Catalytic Hydrogenolysis of Biomass-derived Polyhydric Compounds to C2–C3 Small- Molecule Polyols: A Review

Author(s): Chiliu Cai, Changhui Zhu, Haiyong Wang, Haosheng Xin, Zhongxun Xiu, Chenguang Wang, Qi Zhang, Qiying Liu*, Longlong Ma

Journal Name: Current Organic Chemistry

Volume 23 , Issue 20 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Biomass energy has attracted much attention because of its clean and renewable characteristics. At present, C2–C3 polyols such as glycerol, 1,2-propanediol, and ethylene glycol, widely used as platforms for downstream chemicals or directly used as chemicals in diversified industries, mainly depend on the petrochemical industry. In terms of the feedstock for C2–C3 polyol production, the C3-derived glycerol is a side product during biodiesel synthesis, whereas the C5-derived xylitol and C6-derived sorbitol can be mainly obtained by hydrolysis–hydrogenation of hemicellulose and cellulose from lignocellulosic biomass, respectively. In this review, we summarize the catalysts and catalysis for selective hydrogenolysis of these polyhydric compounds to C2–C3 polyols and introduce the reaction pathways for the target polyol formation based on the C3, C5, and C6 polyhydric alcohol hydrogenolysis. Finally, state-of-the-art technologies are described and the remaining challenges and further prospects are presented in view of the technical aspects.

Keywords: Hydrogenolysis pathway, catalyst, polyols, C2–C3 polyols, cellulose, biomass.

[1]
Li, C.; Zhao, X.; Wang, A.; Huber, G.W.; Zhang, T. Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev., 2015, 115(21), 11559-11624.
[http://dx.doi.org/10.1021/acs.chemrev.5b00155] [PMID: 26479313]
[2]
Ruppert, A.M.; Weinberg, K.; Palkovits, R. Hydrogenolysis goes bio: From carbohydrates and sugar alcohols to platform chemicals. Angew. Chem. Int. Ed. Engl., 2012, 51(11), 2564-2601.
[http://dx.doi.org/10.1002/anie.201105125] [PMID: 22374680]
[3]
Chheda, J.N.; Huber, G.W.; Dumesic, J.A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew. Chem. Int. Ed. Engl., 2007, 46(38), 7164-7183.
[http://dx.doi.org/10.1002/anie.200604274] [PMID: 17659519]
[4]
Tong, X.; Yang, M.A.; Yongdan, L.I. Biomass into chemicals: Conversion of sugars to furan derivatives by catalytic processes. Appl. Catal. A Gen., 2010, 385(1-2), 1-13.
[http://dx.doi.org/10.1016/j.apcata.2010.06.049]
[5]
Okano, K.; Tanaka, T.; Ogino, C.; Fukuda, H.; Kondo, A. Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Appl. Microbiol. Biotechnol., 2010, 85(3), 413-423.
[http://dx.doi.org/10.1007/s00253-009-2280-5] [PMID: 19826806]
[6]
Serrano-Ruiz, J.C.; Luque, R.; Sepúlveda-Escribano, A. Transformations of biomass-derived platform molecules: From high added-value chemicals to fuels via aqueous-phase processing. Chem. Soc. Rev., 2011, 40(11), 5266-5281.
[http://dx.doi.org/10.1039/c1cs15131b] [PMID: 21713268]
[7]
Ye, S.; Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production: A review. ChemInform, 2003, 83(1), 1-11.
[8]
Botes, F.G.; Breman, B.B. Development and testing of a new macro kinetic expression for the iron-based low-temperature Fischer-Tropsch reaction. Ind. Eng. Chem. Res., 2006, 45(22), 7415-7426.
[http://dx.doi.org/10.1021/ie060491h]
[9]
Banu, M.; Sivasanker, S.; Sankaranarayanan, T.M.; Venuvanalingam, P. Hydrogenolysis of sorbitol over Ni and Pt loaded on NaY. Catal. Commun., 2011, 12(7), 673-677.
[http://dx.doi.org/10.1016/j.catcom.2010.12.026]
[10]
Dhana, D.L.; Srinibasa, R.B.; Lingaiah, N. Synthesis of dimethyl carbonate from methanol and urea over zinc-strontia mixed oxide catalysts. Catal. Commun., 2019, 122, 1-4.
[http://dx.doi.org/10.1016/j.catcom.2019.01.005]
[11]
Gumina, B.; Mauriello, F.; Pietropaolo, R.; Galvagno, S.; Espro, C. Hydrogenolysis of sorbitol into valuable C3-C2 alcohols at low H2 pressure promoted by the heterogeneous Pd/Fe3O4 catalyst. Mol. Catal., 2018, 446, 152-160.
[http://dx.doi.org/10.1016/j.mcat.2017.12.038]
[12]
Kunkes, E.L.; Simonetti, D.A.; West, R.M.; Serrano-Ruiz, J.C.; Gärtner, C.A.; Dumesic, J.A. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science, 2008, 322(5900), 417-421.
