Cyclodextrin-Based Nanosystems as Drug Carriers for Cancer Therapy

Author(s): Ponnurengam M. Sivakumar, Shohreh Peimanfard, Ali Zarrabi*, Arezoo Khosravi, Matin Islami

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 20 , Issue 11 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background and Objective: Cyclodextrins have been of great interest as excellent candidates for fabricating versatile nano-drug delivery systems due to their commercial availability, easy functionalization, low immunogenicity, biocompatibility and safety. The possibility of reversible inclusion complex formation between cyclodextrins and various guest molecules in association with versatile exclusive properties of cyclodextrins offer a route towards the fabrication of highly sophisticated nanostructures with enormous potential for cancer treatment.

Methods and Results: The current review discusses important recent advances in the fabrication and development of cyclodextrin-based nanostructures for cancer therapy. Firstly, the formation of inclusion complexes between cyclodextrin derivatives and anticancer compounds, as well as their application, are summarized. Secondly, the cyclodextrins -based nanosystems including cyclodextrin-containing polymers, cyclodextrin-based supramolecular necklaces, which consist of polyrotaxanes and polypseudorotaxanes and cyclodextrin based hydrogels accompanied by their applications in cancer treatment are highlighted. In the end, the future perspective of this field is discussed.

Conclusion: Numerous investigations in this area pave the way for the flourishing of the next generation of nano-therapeutics towards enhanced cancer therapy.

Keywords: Cyclodextrin, nanosystem, cancer therapy, drug delivery, polyrotaxane, polypseudorotaxane, hydrogel.

[1]
Bidram, E.; Sulistio, A.; Cho, H.J.; Amini, A.; Harris, T.; Zarrabi, A.; Qiao, G.; Stewart, A.; Dunstan, D.E. Targeted graphene oxide networks: Cytotoxicity and synergy with anticancer agents. ACS Appl. Mater. Interfaces, 2018, 10(50), 43523-43532.
[http://dx.doi.org/10.1021/acsami.8b17531] [PMID: 30495922]
[2]
Islami, M.; Zarrabi, A.; Tada, S.; Kawamoto, M.; Isoshima, T.; Ito, Y. Controlled quercetin release from high-capacity-loading hyperbranched polyglycerol-functionalized graphene oxide. Int. J. Nanomedicine, 2018, 13, 6059-6071.
[http://dx.doi.org/10.2147/IJN.S178374] [PMID: 30323593]
[3]
Mostaghasi, E.; Zarepour, A.; Zarrabi, A. Folic acid armed Fe3O4-HPG nanoparticles as a safe nano vehicle for biomedical theranostics. J. Taiwanist. Chem. E., 2018, 82, 33-41.
[http://dx.doi.org/10.1016/j.jtice.2017.11.004]
[4]
Kipp, J.E. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int. J. Pharm., 2004, 284(1-2), 109-122.
[http://dx.doi.org/10.1016/j.ijpharm.2004.07.019] [PMID: 15454302]
[5]
Lukyanov, A.N.; Torchilin, V.P. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv. Drug Deliv. Rev., 2004, 56(9), 1273-1289.
[http://dx.doi.org/10.1016/j.addr.2003.12.004] [PMID: 15109769]
[6]
Villalonga, R.; Cao, R.; Fragoso, A. Supramolecular chemistry of cyclodextrins in enzyme technology. Chem. Rev., 2007, 107(7), 3088-3116.
[http://dx.doi.org/10.1021/cr050253g] [PMID: 17590054]
[7]
Takahashi, K. Organic reactions mediated by cyclodextrins. Chem. Rev., 1998, 98(5), 2013-2034.
[http://dx.doi.org/10.1021/cr9700235] [PMID: 11848957]
[8]
Uekama, K.; Hirayama, F.; Irie, T. Cyclodextrin drug carrier systems. Chem. Rev., 1998, 98(5), 2045-2076.
[http://dx.doi.org/10.1021/cr970025p] [PMID: 11848959]
[9]
Breslow, R.; Dong, S.D. Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem. Rev., 1998, 98(5), 1997-2012.
