Spectrometric, Thermodynamic, pH Metric and Viscometric Studies on the Binding of TEALS as Surfactant with Albumin as Biopolymer

Author(s): Shveta Acharya, Arun Kumar Sharma*

Journal Name: Current Physical Chemistry

Volume 10 , Issue 1 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Since the interactions of small anions with protein are very important in their transportation and distribution processes in biological systems, it is helpful to study these interactions to understand the nature of the transportation and distribution processes. Therefore, it is aimed to study the interaction of albumin with surfactant molecule by different physical methods.

Objective: Present work attempts to work on assessing the structure, characterization of the surfactants as TEALS (tri-ethanalamine lauryl sulphate) binding sites, with albumin involved in various process of living being are discussed.

Methods: The binding of surfactant TEALS to egg protein has been studied at different pH values and temperatures by spectrophotometric and equilibrium dialysis methods. The binding data were found to be pH and temperature dependent. The binding data studied by the absorbance method, were found approximately identical with those obtained from the equilibrium dialysis method.

Results: The association constants and the number of binding sites were calculated from Scatchard plots and found to be at maximum at lower pH and at lower temperature. The free energy of the combining sites was lowest at higher pH and highest at low pH. Therefore, a lower temperature and a lower pH offered more sites in the protein molecule for interaction with surfactant. The ΔG (free energies of aggregation) associated with the binding interaction of the surfactants and protein were calculated. The negative values of the ΔG confirm the feasibility of interaction between the surfactant and protein. All the observations recorded in this paper indicate that the TEALS has a good affinity of binding with egg protein and the number of binding sites is dependent on various physical and chemical factors.

Conclusion: On the basis of the results of the experiments which were conducted to examine the interaction between anionic surfactant and protein by measuring the various parameters of the solutions, it is concluded that the interaction of surfactant and protein gives an idea of fundamental understanding of the structure of surfactant-protein complex and their practical applications in every field.

Keywords: Egg-protein, equilibrium dialysis, gibbs free energy, scatchard plots, surfactants, TEALS, albumin, biopolymer.