[http://dx.doi.org/10.1126/science.1159210] [PMID: 18801970]
[13]
Gallezot, P. Conversion of biomass to selected chemical products. Chem. Soc. Rev., 2012, 41(4), 1538-1558.
[http://dx.doi.org/10.1039/C1CS15147A] [PMID: 21909591]
[14]
Alonso, D.M.; Wettstein, S.G.; Dumesic, J.A. Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem. Soc. Rev., 2012, 41(24), 8075-8098.
[http://dx.doi.org/10.1039/c2cs35188a] [PMID: 22872312]
[15]
Zhao, G.; Zheng, M.; Zhang, J.; Wang, A.; Zhang, T. Catalytic conversion of concentrated glucose to ethylene glycol with semicontinuous reaction system. Ind. Eng. Chem. Res., 2013, 52(28), 9566-9572.
[http://dx.doi.org/10.1021/ie400989a]
[16]
Hu, L.; Sun, Y.; Lin, L. Efficient conversion of glucose into 5-hydroxymethylfurfural by Chromium(III) chloride in inexpensive ionic liquid. Ind. Eng. Chem. Res., 2012, 51(3), 1099-1104.
[http://dx.doi.org/10.1021/ie202174f]
[17]
Martin, A.; Armbruster, U.; Gandarias, I.; Arias, P.L. Glycerol hydrogenolysis into propanediols using in situ generated hydrogen - A critical review. Eur. J. Lipid Sci. Technol., 2013, 115(1), 9-27.
[http://dx.doi.org/10.1002/ejlt.201200207]
[18]
Jia, Y.; Liu, H. Mechanistic insight into the selective hydrogenolysis of sorbitol to propylene glycol and ethylene glycol on supported Ru catalysts. Catalysis. Sci. Technol., 2016, 6(19), 7042-7052.
[http://dx.doi.org/10.1039/C6CY00928J] [PMID: 19826806]
[19]
Corma, A.; Iborra, S.; Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev., 2007, 107(6), 2411-2502.
[http://dx.doi.org/10.1021/cr050989d] [PMID: 17535020]
[20]
Mascal, M.; Nikitin, E.B. Direct, high-yield conversion of cellulose into biofuel. Angew. Chem. Int. Ed. Engl., 2008, 47(41), 7924-7926.
[http://dx.doi.org/10.1002/anie.200801594] [PMID: 18671312]
[21]
Bozell, J.J.; Petersen, G.R. Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chem., 2010, 12(4), 539-554.
[http://dx.doi.org/10.1039/b922014c]
[22]
Huang, Z.; Chen, J.; Jia, Y.; Liu, H.; Xia, C.; Liu, H. Selective hydrogenolysis of xylitol to ethylene glycol and propylene glycol over copper catalysts. Appl. Catal. B, 2014, 147, 377-386.
[http://dx.doi.org/10.1016/j.apcatb.2013.09.014]
[23]
Huber, G.W.; Iborra, S.; Corma, A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev., 2006, 106(9), 4044-4098.
[http://dx.doi.org/10.1021/cr068360d] [PMID: 16967928]
[24]
Jia, Y.; Liu, H. Mechanistic insight into the selective hydrogenolysis of sorbitol to propylene glycol and ethylene glycol on supported Ru catalysts. Catal. Sci. Technol., 2016, 6(19), 7042-7052.
[http://dx.doi.org/10.1039/C6CY00928J]
[25]
Gilkey, M.J.; Xu, B. Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading. ACS Catal., 2016, 6(3), 1420-1436.
[http://dx.doi.org/10.1021/acscatal.5b02171]
[26]
Ruppert, A.M.; Weinberg, K.; Palkovits, R. Cover picture: hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew. Chem. Int. Ed., 2012, 51(11), 2564-2601.
[http://dx.doi.org/10.1002/ani.201200420] [PMID: 18801970]
[27]
Li, S.; Zan, Y.; Sun, Y.; Tan, Z.; Miao, G.; Kong, L.Z.; Sun, Y. Efficient one-pot hydrogenolysis of biomass-derived xylitol into ethylene glycol and 1,2-propylene glycol over Cu–Ni–ZrO2 catalyst without solid bases. J. Energy Chem., 2019, 28, 101-106.
[http://dx.doi.org/10.1016/j.jechem.2018.01.021]
[28]
ten Dam, J.; Hanefeld, U. Renewable chemicals: Dehydroxylation of glycerol and polyols. ChemSusChem, 2011, 4(8), 1017-1034.
[http://dx.doi.org/10.1002/cssc.201100162] [PMID: 21887771]
[29]
Kraus, G.A. Synthetic methods for the preparation of 1, 3-propanediol. Clean- Soil Air Water, 2010, 36(8), 648-651.
