C, Del Prete D, Anglani F. Human proximal tubular cells can form calcium phosphate deposits in osteogenic culture: role of cell death and osteoblast-like transdifferentiation. Cell Death Discov 2019; 5: 57.
[http://dx.doi.org/10.1038/s41420-019-0138-x] [PMID: 30701089]
[131]
Qi H, Casalena G, Shi S, et al. Glomerular endothelial mitochondrial dysfunction is essential and characteristic of diabetic kidney disease susceptibility. Diabetes 2017; 66(3): 763-78.
[http://dx.doi.org/10.2337/db16-0695] [PMID: 27899487]
[132]
Tsuchiya N, Matsushima S, Takasu N, Kyokawa Y, Torii M. Glomerular calcification induced by bolus injection with dibasic sodium phosphate solution in Sprague-Dawley rats. Toxicol Pathol 2004; 32(4): 408-12.
[http://dx.doi.org/10.1080/01926230490452490] [PMID: 15204963]
[133]
Gibbons CH. Diabetes-Related NeuropathiesSmall Fiber Neuropathy and Related Syndromes: Pain and Neurodegeneration. Springer 2019; pp. 59-72.
[http://dx.doi.org/10.1007/978-981-13-3546-4_6]
[134]
Witzel I-I, Jelinek HF, Khalaf K, Lee S, Khandoker AH, Alsafar H. Identifying common genetic risk factors of diabetic neuropathies. Front Endocrinol (Lausanne) 2015; 6: 88.
[http://dx.doi.org/10.3389/fendo.2015.00088] [PMID: 26074879]
[135]
Cameron NE, Eaton SE, Cotter MA, Tesfaye S. Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia 2001; 44(11): 1973-88.
[http://dx.doi.org/10.1007/s001250100001] [PMID: 11719828]
[136]
Nichols GA. The association between diabetic peripheral neuropathy and peripheral artery disease. Arterioscler Thromb Vasc Biol 2014; 34: A407-7.
[137]
Rocha-Singh KJ, Zeller T, Jaff MR. Peripheral arterial calcification: prevalence, mechanism, detection, and clinical implications. Catheter Cardiovasc Interv 2014; 83(6): E212-20.
[http://dx.doi.org/10.1002/ccd.25387] [PMID: 24402839]
[138]
Jeffcoate WJ, Rasmussen LM, Hofbauer LC, Game FL. Medial arterial calcification in diabetes and its relationship to neuropathy. Diabetologia 2009; 52(12): 2478-88.
[http://dx.doi.org/10.1007/s00125-009-1521-6] [PMID: 19756483]
[139]
Hamed SA. Neurologic conditions and disorders of uremic syndrome of chronic kidney disease: presentations, causes, and treatment strategies. Expert Rev Clin Pharmacol 2019; 12(1): 61-90.
[http://dx.doi.org/10.1080/17512433.2019.1555468] [PMID: 30501441]
[140]
Jasti DB, Mallipeddi S, Apparao A, Vengamma B, Sivakumar V, Kolli S. A clinical and electrophysiological study of peripheral neuropathies in predialysis chronic kidney disease patients and relation of severity of peripheral neuropathy with degree of renal failure. J Neurosci Rural Pract 2017; 8(4): 516-24.
[http://dx.doi.org/10.4103/jnrp.jnrp_186_17] [PMID: 29204008]
[141]
Hammond N, Wang Y, Dimachkie MM, Barohn RJ. Nutritional neuropathies. Neurol Clin 2013; 31(2): 477-89.
[http://dx.doi.org/10.1016/j.ncl.2013.02.002] [PMID: 23642720]
[142]
Yamada S, Tokumoto M, Tatsumoto N, et al. Phosphate overload directly induces systemic inflammation and malnutrition as well as vascular calcification in uremia. AM J PHYSIOL-RENAL 2014.
[http://dx.doi.org/10.1152/ajprenal.00633.2013]
[143]
Zhang Q, Ji L, Zheng H, et al. Low serum phosphate and magnesium levels are associated with peripheral neuropathy in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 2018; 146: 1-7.
[http://dx.doi.org/10.1016/j.diabres.2018.09.015] [PMID: 30273706]
[144]
Gibbons CH, Freeman R. Treatment-induced diabetic neuropathy: a reversible painful autonomic neuropathy. Ann Neurol 2010; 67(4): 534-41.
