New Advances of Heparanase in Human Diseases

Author(s): Hao Jin, Min Cui*

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 20 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Objective: This mini-review aims to discuss research works about heparanase published in 2016, 2017, 2018 and 2019 and provide a direction for therapy methods targeting heparanase.

Patients and Methods: The relevant data were searched by using keywords “heparanase” “function”, “diseases” and “inhibitors” in “PubMed”, “Web of Science” and “China Knowledge Resource Integrated databases (CNKI)”, and a hand-search was done to acquire peer-reviewed articles and reports about heparanase.

Results: Except for tumor progression, pathological processes including procoagulant activities, preeclamptic placentas, inflammation and so on are all verified to be associated with heparanase activity. Also, these newly-found functions are closely related to certain cellular activities, including epithelial to Mesenchymal Transition (EMT).

Conclusion: It could be concluded that heparanase would be a potential and valuable therapy target.

Keywords: Heparanase, function, diseases, inhibitors, Epithelial to Mesenchymal Transition (EMT), Heparan Sulfate (HS).

[1]
Jin, H.; Zhou, S. The functions of heparanase in human diseases. Mini Rev. Med. Chem., 2017, 17(6), 541-548.
[http://dx.doi.org/10.2174/1389557516666161101143643] [PMID: 27804885]
[2]
Brabletz, T.; Kalluri, R.; Nieto, M.A.; Weinberg, R.A. EMT in cancer. Nat. Rev. Cancer, 2018, 18(2), 128-134.
[http://dx.doi.org/10.1038/nrc.2017.118] [PMID: 29326430]
[3]
Masola, V.; Granata, S.; Bellin, G.; Gambaro, G.; Onisto, M.; Rugiu, C.; Lupo, A.; Zaza, G. Specific heparanase inhibition reverses glucose-induced mesothelial-to-mesenchymal transition. Nephrol. Dial. Transplant., 2017, 32(7), 1145-1154.
[http://dx.doi.org/10.1093/ndt/gfw403] [PMID: 28064160]
[4]
Shah, S.; Fourgeaud, C. Derieux, Mirshahi S, Soria J, Contant G, Pimi C, Lo Dico R, Eveno C, Ullah M, Kaci R, Pocard M, Mirshahi M. 611A – The close relationship between heparanase and epithelial mesenchymal transition related fibrosis in gastric signet-ring cell adenocarcinoma. Eur. J. Cancer, 2017, 72, S79-S79.
[http://dx.doi.org/10.1016/S0959-8049(17)30338-6]
[5]
Vlodavsky, I.; Ilan, N.; Nadir, Y.; Brenner, B.; Katz, B.Z.; Naggi, A.; Torri, G.; Casu, B.; Sasisekharan, R. Heparanase, heparin and the coagulation system in cancer progression. Thromb. Res., 2007, 120(Suppl. 2), S112-S120.
[http://dx.doi.org/10.1016/S0049-3848(07)70139-1] [PMID: 18023704]
[6]
Crispel, Y.; Ghanem, S.; Attias, J.; Kogan, I.; Brenner, B.; Nadir, Y. Involvement of the heparanase procoagulant domain in bleeding and wound healing. J. Thromb. Haemost., 2017, 15(7), 1463-1472.
[http://dx.doi.org/10.1111/jth.13707] [PMID: 28439967]
[7]
Bayam, E.; Kalcik, M.; Yesin, M.; Gunduz, S.; Gursoy, M.O.; Karakoyun, S.; Cersit, S.; Gurbuz, A.S.; Efe, S.C.; Yaman, A.; Guner, A.; Kalkan, S.; Ozkan, M. P5425 Relationship between heparanase levels and prosthetic valve thrombosis: Clinical implications. Eur. Heart J., 2017, 38, 1151-1152.
[http://dx.doi.org/10.1093/eurheartj/ehx493.P5425]
[8]