[30]
Katryniok, B.; Paul, S.; Dumeignil, F. Recent developments in the field of catalytic dehydration of glycerol to acrolein. ACS Catal., 2013, 3(3), 1819-1834.
[http://dx.doi.org/10.1021/cs400354p]
[31]
Katryniok, B.; Paul, S.; Belliere-Baca, V.; Rey, P.; Dumeignil, F. Glycerol dehydration to acrolein in the context of new uses of glycerol. ChemInform, 2015, 42(12), 2079-2098.
[32]
Ruppert, A.M.; Weinberg, K.; Palkovits, R. Cover picture: Hydrogenolysis goes bio: From carbohydrates and sugar alcohols to platform chemicals. Angew. Chem. Int. Ed., 2012, 51(11), 2564-2601.
[33]
Shuai, W.; Yin, K.; Zhang, Y.; Liu, H. Glycerol hydrogenolysis to propylene glycol and ethylene glycol on zirconia supported noble metal catalysts. ACS Catal., 2013, 3(9), 2112-2121.
[http://dx.doi.org/10.1021/cs400486z]
[34]
Dasari, M.A.; Kiatsimkul, P.P.; Sutterlin, W.R.; Suppes, G.J. Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl. Catal. A Gen., 2005, 281(1), 225-231.
[http://dx.doi.org/10.1016/j.apcata.2004.11.033]
[35]
Rivière, M.; Perret, N.; Delcroix, D.; Cabiac, A.; Pinel, C.; Besson, M. Solvent effect in hydrogenolysis of xylitol over bifunctional Ru/MnO/C catalysts under alkaline-free conditions. ACS Sustain. Chem. Eng., 2018, 6(3), 4076-4085.
[http://dx.doi.org/10.1021/acssuschemeng.7b04424]
[36]
Mane, R.; Patil, S.; Shirai, M.; Rayalu, S.; Rode, C. Influence of carbon based supports on selectivity behavior of diols and propanol in Ru catalyzed glycerol hydrogenolysis. Appl. Catal. B, 2017, 204, 134-146.
[http://dx.doi.org/10.1016/j.apcatb.2016.11.032]
[37]
Jia, W.; Lei, N.; Yang, C.; Yang, S.; Zhao, X.; Wang, A. Effect of promoters on the selective hydrogenolysis of glycerol over Pt/W-containing catalysts. Chin. J. Catal., 2016, 37(9), 1513-1519.
[http://dx.doi.org/10.1016/S1872-2067(16)62479-8]
[38]
Soták, T.; Schmidt, T.; Hronec, M. Hydrogenolysis of polyalcohols in the presence of metal phosphide catalysts. Appl. Catal. A Gen., 2013, 459(7), 26-33.
[http://dx.doi.org/10.1016/j.apcata.2013.04.006]
[39]
Ji, N.; Zhang, T.; Zheng, M.; Wang, A.; Wang, H.; Wang, X.; Chen, J.G. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew. Chem. Int. Ed. Engl., 2008, 47(44), 8510-8513.
[http://dx.doi.org/10.1002/anie.200803233] [PMID: 18785670]
[40]
Kraus, G.A. Synthetic Methods for the preparation of 1, 3-propanediol. Clean - soil, air. Water, 2008, 36(8), 648-651.
[41]
Zhu, S.; Gao, X.; Zhu, Y.; Zhu, Y.; Zheng, H.; Li, Y. Promoting effect of boron oxide on Cu/SiO2 catalyst for glycerol hydrogenolysis to 1,2-propanediol. J. Catal., 2013, 303(7), 70-79.
[http://dx.doi.org/10.1016/j.jcat.2013.03.018]
[42]
Deutsch, K.L.; Lahr, D.G.; Shanks, B.H. Probing the ruthenium-catalyzed higher polyol hydrogenolysis reaction through the use of stereoisomers. Green Chemistry., 2012, 14(6), 1635-1642.
[http://dx.doi.org/10.1039/C2GC00026A]
[43]
Trasarti, A.F.; Bertero, N.M.; Apesteguía, C.R.; Marchi, A.J. Liquid-phase hydrogenation of acetophenone over silica-supported Ni, Co and Cu catalysts: Influence of metal and solvent. Appl. Catal. A Gen., 2014, 475, 282-291.
[http://dx.doi.org/10.1016/j.apcata.2014.01.038]
[44]
Vijaya Shanthi, R.; Mahalakshmy, R.; Thirunavukkarasu, K.; Sivasanker, S. Hydrogenolysis of sorbitol over Ni supported on Ca- and Ca(Sr)-hydroxyapatites. Mol. Catal., 2018, 451, 170-177.
[http://dx.doi.org/10.1016/j.mcat.2017.12.031]
[45]
Yamauchi, T.; Tsukahara, Y.; Sakata, T.; Mori, H.; Yanagida, T.; Kawai, T.; Wada, Y. Magnetic Cu-Ni (core-shell) nanoparticles in a one-pot reaction under microwave irradiation. Nanoscale, 2010, 2(4), 515-523.