[http://dx.doi.org/10.1021/cr970011j] [PMID: 11848956]
[10]
Lipkowitz, K.B. Applications of computational chemistry to the study of cyclodextrins. Chem. Rev., 1998, 98(5), 1829-1874.
[http://dx.doi.org/10.1021/cr9700179] [PMID: 11848951]
[11]
Singh, M.; Sharma, R.; Banerjee, U.C. Biotechnological applications of cyclodextrins. Biotechnol. Adv., 2002, 20(5-6), 341-359.
[http://dx.doi.org/10.1016/S0734-9750(02)00020-4] [PMID: 14550020]
[12]
Davis, M.E.; Brewster, M.E. Cyclodextrin-based pharmaceutics: Past, present and future. Nat. Rev. Drug Discov., 2004, 3(12), 1023-1035.
[http://dx.doi.org/10.1038/nrd1576] [PMID: 15573101]
[13]
Saenger, W.; Jacob, J.; Gessler, K.; Steiner, T.; Hoffmann, D.; Sanbe, H.; Koizumi, K.; Smith, S.M.; Takaha, T. Structures of the common cyclodextrins and their larger analogues-beyond the doughnut. Chem. Rev., 1998, 98(5), 1787-1802.
[http://dx.doi.org/10.1021/cr9700181] [PMID: 11848949]
[14]
Danil de Namor, A.F.; Cleverley, R.M.; Zapata-Ormachea, M.L. Thermodynamics of calixarene chemistry. Chem. Rev., 1998, 98(7), 2495-2526.
[http://dx.doi.org/10.1021/cr970095w] [PMID: 11848969]
[15]
Zhang, J.; Ma, P.X. Cyclodextrin-based supramolecular systems for drug delivery: Recent progress and future perspective. Adv. Drug Deliv. Rev., 2013, 65(9), 1215-1233.
[http://dx.doi.org/10.1016/j.addr.2013.05.001] [PMID: 23673149]
[16]
Connors, K.A. The stability of cyclodextrin complexes in solution. Chem. Rev., 1997, 97(5), 1325-1358.
[http://dx.doi.org/10.1021/cr960371r] [PMID: 11851454]
[17]
Wenz, G. Cyclodextrins as building blocks for supramolecular structures and functional units. Angew. Chem. Int. Ed. Engl., 1994, 33(8), 803-822.
[http://dx.doi.org/10.1002/anie.199408031]
[18]
Rusa, C.C.; Bullions, T.A.; Fox, J.; Porbeni, F.E.; Wang, X.W.; Tonelli, A.E. Inclusion compound formation with a new columnar cyclodextrin host. Langmuir, 2002, 18(25), 10016-10023.
[http://dx.doi.org/10.1021/la0262452]
[19]
Irie, T.; Uekama, K. Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J. Pharm. Sci., 1997, 86(2), 147-162.
[http://dx.doi.org/10.1021/js960213f] [PMID: 9040088]
[20]
Jahed, V.; Zarrabi, A.; Bordbar, A.K.; Hafezi, M.S. NMR (1H, ROESY) spectroscopic and molecular modelling investigations of supramolecular complex of β-cyclodextrin and curcumin. Food Chem., 2014, 165, 241-246.
[http://dx.doi.org/10.1016/j.foodchem.2014.05.094] [PMID: 25038672]
[21]
Carrier, R.L.; Miller, L.A.; Ahmed, I. The utility of cyclodextrins for enhancing oral bioavailability. J. Control. Release, 2007, 123(2), 78-99.
[http://dx.doi.org/10.1016/j.jconrel.2007.07.018] [PMID: 17888540]
[22]
Hirayama, F.; Uekama, K. Cyclodextrin-based controlled drug release system. Adv. Drug Deliv. Rev., 1999, 36(1), 125-141.
[http://dx.doi.org/10.1016/S0169-409X(98)00058-1] [PMID: 10837712]
[23]
Loftsson, T.; Brewster, M.E. Pharmaceutical applications of cyclodextrins: Effects on drug permeation through biological membranes. J. Pharm. Pharmacol., 2011, 63(9), 1119-1135.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01279.x] [PMID: 21827484]
[24]
Matsuda, H.; Arima, H. Cyclodextrins in transdermal and rectal delivery. Adv. Drug Deliv. Rev., 1999, 36(1), 81-99.