Matan, M.; King, D.; Peled, E.; Ackerman, S.; Bar-Lavi, Y.; Brenner, B.; Nadir, Y. Heparanase level and procoagulant activity are reduced in severe sepsis. Eur. J. Haematol., 2018, 100(2), 182-188.
[http://dx.doi.org/10.1111/ejh.12997] [PMID: 29120525]
[9]
Barbosa, G.O.; Cervigne, N.K.; Carvalho, H.F.; Augusto, T.M. Heparanase 1 involvement in prostate physiopathology. Cell Biol. Int., 2017, 41(11), 1194-1202.
[http://dx.doi.org/10.1002/cbin.10748] [PMID: 28206697]
[10]
Goldberg, R.; Sonnenblick, A.; Hermano, E.; Hamburger, T.; Meirovitz, A.; Peretz, T.; Elkin, M. Heparanase augments insulin receptor signaling in breast carcinoma. Oncotarget, 2017, 8(12), 19403-19412.
[http://dx.doi.org/10.18632/oncotarget.14292] [PMID: 28038446]
[11]
Vornicova, O.; Naroditsky, I.; Boyango, I.; Shachar, S.S.; Mashiach, T.; Ilan, N.; Vlodavsky, I.; Bar-Sela, G. Prognostic significance of heparanase expression in primary and metastatic breast carcinoma. Oncotarget, 2017, 9(5), 6238-6244.
[PMID: 29464068]
[12]
Sun, X.; Zhang, G.; Nian, J.; Yu, M.; Chen, S.; Zhang, Y.; Yang, G.; Yang, L.; Cheng, P.; Yan, C.; Ma, Y.; Meng, H.; Wang, X.; Li, J.P. Elevated heparanase expression is associated with poor prognosis in breast cancer: A study based on systematic review and TCGA data. Oncotarget, 2017, 8(26), 43521-43535.
[http://dx.doi.org/10.18632/oncotarget.16575] [PMID: 28388549]
[13]
Spyrou, A.; Kundu, S.; Haseeb, L.; Yu, D.; Olofsson, T.; Dredge, K.; Hammond, E.; Barash, U.; Vlodavsky, I.; Forsberg-Nilsson, K. Inhibition of heparanase in pediatric brain tumor cells attenuates their proliferation, invasive capacity, and in vivo tumor growth. Mol. Cancer Ther., 2017, 16(8), 1705-1716.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0900] [PMID: 28716813]
[14]
Barash, U.; Lapidot, M.; Zohar, Y.; Loomis, C.; Moreira, A.; Feld, S.; Goparaju, C.; Yang, H.; Hammond, E.; Zhang, G.; Li, J.P.; Ilan, N.; Nagler, A.; Pass, H.I.; Vlodavsky, I. Involvement of heparanase in the pathogenesis of mesothelioma: Basic aspects and clinical applications. J. Natl. Cancer Inst., 2018, 110(10), 1102-1114.
[http://dx.doi.org/10.1093/jnci/djy032] [PMID: 29579286]
[15]
Yang, S.; Liao, Y.; Zhao, Q.; Xie, Y.; Zheng, A.; Wan, H. Heparanase is a critical regulator of mitotic spindles required for maintaining chromosome stability. DNA Cell Biol., 2018, 37(4), 291-297.
[http://dx.doi.org/10.1089/dna.2017.3990] [PMID: 29431512]
[16]
Wei, R.R.; Sun, D.N.; Yang, H.; Yan, J.; Zhang, X.; Zheng, X.L.; Fu, X.H.; Geng, M.Y.; Huang, X.; Ding, J. CTC clusters induced by heparanase enhance breast cancer metastasis. Acta Pharmacol. Sin., 2018, 39(8), 1326-1337.
[http://dx.doi.org/10.1038/aps.2017.189] [PMID: 29417941]
[17]
Putz, E.M.; Mayfosh, A.J.; Kos, K.; Barkauskas, D.S.; Nakamura, K.; Town, L.; Goodall, K.J.; Yee, D.Y.; Poon, I.K.; Baschuk, N.; Souza-Fonseca-Guimaraes, F.; Hulett, M.D.; Smyth, M.J. NK cell heparanase controls tumor invasion and immune surveillance. J. Clin. Invest., 2017, 127(7), 2777-2788.
[http://dx.doi.org/10.1172/JCI92958] [PMID: 28581441]
[18]
Martin, L.; Chen, J.M.; Zechendorf, E.; Chiazza, F.; Oggero, S.; Collino, M.; Marx, G.; Schuerholz, T.; Thiemermann, C. Role of the beta-D-endoglucuronidase heparanase in septic cardiomyopathy. Shock, 2017, 47, 129-129.