Lyons, T.J.; Eide, D.J. Transport and storage of metal ions in biology in Biological Inorganic Chemistry. Structure and Reactivity, 2007, 57, 77.
Acharya, S.; Sharma, A.K. Binding studies of metal ions and dyes with biopolymers; LAP LAMBERT Academic Publisher: Germany, 2018.
Harding, M.M. The geometry of metal-ligand interactions relevant to proteins. Acta Crystallogr. D Biol. Crystallogr., 1999, 55(Pt 8), 1432-1443.
[http://dx.doi.org/10.1107/S0907444999007374] [PMID: 10417412]
Tank, P.; Sharma, R.; Sharma, A.K. Micellar features and various interactions of copper soap complexes derived from edible mustard oil in benzene at 303.15 K. Curr. Phys. Chem., 2018, 8, 46-57.
Joshi, T. Interaction of bile salts with cetylpyridinium chloride: Surface tension and viscosity measurements. Curr. Phys. Chem., 2018, 8, 86-94.
Kumar, D.; Azum, N.; Rub, M.A.; Asiri, A. Aggregation behavior of sodium salt of ibuprofen with conventional and gemini surfactant. J. Mol. Liq., 2018, 262, 86-96.
Kumar, D.; Rub, M.A. Interaction of ninhydrin with chromium-glycylglycine complex in the presence of dimeric gemini surfactants. J. Mol. Liq., 2018, 250, 329-334.
Hawker, R.R.; Haines, R.S.; Harper, J.B. Predicting solvent effects in ionic liquids: Extension of a nucleophilic aromatic substitution reaction on a benzene to a pyridine. J. Phys. Org. Chem., 2018, 31e3730
Sharma, A.K.; Acharya, S. The interaction and thermodynamic studies on the binding of congo red dye with collagen protein by polarographic and equilibrium dialysis techniques. Z. Phys. Chem., 2018, 233(5), 691-701.
Petitpas, I.; Petersen, C.E.; Ha, C.E.; Bhattacharya, A.A.; Zunszain, P.A.; Ghuman, J.; Bhagavan, N.V.; Curry, S. Structural basis of albumin-thyroxine interactions and familial dysalbuminemic hyperthyroxinemia. Proc. Natl. Acad. Sci. USA, 2003, 100(11), 6440-6445.
[http://dx.doi.org/10.1073/pnas.1137188100] [PMID: 12743361]
Bal, W.; Sokołowska, M.; Kurowska, E.; Faller, P. Binding of transition metal ions to albumin: Sites, affinities and rates. Biochim. Biophys. Acta, 2013, 1830(12), 5444-5455.
[http://dx.doi.org/10.1016/j.bbagen.2013.06.018] [PMID: 23811338]
Stern, B.R.; Solioz, M.; Krewski, D.; Aggett, P.; Aw, T.C.; Baker, S.; Crump, K.; Dourson, M.; Haber, L.; Hertzberg, R.; Keen, C.; Meek, B.; Rudenko, L.; Schoeny, R.; Slob, W.; Starr, T. Copper and human health: Biochemistry, genetics, and strategies for modeling dose-response relationships. J. Toxicol. Environ. Health B Crit. Rev., 2007, 10(3), 157-222.
[http://dx.doi.org/10.1080/10937400600755911] [PMID: 17454552]
Stewart, A.J.; Blindauer, C.A.; Berezenko, S.; Sleep, D.; Sadler, P.J. Interdomain zinc site on human albumin. Proc. Natl. Acad. Sci. USA, 2003, 100(7), 3701-3706.
[http://dx.doi.org/10.1073/pnas.0436576100] [PMID: 12598656]
Blindauer, C.A.; Harvey, I.; Bunyan, K.E.; Stewart, A.J.; Sleep, D.; Harrison, D.J.; Berezenko, S.; Sadler, P.J. Structure, properties, and engineering of the major zinc binding site on human albumin. J. Biol. Chem., 2009, 284(34), 23116-23124.
[http://dx.doi.org/10.1074/jbc.M109.003459] [PMID: 19520864]
Laitaoja, M.; Valjakka, J.; Jänis, J. Zinc coordination spheres in protein structures. Inorg. Chem., 2013, 52(19), 10983-10991.
[http://dx.doi.org/10.1021/ic401072d] [PMID: 24059258]
Acharya, S.; Sharma, A.K. The thermodynamic and pH metric studies on the binding of Hg+2 and Mo+2 with RNA by polarographic and spectrometric techniques. Curr. Phys. Chem., 2018, 8(3), 186-193.
Espósito, B.P.; Najjar, R. Interactions of antitumoral platinum-group metallodrugs with albumin. Coord. Chem. Rev., 2002, 232(1), 137-149.
Barnett, J.P.; Blindauer, C.A.; Kassaar, O.; Khazaipoul, S.; Martin, E.M.; Sadler, P.J.; Stewart, A.J. Allosteric modulation of zinc speciation by fatty acids. Biochim. Biophys. Acta -. General Subjects, 2013, 1830(12), 5456-5464.
Sendzik, M.; Pushie, M.J.; Stefaniak, E.; Haas, K.L. The Structure and Affinity of Cu. Structure and Affinity of Cu(I) Bound to Human Serum Albumin. Inorg. Chem., 2017, 56(24), 15057-15065.
[http://dx.doi.org/10.1021/acs.inorgchem.7b02397] [PMID: 29166002]
Arora, J.P.S.; Singh, R.P.; Soam, S.; Singh, S.P.; Kumar, R. The interaction between bovine serum albumin and the molybdate ions. Bioelectrochem. Bioenerg., 1983, 10, 441-450.
Arora, J.P.S.; Singh, R.P.; Soam, S.; Singh, S.P.; Kumar, R. Binding of oxovanadium(V) anion to bovine serum albumin, human serum albumin and bovine pancreatic trypsin. Bioelectrochem. Bioenerg., 1983, 10, 289-300.
Harris, W.R.; Carrano, C.J. Binding of vanadate to human serum transferrin. J. Inorg. Biochem., 1984, 22(3), 201-218.
[http://dx.doi.org/10.1016/0162-0134(84)80029-X] [PMID: 6569067]
Dudev, T.; Lin, Y.L.; Dudev, M.; Lim, C. First-second shell interactions in metal binding sites in proteins: a PDB survey and DFT/CDM calculations. J. Am. Chem. Soc., 2003, 125(10), 3168-3180.
