Manufacturing of Submicrofluidic Channels Based on Near-field Electrospinning with PEO

Author(s): Jiarong Zhang, Han Wang, Zhifeng Wang, Honghui Yao*, Guojie Xu, Shengyong Yan, Jun Zeng, Xiangyou Zhu, Jiannan Deng, Shaomu Zhuo, Jinghua Zeng

Journal Name: Micro and Nanosystems

Volume 12 , Issue 3 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Microfluidic channels have been widely applied in biomedicine and microelectronics. However, the manufacturing methods of microfluidic channel devices, such as photolithography, three-dimensional printing and Melt-electrospinning direct writing (MEDW), have the problem of high cost and complex process, which still can't reach a sub-micron scale stably.

Method: To improve the resolution of microfluidic channels, we developed a simple and flexible method to fabricate polydimethylsiloxane (PDMS) submicrofluidic channels. It depends on the following steps: (1) Direct Writing Polyethylene oxide (PEO) nanofiber by Near-field Electrospinning (NFES). (2) Packaging the nanofiber with PDMS. (3) Obtaining the PDMS submicrofluidic channel by inverted mode of PEO nanofiber.

Results: According to the result of the experiment, nanofiber can be stably prepared under the following conditions, the electrode-to-collector distance of 3.0 mm, the voltage of 1.7 KV, the collector moving speed of 80mm/s and the mixed solutions of ethanol and deionized water (1:1). Finally, the PDMS submicrofluidic channel was manufactured by NFES and PDMS molding technique, and the diameter of the channel was 0.84±0.08 μm.

Conclusion: The result verified the rationality of that method. In addition, the method can be easily integrated with high resolution channels for various usages, such as microelectronics, micro electro mechanical systems, and biomedical.

Keywords: Submicrofluidic channels, NFES, direct writing, PEO nanofiber, PDMS, microelectronics.

open access plus

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 01 December, 2020
Page: [243 - 246]
Pages: 4
DOI: 10.2174/1876402911666190916112452

Article Metrics

PDF: 16