[19]
Lv, Q.; Wu, K.; Liu, F.; Wu, W.; Chen, Y.; Zhang, W. Interleukin-17A and heparanase promote angiogenesis and cell proliferation and invasion in cervical cancer. Int. J. Oncol., 2018, 53(4), 1809-1817.
[http://dx.doi.org/10.3892/ijo.2018.4503] [PMID: 30066843]
[20]
García, B.; García-Suárez, O.; Merayo-Lloves, J.; Ferrara, G.; Alcalde, I.; González, J.; Lisa, C.; Alfonso, J.F.; Vazquez, F.; Quirós, L.M. Heparanase overexpresses in keratoconic cornea and tears depending on the pathologic grade. Dis. Markers, 2017, 20173502386
[http://dx.doi.org/10.1155/2017/3502386] [PMID: 29379222]
[21]
Changyaleket, B.; Chong, Z.Z.; Dull, R.O.; Nanegrungsunk, D.; Xu, H. Heparanase promotes neuroinflammatory response during subarachnoid hemorrhage in rats. J. Neuroinflammation, 2017, 14(1), 137.
[http://dx.doi.org/10.1186/s12974-017-0912-8] [PMID: 28720149]
[22]
Hambruch, N.; Kumstel, S.; Haeger, J.D.; Pfarrer, C. Bovine placentomal heparanase and syndecan expression is related to placental maturation. Placenta, 2017, 57, 42-51.
[http://dx.doi.org/10.1016/j.placenta.2017.06.006] [PMID: 28864018]
[23]
Mu, Y.Q.; Wang, J.; Liu, R.H.; Qi, C.X.; Xi, G.P.; Zhao, F.X.; Zhu, Z.Y. Expression of heparanase in the spontaneously aborted human chorionic villus. Clin. Exp. Obstet. Gynecol., 2018, 45, 174-177.
[24]
Szymczak, M.; Kuźniar, J.; Kopeć, W.; Żabińska, M.; Marchewka, Z.; Kościelska-Kasprzak, K.; Klinger, M. Increased granulocyte heparanase activity in neutrophils from patients with lupus nephritis and idiopathic membranous nephropathy. Arch. Immunol. Ther. Exp. (Warsz.), 2017, 65(1), 83-91.
[http://dx.doi.org/10.1007/s00005-016-0396-8] [PMID: 27091112]
[25]
Abassi, Z.; Hamoud, S.; Hassan, A.; Khamaysi, I.; Nativ, O.; Heyman, S.N.; Muhammad, R.S.; Ilan, N.; Singh, P.; Hammond, E.; Zaza, G.; Lupo, A.; Onisto, M.; Bellin, G.; Masola, V.; Vlodavsky, I.; Gambaro, G. Involvement of heparanase in the pathogenesis of acute kidney injury: Nephroprotective effect of PG545. Oncotarget, 2017, 8(21), 34191-34204.
[http://dx.doi.org/10.18632/oncotarget.16573] [PMID: 28388547]
[26]
Valentina, M.; Simona, G.; Giovanni, G.; Antonio, L.; Gianluigi, Z. SP059 heparanase a key regulator of the chronic profibrotic kidney damage following ischemia/reperfusion injury. Nephrol. Dial. Transplant., 2018, 33, i365-i365.
[http://dx.doi.org/10.1093/ndt/gfy104.SP059]
[27]
Thakkar, N.; Yadavalli, T.; Jaishankar, D.; Shukla, D. Emerging roles of heparanase in viral pathogenesis. Pathogens, 2017, 6(3), 1-12.
[http://dx.doi.org/10.3390/pathogens6030043] [PMID: 28927006]
[28]
Agelidis, A.M.; Hadigal, S.R.; Jaishankar, D.; Shukla, D. Viral activation of heparanase drives pathogenesis of herpes simplex virus-1. Cell Rep., 2017, 20(2), 439-450.
[http://dx.doi.org/10.1016/j.celrep.2017.06.041] [PMID: 28700944]
[29]
Secchi, M.F.; Crescenzi, M.; Masola, V.; Russo, F.P.; Floreani, A.; Onisto, M. Heparanase and macrophage interplay in the onset of liver fibrosis. Sci. Rep., 2017, 7(1), 14956.
[http://dx.doi.org/10.1038/s41598-017-14946-0] [PMID: 29097791]
[30]