[http://dx.doi.org/10.1002/ana.21952] [PMID: 20437589]
[145]
Meillet L, Penfornis A, Benhamou P-Y, Berney T, Borot S. First case of insulin neuritis after islet transplantation. Acta Diabetol 2019; 56(6): 713-5.
[http://dx.doi.org/10.1007/s00592-018-01280-8] [PMID: 30663028]
[146]
Shillo P, Selvarajah D, Greig M, et al. Reduced vitamin D levels in painful diabetic peripheral neuropathy. Diabet Med 2019; 36(1): 44-51.
[http://dx.doi.org/10.1111/dme.13798] [PMID: 30102801]
[147]
Kayaniyil S, Vieth R, Retnakaran R, et al. Association of vitamin D with insulin resistance and β-cell dysfunction in subjects at risk for type 2 diabetes. Diabetes Care 2010; 33(6): 1379-81.
[http://dx.doi.org/10.2337/dc09-2321] [PMID: 20215450]
[148]
Greenhagen RM, Frykberg RG, Wukich DK. Serum vitamin D and diabetic foot complications. Diabet Foot Ankle 2019; 10(1) 1579631
[http://dx.doi.org/10.1080/2000625X.2019.1579631] [PMID: 30815231]
[149]
Pittas AG, Dawson-Hughes B, Sheehan P, et al. D2d Research Group Vitamin D Supplementation and Prevention of Type 2 Diabetes N. Engl. J. Med.. 2019; 381(6): 520-30.
[http://dx.doi.org/10.1056/NEJMoa1900906] [PMID: 31173679]
[150]
Mandal A, Pinter K, Drerup CM. Analyzing neuronal mitochondria in vivo using fluorescent reporters in zebrafish. Front Cell Dev Biol 2018; 6: 144.
[http://dx.doi.org/10.3389/fcell.2018.00144] [PMID: 30410881]
[151]
Pivovarova NB, Andrews SB. Calcium-dependent mitochondrial function and dysfunction in neurons. FEBS J 2010; 277(18): 3622-36.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07754.x] [PMID: 20659161]
[152]
Fernyhough P, Calcutt NA. Abnormal calcium homeostasis in peripheral neuropathies. Cell Calcium 2010; 47(2): 130-9.
[http://dx.doi.org/10.1016/j.ceca.2009.11.008] [PMID: 20034667]
[153]
Inceoglu B, Bettaieb A, Trindade da Silva CA, Lee KSS, Haj FG, Hammock BD. Endoplasmic reticulum stress in the peripheral nervous system is a significant driver of neuropathic pain. Proc Natl Acad Sci USA 2015; 112(29): 9082-7.
[http://dx.doi.org/10.1073/pnas.1510137112] [PMID: 26150506]
[154]
Lupachyk S, Watcho P, Stavniichuk R, Shevalye H, Obrosova IG. Endoplasmic reticulum stress plays a key role in the pathogenesis of diabetic peripheral neuropathy. Diabetes 2013; 62(3): 944-52.
[http://dx.doi.org/10.2337/db12-0716] [PMID: 23364451]
[155]
Nakae M, Kamiya H, Naruse K, et al. Effects of basic fibroblast growth factor on experimental diabetic neuropathy in rats. 2006; 55: 1470-7.
[http://dx.doi.org/10.2337/db05-1160]
[156]
Nowwarote N, Sukarawan W, Pavasant P, Foster BL, Osathanon T. Basic fibroblast growth factor regulates phosphate/pyrophosphate regulatory genes in stem cells isolated from human exfoliated deciduous teeth. Stem Cell Res Ther 2018; 9(1): 345.
[http://dx.doi.org/10.1186/s13287-018-1093-9] [PMID: 30526676]
[157]
Loriot Y, Massard C, Angevin E, Lambotte O, Escudier B, Soria J-C. FGFR inhibitor induced peripheral neuropathy in patients with advanced RCC. Ann Oncol 2010; 21(7): 1559-60.
[http://dx.doi.org/10.1093/annonc/mdq237] [PMID: 20444848]
[158]
Wong CW, Wong TY, Cheng C-Y, Sabanayagam C. Kidney and eye diseases: common risk factors, etiological mechanisms, and pathways. Kidney Int 2014; 85(6): 1290-302.