[http://dx.doi.org/10.1016/S0169-409X(98)00056-8] [PMID: 10837710]
[25]
Loftssona, T.; Järvinen, T. Cyclodextrins in ophthalmic drug delivery. Adv. Drug Deliv. Rev., 1999, 36(1), 59-79.
[http://dx.doi.org/10.1016/S0169-409X(98)00055-6] [PMID: 10837709]
[26]
Merkus, F.W.H.M.; Verhoef, J.C.; Marttin, E.; Romeijn, S.G.; Hermens, W.A.; Schipper, N.G.; Schipper, N.G.M.; van der Kuy, P.H. Cyclodextrins in nasal drug delivery. Adv. Drug Deliv. Rev., 1999, 36(1), 41-57.
[http://dx.doi.org/10.1016/S0169-409X(98)00054-4] [PMID: 10837708]
[27]
Loftsson, T.; Duchêne, D. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm., 2007, 329(1-2), 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.044] [PMID: 17137734]
[28]
Harada, A. Cyclodextrin-based molecular machines. Acc. Chem. Res., 2001, 34(6), 456-464.
[http://dx.doi.org/10.1021/ar000174l] [PMID: 11412082]
[29]
Araki, J.; Ito, K. Recent advances in the preparation of cyclodextrin-based polyrotaxanes and their applications to soft materials. Soft Matter, 2007, 3(12), 1456-1473.
[http://dx.doi.org/10.1039/b705688e]
[30]
Li, J.; Loh, X.J. Cyclodextrin-based supramolecular architectures: Syntheses, structures, and applications for drug and gene delivery. Adv. Drug Deliv. Rev., 2008, 60(9), 1000-1017.
[http://dx.doi.org/10.1016/j.addr.2008.02.011] [PMID: 18413280]
[31]
Yuen, F.; Tam, K.C. Cyclodextrin-assisted assembly of stimuli-responsive polymers in aqueous media. Soft Matter, 2010, 6(19), 4613-4630.
[http://dx.doi.org/10.1039/c0sm00043d]
[32]
Harada, A.; Hashidzume, A.; Takashima, Y. Cyclodextrin-based supramolecular polymers. In: Supramolecular polymers polymeric betains oligomers;; Springer: Berlin, Heidelberg, 2006, 201, pp.;. 1-43.
[http://dx.doi.org/10.1007/12_056]
[33]
Li, J. Cyclodextrin inclusion polymers forming hydrogels. In: Inclusion polymers; A, Abe., Ed.; Springer: Berlin, Heidelberg,, 2009; 222, pp. 79-112..
[http://dx.doi.org/10.1007/12_2008_9]
[34]
Zhang, J.; Ma, P.X. Host-guest interactions mediated nano-assemblies using cyclodextrin-containing hydrophilic polymers and their biomedical applications. Nano Today, 2010, 5(4), 337-350.
[http://dx.doi.org/10.1016/j.nantod.2010.06.011] [PMID: 20725642]
[35]
Jahed, V.; Vasheghani-Farahani, E.; Bagheri, F.; Zarrabi, A.; Jensen, H.H.; Larsen, K.L. Quantum dots-βcyclodextrin-histidine labeled human adipose stem cells-laden chitosan hydrogel for bone tissue engineering. Nanomedicine (Lond.), 2020, 27, 102217-102226.
[http://dx.doi.org/10.1016/j.nano.2020.102217] [PMID: 32418806]
[36]
Zhou, J.; Ritter, H. Cyclodextrin functionalized polymers as drug delivery systems. Polym. Chem., 2010, 1(10), 1552-1559.
[http://dx.doi.org/10.1039/c0py00219d]
[37]
Rajendiran, N.; Siva, S. Inclusion complex of sulfadimethoxine with cyclodextrins: Preparation and characterization. Carbohydr. Polym., 2014, 101, 828-836.