[http://dx.doi.org/10.1039/b9nr00302a] [PMID: 20644753]
[46]
Huber, G.W.; Iborra, S.; Corma, A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev., 2006, 106(9), 4044-4098.
[http://dx.doi.org/10.1021/cr068360d]
[47]
Liu, H.; Huang, Z.; Kang, H.; Li, X.; Xia, C.; Chen, J.; Liu, H. Efficient bimetallic NiCu-SiO2 catalysts for selective hydrogenolysis of xylitol to ethylene glycol and propylene glycol. Appl. Catal. B, 2018, 220, 251-263.
[http://dx.doi.org/10.1016/j.apcatb.2017.08.022]
[48]
Deutsch, K.L.; Lahr, D.G.; Shanks, B.H. Probing the ruthenium-catalyzed higher polyol hydrogenolysis reaction through the use of stereoisomers. Green Chem., 2012, 14(6), 1635-1642.
[http://dx.doi.org/10.1039/c2gc00026a]
[49]
Jin, X.; Shen, J.; Yan, W.; Zhao, M.; Thapa, P.S.; Subramaniam, B.; Chaudhari, R.V. Sorbitol hydrogenolysis over hybrid Cu/CaO-Al2O3 catalysts: Tunable activity and selectivity with solid base incorporation. ACS Catal., 2015, 5(11), 6545-6558.
[http://dx.doi.org/10.1021/acscatal.5b01324]
[50]
Wang, K.; Hawley, M.C.; Furney, T.D. Mechanism study of sugar and sugar alcohol hydrogenolysis using 1, 3-diol model compounds. Ind. Eng. Chem. Research., 1995, 34(11), 3766-3770.
[http://dx.doi.org/10.1021/ie00038a012]
[51]
Long, Z.; Zhou, J.; Hong, C.; Zhang, M.; Sui, Z.; Zhou, X. Carbon nanofibers supported Ru catalyst for sorbitol hydrogenolysis to glycols: Effect of calcination. Korean J. Chem. Eng., 2010, 27(5), 1412-1418.
[http://dx.doi.org/10.1007/s11814-010-0257-9]
[52]
Ramírezlópez, C.A.; Ochoagómez, J.R.; Fernándezsantos, M.; Gómezjiménezaberasturi, O.; Alonsovicario, A.; Torrecillasoria, J. Synthesis of lactic acid by alkaline hydrothermal conversion of glycerol at high glycerol concentration. Ind. Eng. Chem. Res., 2010, 49(14), 6270-6278.
[http://dx.doi.org/10.1021/ie1001586] [PMID: 16967928]
[53]
Montassier, C.; Ménézo, J.C.; Hoang, L.C.; Renaud, C.; Barbier, J. Aqueous polyol conversions on ruthenium and on sulfur-modified ruthenium. J. Mol. Catal., 1991, 70(1), 99-110.
[http://dx.doi.org/10.1016/0304-5102(91)85008-P]
[54]
Sun, J.; Liu, H. Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on Ni/C and basic oxide-promoted Ni/C catalysts. Catal. Today, 2014, 234(10), 75-82.
[http://dx.doi.org/10.1016/j.cattod.2013.12.040]
[55]
Qin, L.Z.; Song, M.J.; Chen, C.L. Aqueous-phase deoxygenation of glycerol to 1,3-propanediol over Pt/WO3/ZrO2 catalysts in a fixed-bed reactor. Green Chem., 2010, 12(8), 1466-1472.
[http://dx.doi.org/10.1039/c0gc00005a]
[56]
Tian, X.; Zeng, Y.; Xiao, T.; Yang, C.; Wang, Y.; Zhang, S. Fabrication and stabilization of nanocrystalline ordered mesoporous MgO-ZrO2 solid solution. Microporous Mesoporous Mater., 2011, 143(2), 357-361.
[http://dx.doi.org/10.1016/j.micromeso.2011.03.015]
[57]
Weingarten, R.; Conner, W.C.; Huber, G.W. Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energy Environ. Sci., 2012, 5(6), 7559-7574.
[http://dx.doi.org/10.1039/c2ee21593d]
[58]
Ramírezlópez, C.A.; Ochoagómez, J.R.; Fernándezsantos, M.; Gómezjiménezaberasturi, O.; Alonsovicario, A.; Torrecillasoria, J. Synthesis of lactic acid by alkaline hydrothermal conversion of glycerol at high glycerol concentration. Ind. Eng. Chem. Res., 2010, 49(14), 6270-6278.