[http://dx.doi.org/10.1038/ki.2013.491] [PMID: 24336029]
[159]
National Eye Institute Diabetic retinopathy 2019.
[160]
He M-S, Chang F-L, Lin H-Z, Wu J-L, Hsieh T-C, Lee Y-C. The Association Between Diabetes and Age-Related Macular Degeneration Among the Elderly in Taiwan. Diabetes Care 2018; 41(10): 2202-11.
[http://dx.doi.org/10.2337/dc18-0707] [PMID: 30061321]
[161]
Bek T. Mitochondrial dysfunction and diabetic retinopathy. Mitochondrion 2017; 36: 4-6.
[http://dx.doi.org/10.1016/j.mito.2016.07.011] [PMID: 27456429]
[162]
Lefevere E, Toft-Kehler AK, Vohra R, Kolko M, Moons L, Van Hove I. Mitochondrial dysfunction underlying outer retinal diseases. Mitochondrion 2017; 36: 66-76.
[http://dx.doi.org/10.1016/j.mito.2017.03.006] [PMID: 28365408]
[163]
Fu Z, Gong Y, Liegl R, et al. FGF21 administration suppresses retinal and choroidal neovascularization in mice. Cell Rep 2017; 18(7): 1606-13.
[http://dx.doi.org/10.1016/j.celrep.2017.01.014] [PMID: 28199833]
[164]
Lin Y, Xiao YC, Zhu H, et al. Serum fibroblast growth factor 21 levels are correlated with the severity of diabetic retinopathy. J Diabetes Res 2014; 2014
[http://dx.doi.org/10.1155/2014/929756]
[165]
Mehta R, Hodakowski A, Cai X, et al. Serum Phosphate and Retinal Microvascular Changes: The Multi-Ethnic Study of Atherosclerosis and the Beaver Dam Eye Study. Ophthalmic Epidemiol 2017; 24(6): 371-80.
[http://dx.doi.org/10.1080/09286586.2017.1304562] [PMID: 28402694]
[166]
Mehta R, Ying GS, Houston S, et al. CRIC Study Investigators Phosphate, fibroblast growth factor 23 and retinopathy in chronic kidney disease: the Chronic Renal Insufficiency Cohort Study Nephrol. Dial. Transplant.. 2015; 30(9): 1534-41.
[http://dx.doi.org/10.1093/ndt/gfv123] [PMID: 25910495]
[167]
Patel DV, Snead MP, Satchi K. Retinal arteriolar calcification in a patient with chronic renal failure. Br J Ophthalmol 2002; 86(9): 1063-3.
[http://dx.doi.org/10.1136/bjo.86.9.1063] [PMID: 12185140]
[168]
Tan ACS, Pilgrim MG, Fearn S, et al. Calcified nodules in retinal drusen are associated with disease progression in age-related macular degeneration. Sci Transl Med 2018; 10(466) eaat4544
[http://dx.doi.org/10.1126/scitranslmed.aat4544] [PMID: 30404862]
[169]
Thompson RB, Reffatto V, Bundy JG, et al. Identification of hydroxyapatite spherules provides new insight into subretinal pigment epithelial deposit formation in the aging eye. Proc Natl Acad Sci USA 2015; 112(5): 1565-70.
[http://dx.doi.org/10.1073/pnas.1413347112] [PMID: 25605911]
[170]
Kuro-O M. Molecular mechanisms underlying accelerated aging by defects in the FGF23-Klotho system. International journal of nephrology 2018; 2018
[http://dx.doi.org/10.1155/2018/9679841]
[171]
Reish NJ, Maltare A, McKeown AS, et al. The age-regulating protein klotho is vital to sustain retinal function. Invest Ophthalmol Vis Sci 2013; 54(10): 6675-85.
[http://dx.doi.org/10.1167/iovs.13-12550] [PMID: 24045987]
[172]
Słomiński B, Ryba-Stanisławowska M, Skrzypkowska M, Myśliwska J, Myśliwiec M. The KL-VS polymorphism of KLOTHO gene is protective against retinopathy incidence in patients with type 1 diabetes. Biochim Biophys Acta Mol Basis Dis 2018; 1864(3): 758-63.
[http://dx.doi.org/10.1016/j.bbadis.2017.12.015] [PMID: 29247834]
[173]
Jeganathan VSE, Wang JJ, Wong TY. Ocular associations of diabetes other than diabetic retinopathy. Diabetes Care 2008; 31(9): 1905-12.