[http://dx.doi.org/10.1016/j.carbpol.2013.10.016] [PMID: 24299845]
[38]
Teixeira, B.N.; Ozdemir, N.; Hill, L.E.; Gomes, C.L. Synthesis and characterization of nano-encapsulated black pepper oleoresin using hydroxypropyl beta-cyclodextrin for antioxidant and antimicrobial applications. J. Food Sci., 2013, 78(12), N1913-N1920.
[http://dx.doi.org/10.1111/1750-3841.12312] [PMID: 24329956]
[39]
Lahiani-Skiba, M.; Bounoure, F.; Fessi, H.; Skiba, M. Effect of cyclodextrins on lonidamine release and in vitro cytotoxicity. J. Incl. Phenom. Macrocycl. Chem., 2011, 69(3-4), 481-485.
[http://dx.doi.org/10.1007/s10847-010-9872-7]
[40]
Rafati, N.; Zarrabi, A.; Caldera, F.; Trotta, F.; Ghias, N. Pyromellitic dianhydride crosslinked cyclodextrin nanosponges for curcumin controlled release; formulation, physicochemical characterization and cytotoxicity investigations. J. Microencapsul., 2019, 36(8), 715-727.
[http://dx.doi.org/10.1080/02652048.2019.1669728] [PMID: 31530203]
[41]
Erdoğar, N.; Esendağlı, G.; Nielsen, T.T.; Esendağlı-Yılmaz, G.; Yöyen-Ermiş, D.; Erdoğdu, B.; Sargon, M.F.; Eroğlu, H.; Bilensoy, E. Therapeutic efficacy of folate receptor-targeted amphiphilic cyclodextrin nanoparticles as a novel vehicle for paclitaxel delivery in breast cancer. J. Drug Target., 2018, 26(1), 66-74.
[http://dx.doi.org/10.1080/1061186X.2017.1339194] [PMID: 28581827]
[42]
Zhou, X.; Xu, L.; Xu, J.; Wu, J.; Kirk, T.B.; Ma, D.; Xue, W. Construction of a high-efficiency drug and gene co-delivery system for cancer therapy from a pH-sensitive supramolecular inclusion between oligoethylenimine- graft-β-cyclodextrin and hyperbranched polyglycerol derivative. ACS Appl. Mater. Interfaces, 2018, 10(42), 35812-35829.
[http://dx.doi.org/10.1021/acsami.8b14517] [PMID: 30277375]
[43]
Venuti, V.; Corsaro, C.; Stancanelli, R.; Paciaroni, A.; Crupi, V.; Tommasini, S.; Ventura, C.A.; Majolino, D. Analysis of the thermal fluctuations in inclusion complexes of genistein with β-cyclodextrin derivatives. Chem. Phys., 2019, 516, 125-131.
[http://dx.doi.org/10.1016/j.chemphys.2018.09.003]
[44]
Celebioglu, A.; Topuz, F.; Yildiz, Z.I.; Uyar, T. One-step green synthesis of antibacterial silver nanoparticles embedded in electrospun cyclodextrin nanofibers. Carbohydr. Polym., 2019, 207, 471-479.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.008] [PMID: 30600030]
[45]
Elgindy, N.; Elkhodairy, K.; Molokhia, A.; Elzoghby, A. Lyophilization monophase solution technique for improvement of the physicochemical properties of an anticancer drug, flutamide. Eur. J. Pharm. Biopharm., 2010, 74(2), 397-405.
[http://dx.doi.org/10.1016/j.ejpb.2009.11.011] [PMID: 19944160]
[46]
Eid, E.E.M.; Abdul, A.B.; Suliman, F.E.O.; Sukari, M.A.; Rasedee, A.; Fatah, S.S. Characterization of the inclusion complex of zerumbone with hydroxypropyl--cyclodextrin. Carbohydr. Polym., 2011, 83(4), 1707-1714.
[http://dx.doi.org/10.1016/j.carbpol.2010.10.033]
[47]
Topuz, F.; Uyar, T. Electrospinning of cyclodextrin functional nanofibers for drug delivery applications. Pharmaceutics, 2018, 11(1), 6-41.