[http://dx.doi.org/10.1021/ie1001586]
[59]
Jha, A.; Jeong, D.W.; Shim, J.O.; Jang, W.J.; Lee, Y.L.; Rode, C.V.; Roh, H.S. Hydrogen production by the water-gas shift reaction using CuNi/Fe2O3 catalyst. Catal. Sci. Technol., 2015, 5(5), 2752-2760.
[http://dx.doi.org/10.1039/C5CY00173K]
[60]
Liu, C.; Zhang, C.; Sun, S.; Liu, K.; Hao, S.; Jian, X.; Zhu, Y.; Li, Y. Effect of WOx on bifunctional Pd–WOx/Al2O3 catalysts for the selective hydrogenolysis of glucose to 1, 2-propanediol. ACS Catal., 2015, 5(8), 4612-4623.
[http://dx.doi.org/10.1021/acscatal.5b00800]
[61]
Andrews, M.A.; Klaeren, S.A. Selective hydrocracking of monosaccharide carbon‐carbon single bonds under mild conditions. ruthenium hydride catalyzed formation of glycols. ChemInform, 1989, 20(36), 4131-4133.
[http://dx.doi.org/10.1002/chin.198936333]
[62]
Sun, J.; Liu, H. Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on supported Ru catalysts. Green Chem., 2011, 13(1), 135-142.
[http://dx.doi.org/10.1039/C0GC00571A]
[63]
Hausoul, P.J.; Negahdar, L.; Schute, K.; Palkovits, R. Unravelling the Ru-catalyzed hydrogenolysis of biomass-based polyols under neutral and acidic conditions. ChemSusChem, 2015, 8(19), 3323-3330.
[http://dx.doi.org/10.1002/cssc.201500493] [PMID: 26448526]
[64]
Chen, X.; Wang, X.; Yao, S.; Mu, X. Hydrogenolysis of biomass-derived sorbitol to glycols and glycerol over Ni-MgO catalysts. Catal. Commun., 2013, 39(39), 86-89.
[http://dx.doi.org/10.1016/j.catcom.2013.05.012]
[65]
Mizugaki, T.; Arundhathi, R.; Mitsudome, T.; Jitsukawa, K.; Kaneda, K. Highly efficient and selective transformations of glycerol using reusable heterogeneous catalysts. ACS Sustain. Chem. Eng., 2014, 2(4), 574-578.
[http://dx.doi.org/10.1021/sc500006b]
[66]
Lee, M.; Hwang, Y.K.; Chang, J.S.; Chae, H.J.; Dong, W.H. Vapor-phase hydrogenolysis of glycerol to 1,2-propanediol using a chromium-free Ni-Cu-SiO2 nanocomposite catalyst. Catal. Commun., 2016, 84, 5-10.
[http://dx.doi.org/10.1016/j.catcom.2016.05.022]
[67]
Zhao, X.; Wang, J.; Yang, M.; Lei, N.; Li, L.; Hou, B.; Miao, S.; Pan, X.; Wang, A.; Zhang, T. Selective hydrogenolysis of glycerol to 1,3-propanediol: Manipulating the frustrated Lewis pairs by introducing gold to Pt/WOx. ChemSusChem, 2017, 10(5), 819-824.
[http://dx.doi.org/10.1002/cssc.201601503] [PMID: 27863052]
[68]
Garcíafernández, S.; Gandarias, I.; Requies, J.; Soulimani, F.; Arias, P.L.; Weckhuysen, B.M. The role of tungsten oxide in the selective hydrogenolysis of glycerol to 1, 3-propanediol over Pt/WOx/Al2O3. Appl. Catal. B, 2017, 204, 260-272.
[http://dx.doi.org/10.1016/j.apcatb.2016.11.016]
[69]
Zheng, L.; Li, X.; Du, W.; Shi, D.; Ning, W.; Lu, X.; Hou, Z. Metal-organic framework derived Cu/ZnO catalysts for continuous hydrogenolysis of glycerol. Appl. Catal. B, 2017, 203, 146-153.
[http://dx.doi.org/10.1016/j.apcatb.2016.10.011]
[70]
Miao, G.; Zhu, C.C.; Wang, J.J.; Tan, Z.C.; Wang, L.; Liu, J.L.; Kong, L.Z.; Sun, Y.H. Efficient one-pot production of 1, 2-propanediol and ethylene glycol from microalgae (Chlorococcum sp.) in water. Green Chem., 2015, 17(4), 2538-2544.
[http://dx.doi.org/10.1039/C4GC02467B]
[71]
Zhu, S.; Gao, X.; Zhu, Y.; Fan, W.; Wang, J.; Li, Y. A highly efficient and robust Cu/SiO2 catalyst prepared by the ammonia evaporation hydrothermal method for glycerol hydrogenolysis to 1, 2-propanediol. Catal. Sci. Technol., 2015, 5(2), 1169-1180.