Khanna, M.; Ranasinghe, C.; Browne, A.M.; Li, J.P.; Vlodavsky, I.; Parish, C.R. Is host heparanase required for the rapid spread of heparan sulfate binding viruses? Virology, 2019, 529(1), 1-6.
[http://dx.doi.org/10.1016/j.virol.2019.01.001] [PMID: 30622027]
[31]
Xiong, A.; Kundu, S.; Forsberg, M.; Xiong, Y.; Bergström, T.; Paavilainen, T.; Kjellén, L.; Li, J.P.; Forsberg-Nilsson, K. Heparanase confers a growth advantage to differentiating murine embryonic stem cells, and enhances oligodendrocyte formation. Matrix Biol., 2017, 62, 92-104.
[http://dx.doi.org/10.1016/j.matbio.2016.11.007] [PMID: 27890389]
[32]
García, B.; Martín, C.; García-Suárez, O.; Muñiz-Alonso, B.; Ordiales, H.; Fernández-Menéndez, S.; Santos-Juanes, J.; Lorente-Gea, L.; Castañón, S.; Vicente-Etxenausia, I.; Piña Batista, K.M.; Ruiz-Díaz, I.; Caballero-Martínez, M.C.; Merayo-Lloves, J.; Guerra-Merino, I.; Quirós, L.M.; Fernández-Vega, I. Upregulated expression of heparanase and heparanase 2 in the brains of Alzheimer’s disease. J. Alzheimers Dis., 2017, 58(1), 185-192.
[http://dx.doi.org/10.3233/JAD-161298] [PMID: 28387673]
[33]
Changyaleket, B.; Deliu, Z.; Chignalia, A.Z.; Feinstein, D.L. Heparanase: Potential roles in multiple sclerosis. J. Neuroimmunol., 2017, 310, 72-81.
[http://dx.doi.org/10.1016/j.jneuroim.2017.07.001] [PMID: 28778449]
[34]
Whitehead, M.J.; McGonigal, R.; Willison, H.J.; Barnett, S.C. Heparanase attenuates axon degeneration following sciatic nerve transection. Sci. Rep., 2018, 8(1), 5219.
[http://dx.doi.org/10.1038/s41598-018-23070-6] [PMID: 29581478]
[35]
Barbosa, G.O.; Bruni-Cardoso, A.; da Silva Pinhal, M.A.; Augusto, T.M.; Carvalho, H.F. Heparanase-1 activity and the early postnatal prostate development. Dev. Dyn., 2019, 248(3), 211-220.
[http://dx.doi.org/10.1002/dvdy.12] [PMID: 30653275]
[36]
Aldi, S.; Eriksson, L.; Kronqvist, M.; Lengquist, M.; Löfling, M.; Folkersen, L.; Matic, L.P.; Maegdefessel, L.; Grinnemo, K.H.; Li, J.P.; Österholm, C.; Hedin, U. Dual roles of heparanase in human carotid plaque calcification. Atherosclerosis, 2019, 283, 127-136.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.12.027] [PMID: 30665614]
[37]
Sistla, J.C.; Morla, S.; Alabbas, A.B.; Kalathur, R.C.; Sharon, C.; Patel, B.B.; Desai, U.R. Polymeric fluorescent heparin as one-step FRET substrate of human heparanase. Carbohydr. Polym., 2019, 205(1), 385-391.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.071] [PMID: 30446119]
[38]
Rondanin, R.; Fochi, S.; Baruchello, R.; Bernardi, T.; Oliva, P.; Semeraro, F.; Simoni, D.; Giannini, G. Arylamidonaphtalene sulfonate compounds as a novel class of heparanase inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(18), 4421-4425.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.013] [PMID: 28811133]
[39]
Li, Y.; Zheng, F.; Xiao, X.; Xie, F.; Tao, D.; Huang, C.; Liu, D.; Wang, M.; Wang, L.; Zeng, F.; Jiang, G. CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO Rep., 2017, 18(9), 1646-1659.
[http://dx.doi.org/10.15252/embr.201643581] [PMID: 28794202]
[40]
Dai, X.; Yan, J.; Fu, X.; Pan, Q.; Sun, D.; Xu, Y.; Wang, J.; Nie, L.; Tong, L.; Shen, A.; Zheng, M.; Huang, M.; Tan, M.; Liu, H.; Huang, X.; Ding, J.; Geng, M. Aspirin inhibits cancer metastasis and angiogenesis via targeting heparanase. Clin. Cancer Res., 2017, 23(20), 6267-6278.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0242] [PMID: 28710312]