[http://dx.doi.org/10.2337/dc08-0342] [PMID: 18753669]
[174]
Kim CJ, Choi SK. Analysis of aqueous humor calcium and phosphate from cataract eyes with and without diabetes mellitus. Korean J Ophthalmol 2007; 21(2): 90-4.
[http://dx.doi.org/10.3341/kjo.2007.21.2.90] [PMID: 17592239]
[175]
He Y, Ge J, Tombran-Tink J. Mitochondrial defects and dysfunction in calcium regulation in glaucomatous trabecular meshwork cells. Invest Ophthalmol Vis Sci 2008; 49(11): 4912-22.
[http://dx.doi.org/10.1167/iovs.08-2192] [PMID: 18614807]
[176]
Xue W, Comes N, Borrás T. Presence of an established calcification marker in trabecular meshwork tissue of glaucoma donors. Invest Ophthalmol Vis Sci 2007; 48(7): 3184-94.
[http://dx.doi.org/10.1167/iovs.06-1403] [PMID: 17591888]
[177]
Skyler JS. Walter Kempner. A biographical note. Arch Intern Med 1974; 133(5): 752-5.
[http://dx.doi.org/10.1001/archinte.1974.00320170034003] [PMID: 4595397]
[178]
Kempner W. Treatment of heart and kidney disease and of hypertensive and arteriosclerotic vascular disease with the rice diet. Ann Intern Med 1949; 31(5): 821-856, illust.
[http://dx.doi.org/10.7326/0003-4819-31-5-821] [PMID: 15393016]
[179]
D’Alessandro C, Piccoli GB, Cupisti A. The “phosphorus pyramid”: a visual tool for dietary phosphate management in dialysis and CKD patients. BMC Nephrol 2015; 16: 9.
[http://dx.doi.org/10.1186/1471-2369-16-9] [PMID: 25603926]
[180]
Izadi V, Tehrani H, Haghighatdoost F, Dehghan A, Surkan PJ, Azadbakht L. Adherence to the DASH and Mediterranean diets is associated with decreased risk for gestational diabetes mellitus. Nutrition 2016; 32(10): 1092-6.
[http://dx.doi.org/10.1016/j.nut.2016.03.006] [PMID: 27189908]
[181]
Zhou X, Chen R, Zhong C, et al. Fresh fruit intake in pregnancy and association with gestational diabetes mellitus: A prospective cohort study. Nutrition 2019; 60: 129-35.
[http://dx.doi.org/10.1016/j.nut.2018.09.022] [PMID: 30572275]
[182]
Du H, Li L, Bennett D, et al. China Kadoorie Biobank study Fresh fruit consumption in relation to incident diabetes and diabetic vascular complications: A 7-y prospective study of 05 million Chinese adults PLoS Med.. 2017; 14(4) e1002279
[http://dx.doi.org/10.1371/journal.pmed.1002279] [PMID: 28399126]
[183]
Li S, Miao S, Huang Y, et al. Fruit intake decreases risk of incident type 2 diabetes: an updated meta-analysis. Springer 2015.
[184]
Jenkins DJ, Wolever TM, Taylor RH, et al. Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr 1981; 34(3): 362-6.
[http://dx.doi.org/10.1093/ajcn/34.3.362] [PMID: 6259925]
[185]
Taketani Y, Shuto E, Arai H, et al. Advantage of a low glycemic index and low phosphate diet on diabetic nephropathy and aging-related diseases. J Med Invest 2007; 54(3-4): 359-65.
[http://dx.doi.org/10.2152/jmi.54.359] [PMID: 17878688]
[186]
Olfert MD, Wattick RA. Vegetarian Diets and the Risk of Diabetes. Curr Diab Rep 2018; 18(11): 101.
[http://dx.doi.org/10.1007/s11892-018-1070-9] [PMID: 30229314]
[187]
Bunner AE, Wells CL, Gonzales J, Agarwal U, Bayat E, Barnard ND. A dietary intervention for chronic diabetic neuropathy pain: a randomized controlled pilot study. Nutr Diabetes 2015; 5 e158
[http://dx.doi.org/10.1038/nutd.2015.8] [PMID: 26011582]
[188]
Gebhardt S, Lemar L, Haytowitz D, et al. USDA national nutrient database for standard reference, release 21. United States Department of AgricultureAgricultural Research Service 2008.