[http://dx.doi.org/10.1039/C4CY01148A]
[72]
Zhu, S.; Gao, X.; Zhu, Y.; Zhu, Y.; Zheng, H.; Li, Y. Promoting effect of boron oxide on Cu/SiO2 catalyst for glycerol hydrogenolysis to 1, 2-propanediol. J. Catal., 2013, 303, 70-79.
[http://dx.doi.org/10.1016/j.jcat.2013.03.018]
[73]
Xia, S.; Zheng, L.; Nie, R.; Ping, C.; Hui, L.; Hou, Z. Trivalent metal ions M3+ in M0.02 Cu0.4 Mg5.6 Al1.98 (OH)16 CO3 layered double hydroxide as catalyst precursors for the hydrogenolysis of glycerol. Chin. J. Catal., 2013, 34(5), 986-992.
[http://dx.doi.org/10.1016/S1872-2067(11)60505-6]
[74]
Jin, X.; Dang, L.; Lohrman, J.; Subramaniam, B.; Ren, S.; Chaudhari, R.V. Lattice-matched bimetallic CuPd-graphene nanocatalysts for facile conversion of biomass-derived polyols to chemicals. ACS Nano, 2013, 7(2), 1309-1316.
[http://dx.doi.org/10.1021/nn304820v] [PMID: 23297693]
[75]
Banu, M.; Venuvanalingam, P.; Shanmugam, R.; Viswanathan, B. Sorbitol hydrogenolysis over Ni, Pt and Ru supported on NaY. Top. Catal., 2012, 55(11-13), 897-907.
[http://dx.doi.org/10.1007/s11244-012-9864-5]
[76]
Wu, Z.; Mao, Y.; Wang, X.; Zhang, M. Preparation of a Cu-Ru/carbon nanotube catalyst for hydrogenolysis of glycerol to 1,2-propanediol via hydrogen spillover. Green Chem., 2011, 13(5), 1311-1316.
[http://dx.doi.org/10.1039/c0gc00809e]
[77]
Wang, S.; Zhang, Y.; Liu, H. Selective hydrogenolysis of glycerol to propylene glycol on Cu-ZnO composite catalysts: structural requirements and reaction mechanism. Chem. Asian J., 2010, 5(5), 1100-1111.
[http://dx.doi.org/10.1002/asia.200900668] [PMID: 20352611]
[78]
Huang, Z.; Cui, F.; Kang, H.; Chen, J.; Xia, C. Characterization and catalytic properties of the CuO/SiO2 catalysts prepared by precipitation-gel method in the hydrogenolysis of glycerol to 1,2-propanediol: Effect of residual sodium. Appl. Catal. A Gen., 2009, 366(2), 288-298.
[http://dx.doi.org/10.1016/j.apcata.2009.07.017]
[79]
Yuan, Z.; Wang, L.; Wang, J.; Xia, S.; Chen, P.; Hou, Z.; Zheng, X. Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts. Appl. Catal. B, 2011, 101(3), 431-440.
[http://dx.doi.org/10.1016/j.apcatb.2010.10.013]
[80]
Gong, L.; Yuan, L.; Ding, Y.; Lin, R.; Li, J.; Dong, W.; Tao, W.; Chen, W. Selective hydrogenolysis of glycerol to 1,3-propanediol over a Pt/WO3/TiO2/SiO2 catalyst in aqueous media. Appl. Catal. A Gen., 2010, 390(1), 119-126.
[http://dx.doi.org/10.1016/j.apcata.2010.10.002]
[81]
Li, B.; Wang, J.; Yuan, Y.; Ariga, H.; Takakusagi, S.; Asakura, K. Carbon nanotube-supported rufe bimetallic nanoparticles as efficient and robust catalysts for aqueous-phase selective hydrogenolysis of glycerol to glycols. ACS Catal., 2011, 1(11), 1521-1528.
[http://dx.doi.org/10.1021/cs200386q]
[82]
Woggon, W.D.; Schlatter, A.; Wang, H. β-Cyclodextrin-linked Ru complexes for oxidations and reductions. Adv. Inorg. Chem., 2008, 60(5), 31-58.
[http://dx.doi.org/10.1016/S0898-8838(08)00002-0]
[83]
Imamura, H.; Tanaka, T.; Sakata, Y.; Tsuchiya, S. Transfer hydrogenation of olefin from alcohol using a hydrogen-absorbing alloy (CaNi5) catalyst. J. Alloys Compd., 1999, 293-295, 919-922.
[http://dx.doi.org/10.1016/S0925-8388(99)00441-7]
[84]
Mandal, P.K.; McMurray, J.S. Pd-C-induced catalytic transfer hydrogenation with triethylsilane. J. Org. Chem., 2007, 72(17), 6599-6601.
[http://dx.doi.org/10.1021/jo0706123] [PMID: 17630799]
[85]
Pratap, T.V.; Baskaran, S. Direct conversion of aryl nitro compounds to formanilides under catalytic transfer hydrogenation conditions. Tetrahedron Lett., 2001, 42(10), 1983-1985.