[41]
Loka, R.S.; Yu, F.; Sletten, E.T.; Nguyen, H.M. Design, synthesis, and evaluation of heparan sulfate mimicking glycopolymers for inhibiting heparanase activity. Chem. Commun. (Camb.), 2017, 53(65), 9163-9166.
[http://dx.doi.org/10.1039/C7CC04156J] [PMID: 28766595]
[42]
Poupard, N.; Badarou, P.; Fasani, F.; Groult, H.; Bridiau, N.; Sannier, F.; Bordenave-Juchereau, S.; Kieda, C.; Piot, J.M.; Grillon, C.; Fruitier-Arnaudin, I.; Maugard, T. Assessment of heparanase-mediated angiogenesis using microvascular endothelial cells: Identification of λ-carrageenan derivative as a potent anti angiogenic agent. Mar. Drugs, 2017, 15(5), 284-298.
[http://dx.doi.org/10.3390/md15050134] [PMID: 28486399]
[43]
Guo, C.; Zhu, Z.; Wang, X.; Chen, Y.; Liu, X. Pyrithione inhibits porcine reproductive and respiratory syndrome virus replication through interfering with NF-κB and heparanase. Vet. Microbiol., 2017, 201, 231-239.
[http://dx.doi.org/10.1016/j.vetmic.2017.01.033] [PMID: 28284615]
[44]
Baburajeev, C.P.; Mohan, C.D.; Rangappa, S.; Mason, D.J.; Fuchs, J.E.; Bender, A.; Barash, U.; Vlodavsky, I. Basappa, Rangappa KS. Identification of novel class of triazolo-thiadiazoles as potent inhibitors of human heparanase and their anticancer activity. BMC Cancer, 2017, 17, 1-14.
[http://dx.doi.org/10.1186/s12885-017-3214-8]
[45]
Lou, C.; Zhu, Z.; Zhao, Y.; Zhu, R.; Zhao, H. Arctigenin, a lignan from Arctium lappa L., inhibits metastasis of human breast cancer cells through the downregulation of MMP-2/-9 and heparanase in MDA-MB-231 cells. Oncol. Rep., 2017, 37(1), 179-184.
[http://dx.doi.org/10.3892/or.2016.5269] [PMID: 27878294]
[46]
Rossini, A.; Zunino, F.; Ruggiero, G.; De Cesare, M.; Cominetti, D.; Tortoreto, M.; Lanzi, C.; Cassinelli, G.; Zappasodi, R.; Tripodo, C.; Gulino, A.; Zaffaroni, N.; Di Nicola, M. Microenvironment modulation and enhancement of antilymphoma therapy by the heparanase inhibitor roneparstat. Hematol. Oncol., 2018, 36(1), 360-362.
[http://dx.doi.org/10.1002/hon.2466] [PMID: 28730742]
[47]
Lang, T.Q.; Ran, W.; Dong, X.Y.; Zheng, Z.; Liu, Y.; Yin, Q.; Li, Y.P. Tumor cells-selective bionic nanodevice exploiting heparanase combats metastatic breast cancer. Adv. Funct. Mater., 2018, 28, 1-9.
[http://dx.doi.org/10.1002/adfm.201707289]
[48]
Loka, R.S.; Sletten, E.T.; Barash, U.; Vlodavsky, I.; Nguyen, H.M. Specific inhibition of heparanase by a glycopolymer with well-defined sulfation pattern prevents breast cancer metastasis in mice. ACS Appl. Mater. Interfaces, 2019, 11(1), 244-254.
[http://dx.doi.org/10.1021/acsami.8b17625] [PMID: 30543095]
[49]
Iriyama, S.; Yamanishi, H.; Kunizawa, N.; Hirao, T.; Amano, S. 1-(2-Hydroxyethyl)-2-imidazolidinone, a heparanase and matrix metalloproteinase inhibitor, improves epidermal basement membrane structure and epidermal barrier function. Exp. Dermatol., 2019, 28(3), 247-253.
[http://dx.doi.org/10.1111/exd.13876] [PMID: 30636072]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 2
Year: 2020
Page: [90 - 95]
Pages: 6
DOI: 10.2174/1389557519666190913150959
Price: $65

Article Metrics

PDF: 21
HTML: 4