[189]
Imamura F, Fretts A, Marklund M, et al. Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes: A pooled analysis of prospective cohort studies. PLoS Med 2018; 15(10) e1002670
[http://dx.doi.org/10.1371/journal.pmed.1002670] [PMID: 30303968]
[190]
Paoli A, Rubini A, Volek JS, Grimaldi KA. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur J Clin Nutr 2013; 67(8): 789-96.
[http://dx.doi.org/10.1038/ejcn.2013.116] [PMID: 23801097]
[191]
Zhou X, Chen R, Zhong C, et al. Maternal dietary pattern characterised by high protein and low carbohydrate intake in pregnancy is associated with a higher risk of gestational diabetes mellitus in Chinese women: a prospective cohort study. Br J Nutr 2018; 120(9): 1045-55.
[http://dx.doi.org/10.1017/S0007114518002453] [PMID: 30355392]
[192]
Pang WW, Colega M, Cai S, et al. Higher maternal dietary protein intake is associated with a higher risk of gestational diabetes mellitus in a multiethnic Asian cohort. J Nutr 2017; 147(4): 653-60.
[http://dx.doi.org/10.3945/jn.116.243881] [PMID: 28275101]
[193]
Huang M, Quddus A, Stinson L, et al. Artificially sweetened beverages, sugar-sweetened beverages, plain water, and incident diabetes mellitus in postmenopausal women: the prospective Women’s Health Initiative observational study. Am J Clin Nutr 2017; 106(2): 614-22.
[http://dx.doi.org/10.3945/ajcn.116.145391] [PMID: 28659294]
[194]
Liu G, Guasch-Ferré M, Hu Y, et al. Nut consumption in relation to cardiovascular disease incidence and mortality among patients with diabetes mellitus. Circ Res 2019; 124(6): 920-9.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.314316] [PMID: 30776978]
[195]
Asghari G, Ghorbani Z, Mirmiran P, Azizi F. Nut consumption is associated with lower incidence of type 2 diabetes: The Tehran Lipid and Glucose Study. Diabetes Metab 2017; 43(1): 18-24.
[http://dx.doi.org/10.1016/j.diabet.2016.09.008] [PMID: 27865656]
[196]
Hernández-Alonso P, Camacho-Barcia L, Bulló M, Salas-Salvadó J. Nuts and dried fruits: An update of their beneficial effects on type 2 diabetes. Nutrients 2017; 9(7): 673.
[http://dx.doi.org/10.3390/nu9070673] [PMID: 28657613]
[197]
Jenkins DJ, Kendall CW, Faulkner D, et al. A dietary portfolio approach to cholesterol reduction: combined effects of plant sterols, vegetable proteins, and viscous fibers in hypercholesterolemia. Metabolism 2002; 51(12): 1596-604.
[http://dx.doi.org/10.1053/meta.2002.35578] [PMID: 12489074]
[198]
Chiavaroli L, Nishi SK, Khan TA, et al. Portfolio dietary pattern and cardiovascular disease: A systematic review and meta-analysis of controlled trials. Prog Cardiovasc Dis 2018; 61(1): 43-53.
[http://dx.doi.org/10.1016/j.pcad.2018.05.004] [PMID: 29807048]
[199]
Sievenpiper JL, Chan CB, Dworatzek PD, Freeze C, Williams SL. Diabetes Canada Clinical Practice Guidelines Expert Committee Nutrition Therapy Can. J. Diabetes. 2018; 42(Suppl. 1): S64-79.
[http://dx.doi.org/10.1016/j.jcjd.2017.10.009] [PMID: 29650114]
[200]
Meyer BJ, van der Merwe M, Du Plessis DG, de Bruin EJ, Meyer AC. Some physiological effects of a mainly fruit diet in man. S Afr Med J 1971; 45(8): 191-5.
[PMID: 4928686]
[201]
Mahdi AA, Brown RB, Razzaque MS. Osteoporosis in populations with high calcium intake: does phosphate toxicity explain the paradox? Indian J Clin Biochem 2015; 30: 365-7.
[http://dx.doi.org/10.1007/s12291-015-0524-y]]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 7
Year: 2020
Page: [649 - 656]
Pages: 8
DOI: 10.2174/1573399815666190916114040
Price: $65

Article Metrics

PDF: 18
HTML: 1