[http://dx.doi.org/10.1016/S0040-4039(01)00049-1]
[86]
Auneau, F.; Berchu, M.; Aubert, G.; Pinel, C.; Besson, M.; Todaro, D.; Bernardi, M.; Ponsetti, T.; Felice, R.D. Exploring the reaction conditions for Ru/C catalyzed selective hydrogenolysis of xylitol alkaline aqueous solutions to glycols in a trickle-bed reactor. Catal. Today, 2014, 234(10), 100-106.
[http://dx.doi.org/10.1016/j.cattod.2013.12.039]
[87]
Climent, M.J.; Corma, A.; Iborra, S. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem., 2014, 16(2), 516-547.
[http://dx.doi.org/10.1039/c3gc41492b]
[88]
Luterbacher, J.S.; Martin Alonso, D.; Dumesic, J.A. Targeted chemical upgrading of lignocellulosic biomass to platform molecules. Green Chem., 2014, 16(12), 4816-4838.
[http://dx.doi.org/10.1039/C4GC01160K]
[89]
Liu, H.L.; Huang, Z.W.; Xia, C.G.; Jia, Y.Q.; Chen, J.; Liu, H.C. Selective hydrogenolysis of xylitol to ethylene glycol and propylene glycol over silica dispersed copper catalysts prepared by a precipitation-gel method. ChemCatChem, 2015, 6(10), 2918-2928.
[http://dx.doi.org/10.1002/cctc.201402141]
[90]
Rivière, M.; Perret, N.; Delcroix, D.; Cabiac, A.; Pinel, C.; Besson, M. Ru-(Mn-M)OX solid base catalysts for the upgrading of xylitol to glycols in water. Catalysts, 2018, 8(8), 331.
[http://dx.doi.org/10.3390/catal8080331]
[91]
De Clercq, R.; Dusselier, M.; Sels, B.F. Heterogeneous catalysis for bio-based polyester monomers from cellulosic biomass: Advances, challenges and prospects. Green Chem., 2017, 19(21), 5012-5040.
[http://dx.doi.org/10.1039/C7GC02040F]
[92]
Hamdy, M.S.; Eissa, M.A.; Keshk, S.M.A.S. New catalyst with multiple active sites for selective hydrogenolysis of cellulose to ethylene glycol. Green Chem., 2017, 19(21), 5144-5151.
[http://dx.doi.org/10.1039/C7GC02122D]
[93]
Zhou, Z.; Dai, S.; Qin, J.; Yu, P.; Wu, W. Preparation of nano-Ni/meso-Ce–TiO2 by one-step in a sol–gel system and its catalytic performance for hydrogenolysis of xylitol. RSC Advances, 2015, 5(86), 70410-70416.
[http://dx.doi.org/10.1039/C5RA08472E]
[94]
Lin, X.; Qu, Y.; Lv, Y.; Xi, Y.; Phillips, D.L.; Liu, C. The first dehydration and the competing reaction pathways of glucose homogeneously and heterogeneously catalyzed by acids. Phys. Chem. Chem. Phys., 2013, 15(8), 2967-2982.
[http://dx.doi.org/10.1039/c2cp43644b] [PMID: 23340797]
[95]
Zartman, W.H.; Adkins, H. Hydrogenolysis of sugars. J. Am. Chem. Soc., 2002, 55(11), 4559-4563.
[http://dx.doi.org/10.1021/ja01338a039]
[96]
Zhang, Q.; Jiang, T.; Li, B.; Wang, T.; Zhang, X.; Zhang, Q.; Ma, L. Highly selective sorbitol hydrogenolysis to liquid alkanes over Ni/HZSM-5 catalysts modified with pure silica MCM-41. ChemCatChem, 2012, 4(8), 1084-1087.
[http://dx.doi.org/10.1002/cctc.201100508]
[97]
Hirano, Y.; Sagata, K.; Kita, Y. Selective transformation of glucose into propylene glycol on Ru/C catalysts combined with ZnO under low hydrogen pressures. Appl. Catal. A Gen., 2015, 502(1), 1-7.
[http://dx.doi.org/10.1016/j.apcata.2015.05.008]
[98]
Liu, C.; Zhang, C.; Liu, K.; Wang, Y.; Fan, G.; Sun, S.; Xu, J.; Zhu, Y.; Li, Y. Aqueous-phase hydrogenolysis of glucose to value-added chemicals and biofuels: A comparative study of active metals. Biomass Bioenergy, 2015, 72, 189-199.
[http://dx.doi.org/10.1016/j.biombioe.2014.11.005]
[99]
Liu, C.; Zhang, C.; Sun, S.; Liu, K.; Hao, S.; Xu, J.; Zhu, Y.; Li, Y. Effect of WOx on Bifunctional Pd–WOx/Al2O3 catalysts for the selective hydrogenolysis of glucose to 1, 2-propanediol. ACS Catal., 2015, 5(8), 4612-4623.