[http://dx.doi.org/10.1021/ja0209722] [PMID: 12617685]
Harding, M.M. The architecture of metal coordination groups in proteins. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(Pt 5), 849-859.
[http://dx.doi.org/10.1107/S0907444904004081] [PMID: 15103130]
Acharya, S.; Sharma, A.K. The thermodynamic and pH metric binding studies of Cu+2 ions with egg protein by Spectrometric and diffusion current techniques. Z. Phys. Chem., In Press
Lu, J.; Stewart, A.J.; Sadler, P.J.; Pinheiro, T.J.T.; Blindauer, C.A. Albumin as a zinc carrier: Properties of its high-affinity zinc-binding site. Biochem. Soc. Trans., 2008, 36(Pt 6), 1317-1321.
[http://dx.doi.org/10.1042/BST0361317] [PMID: 19021548]
Frassinetti, S.; Bronzetti, G.; Caltavuturo, L.; Cini, M.; Croce, C.D. The role of zinc in life: a review. J. Environ. Pathol. Toxicol. Oncol., 2006, 25(3), 597-610.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v25.i3.40] [PMID: 17073562]
Keilin, D.; Mann, T. Carbonic anhydrase. Purification and nature of the enzyme. Biochem. J., 1940, 34(8-9), 1163-1176.
[http://dx.doi.org/10.1042/bj0341163] [PMID: 16747299]
Zheng, H.; Chruszcz, M.; Lasota, P.; Lebioda, L.; Minor, W. Data mining of metal ion environments present in protein structures. J. Inorg. Biochem., 2008, 102(9), 1765-1776.
[http://dx.doi.org/10.1016/j.jinorgbio.2008.05.006] [PMID: 18614239]
Acharya, S.; Sharma, A.K. The thermodynamic and binding studies of Hg+2 ions with egg protein by polarographic and pH metric techniques. Z. Phys. Chem., 2019, 233(8), 1073-1090.
Carter, D.C.; Ho, J.X. Structure of serum albumin. Adv. Protein Chem., 1994, 45, 153-203.
[http://dx.doi.org/10.1016/S0065-3233(08)60640-3] [PMID: 8154369]
He, X.M.; Carter, D.C. Atomic structure and chemistry of human serum albumin. Nature, 1992, 358(6383), 209-215.
[http://dx.doi.org/10.1038/358209a0] [PMID: 1630489]
Sudlow, G.; Birkett, D.J.; Wade, D.N. The characterization of two specific drug binding sites on human serum albumin. Mol. Pharmacol., 1975, 11(6), 824-832.
[PMID: 1207674]
Fasano, M.; Curry, S.; Terreno, E.; Galliano, M.; Fanali, G.; Narciso, P.; Notari, S.; Ascenzi, P. The extraordinary ligand binding properties of human serum albumin. IUBMB Life, 2005, 57(12), 787-796.
[http://dx.doi.org/10.1080/15216540500404093] [PMID: 16393781]
Haraguchi, H. Metallomics as integrated biometal science. J. Anal. At. Spectrom., 2004, 19, 5-14.
Kleywegt, G.J. Validation of protein crystal structures. Acta Crystallogr. D Biol. Crystallogr., 2000, 56(Pt 3), 249-265.
[http://dx.doi.org/10.1107/S0907444999016364] [PMID: 10713511]
Szpunar, J. Metallomics: a new frontier in analytical chemistry. Anal. Bioanal. Chem., 2004, 378(1), 54-56.
[http://dx.doi.org/10.1007/s00216-003-2333-z] [PMID: 14614587]
Paulsen, I.T.; Saier, M.H. Jr A novel family of ubiquitous heavy metal ion transport proteins. J. Membr. Biol., 1997, 156(2), 99-103.
[http://dx.doi.org/10.1007/s002329900192] [PMID: 9075641]
Huang, L.; Tepaamorndech, S. The SLC30 family of zinc transporters. A review of current understanding of their biological and pathophysiological roles. Mol. Aspects Med., 2013, 34(2-3), 548-560.
[http://dx.doi.org/10.1016/j.mam.2012.05.008] [PMID: 23506888]
Harding, M.M. The geometry of metal-ligand interactions relevant to proteins. II. Angles at the metal atom, additional weak metal-donor interactions. Acta Crystallogr. D Biol. Crystallogr., 2000, 56(Pt 7), 857-867.
[http://dx.doi.org/10.1107/S0907444900005849] [PMID: 10930832]
Acharya, S.; Sharma, A.K. Interaction studies of metals and surfactant with protein; LAP LAMBERT Academic Publisher: Germany, 2018.
Drabovich, A.P.; Pavlou, M.P.; Batruch, I.; Diamandis, E.P. Proteomic and mass spectrometry technologies for biomarker discovery. In: Proteomic and metabolomics approaches to biomarker discovery; Issaq, H.J.; Veenstra, T.D., Eds.; Elsevier: London, UK, 2013; pp. 8-39.
Van, Q.N. Current NMR strategies for biomarker discovery. In: Proteomic and metabolomic approaches to biomarker discovery; Issaq, H.J.; Veenstra, T.D., Eds.; Elsevier: London, UK, 2013; pp. 88-119.
Lu, Y. Metalloprotein and metallo-DNA/RNAzyme design: Current approaches, success measures, and future challenges. Inorg. Chem., 2006, 45(25), 9930-9940.
[http://dx.doi.org/10.1021/ic052007t] [PMID: 17140190]
Gongke, W.; Wen, T.; Xiaoxiao, H.; Changling, Y.; Yan, L. Binding mechanism of halide ions to bovine serum albumin and hemoglobin: Investigated by ion selective-electrode. J. Biophys. Chem., 2011, 2(3), 194-201.

open access plus

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 29 January, 2020
Page: [47 - 64]
Pages: 18
DOI: 10.2174/1877946809666190913182152

Article Metrics

PDF: 13