[http://dx.doi.org/10.1021/acscatal.5b00800]
[100]
Liu, C.; Zhang, C.; Hao, S.; Sun, S.; Liu, K.; Jian, X.; Zhu, Y.; Li, Y. WOx modified Cu/Al2O3 as a high-performance catalyst for the hydrogenolysis of glucose to 1,2-propanediol. Catal. Today, 2016, 261, 116-127.
[http://dx.doi.org/10.1016/j.cattod.2015.06.030]
[101]
Zhou, Z.; Zhang, J.; Qin, J.; Li, D.; Wu, W. Ordered mesoporous NiCeAl containing catalysts for hydrogenolysis of sorbitol to glycols. Russ. J. Phys. Chem. A, 2018, 92(3), 456-465.
[http://dx.doi.org/10.1134/S0036024418030378]
[102]
Zhang, Q.; Jiang, T.; Li, B.; Wang, T.; Zhang, X.; Zhang, Q.; Ma, L. Highly selective sorbitol hydrogenolysis to liquid alkanes over Ni/HZSM-5 catalysts modified with pure silica MCM-41. ChemCatChem, 2012, 4(8), 1084-1087.
[http://dx.doi.org/10.1002/cctc.201100508]
[103]
Hoffer, B.W.; Crezee, E.; Devred, F.; Mooijman, P.R.M.; Sloof, W.G.; Kooyman, P.J.; Langeveld, A.D.V.; Kapteijn, F.; Moulijn, J.A. The role of the active phase of Raney-type Ni catalysts in the selective hydrogenation of d-glucose to d-sorbitol. Appl. Catal., 2003, 253(2), 437-452.
[http://dx.doi.org/10.1016/S0926-860X(03)00553-2]
[104]
Guo, X.; Guan, J.; Li, B.; Wang, X.; Mu, X.; Liu, H. Conversion of biomass-derived sorbitol to glycols over carbon-materials supported Ru-based catalysts. Sci. Rep., 2015, 5, 16451.
[http://dx.doi.org/10.1038/srep16451] [PMID: 26578426]
[105]
Ye, L.; Duan, X.; Lin, H.; Yuan, Y. Improved performance of magnetically recoverable Ce-promoted Ni/AlO catalysts for aqueous-phase hydrogenolysis of sorbitol to glycols. Catal. Today, 2005, 98(4), 65-71.
[106]
Du, W.; Zheng, L.; Li, X.; Fu, J.; Lu, X.; Hou, Z. Plate-like Ni–Mg–Al layered double hydroxide synthesized via a solvent-free approach and its application in hydrogenolysis of D-sorbitol. Appl. Clay Sci., 2016, 123, 166-172.
[http://dx.doi.org/10.1016/j.clay.2016.01.032]
[107]
Du, W.C.; Zheng, L.P.; Shi, J.J.; Xia, S.X.; Hou, Z.Y. Production of C2 and C3 polyols from d-sorbitol over hydrotalcite-like compounds mediated bi-functional Ni–Mg–Al–Ox catalysts. Fuel Process. Technol., 2015, 139, 86-90.
[http://dx.doi.org/10.1016/j.fuproc.2015.08.008]
[108]
Dong, L.; Liu, C.; Deng, S.; Zhu, Y.; Lv, C. Aqueous phase hydrogenolysis of glucose to 1, 2-propanediol over copper catalysts supported by sulfated spherical carbon. Catal. Commun., 2014, 54, 108-113.
[http://dx.doi.org/10.1016/j.catcom.2014.05.027]
[109]
Zhou, J.H.; Zhang, M.G.; Zhao, L.; Li, P.; Zhou, X.G.; Yuan, W.K. Carbon nanofiber/graphite-felt composite supported Ru catalysts for hydrogenolysis of sorbitol. Catal. Today, 2009, 147(9), 225-229.
[http://dx.doi.org/10.1016/j.cattod.2009.07.057]
[110]
Zhao, L.; Zhou, J.H.; Sui, Z.J.; Zhou, X.G. Hydrogenolysis of sorbitol to glycols over carbon nanofiber supported ruthenium catalyst. Chem. Eng. Sci., 2010, 65(1), 30-35.
[http://dx.doi.org/10.1016/j.ces.2009.03.026]
[111]
Zhang, J.; Fang, L.; Yu, W.; Rui, L.; Jie, X. Effects of alkaline additives on the formation of lactic acid in sorbitol hydrogenolysis over Ni/C catalyst. Chin. J. Catal., 2016, 37(1), 177-183.
[http://dx.doi.org/10.1016/S1872-2067(15)60976-7]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 20
Year: 2019
Page: [2180 - 2189]
Pages: 10
DOI: 10.2174/1385272823666190913185618
Price: $58

Article Metrics

PDF: 24
HTML: 4