[http://dx.doi.org/10.3390/pharmaceutics11010006] [PMID: 30586876]
[48]
Li, B.; Wang, S.; Gao, J.; Fang, S. Pharmacokinetics of injectable beta-cyclodextrin-oridonin inclusion complex, a novel formulation of oridonin in Wistar rats. Natl. J. Physiol. Pharm. Pharmacol., 2012, 2(1), 52-57.
[49]
Shukla, A.; Singh, A.P.; Dubey, T.; Hemalatha, S.; Maiti, P. Third generation cyclodextrin graft with polyurethane embedded in hydrogel for a sustained drug release: Complete shrinkage of melanoma. ACS Appl. Bio Mater., 2019, 2(4), 1762-1771.
[http://dx.doi.org/10.1021/acsabm.9b00171]
[50]
Narvekar, M.; Xue, H.Y.; Eoh, J.Y.; Wong, H.L. Nanocarrier for poorly water-soluble anticancer drugs-barriers of translation and solutions. AAPS PharmSciTech, 2014, 15(4), 822-833.
[http://dx.doi.org/10.1208/s12249-014-0107-x] [PMID: 24687241]
[51]
Ettmayer, P.; Amidon, G.L.; Clement, B.; Testa, B. Lessons learned from marketed and investigational prodrugs. J. Med. Chem., 2004, 47(10), 2393-2404.
[http://dx.doi.org/10.1021/jm0303812] [PMID: 15115379]
[52]
Gelderblom, H.; Verweij, J.; Nooter, K.; Sparreboom, A.; Cremophor, EL. The drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer, 2001, 37(13), 1590-1598.
[http://dx.doi.org/10.1016/S0959-8049(01)00171-X] [PMID: 11527683]
[53]
Singh, U.V.; Aithal, K.S.; Udupa, N. Physicochemical and biological studies of inclusion complex of methotrexate with B-Cyclodextrin. Pharm. Pharmacol. Commun., 1997, 3(12), 573-577.
[54]
Kavitha, K. Srinivasa, Rao, A.; Nalini, C.N. An investigation on enhancement of solubility of 5 fluorouracil by applying complexation technique- characterization, dissolution and molecular-modeling studies. J. Pharm. Sci-US., 2013, 3(03), 162-166.
[55]
Ngamcherdtrakul, W.; Castro, D.J.; Gu, S.; Morry, J.; Reda, M.; Gray, J.W.; Yantasee, W. Current development of targeted oligonucleotide-based cancer therapies: Perspective on HER2-positive breast cancer treatment. Cancer Treat. Rev., 2016, 45, 19-29.
[http://dx.doi.org/10.1016/j.ctrv.2016.02.005] [PMID: 26930249]
[56]
Yavuz, B.; Bilensoy, E.; Vural, I.; Sumnu, M. Alternative oral exemestane formulation: Improved dissolution and permeation. Int. J. Pharm., 2010, 398(1-2), 137-145.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.046] [PMID: 20678561]
[57]
Davis, M.E. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol. Pharm., 2009, 6(3), 659-668.
[http://dx.doi.org/10.1021/mp900015y] [PMID: 19267452]
[58]
Balaji, A.; Pandey, V.P.; Srinath, M.S.; Manavalan, R. Synthesis and characterization studies of cisplatin/hydroxypropyl-β-cyclodextrin complex. Pharmacologyonline, 2009, 1, 1135-1143.
[59]
Kim, T.K.; Yoo, H.H. Anticancer effect of docetaxel/hydroxypropyl-beta-cyclodextrin complex without histamine release. J. Incl. Phenom. Macrocycl. Chem., 2015, 83(3-4), 355-361.
[http://dx.doi.org/10.1007/s10847-015-0571-2]
[60]
Peng, M.; Liu, Y.; Zhang, H.; Cui, Y.; Zhai, G.; Chen, C. Photostability study of doxorubicin aqueous solution enhanced by inclusion interaction between doxorubicin and hydroxypropyl-β-cyclodextrin. Chin. J. Chem., 2010, 28(7), 1291-1295.
[http://dx.doi.org/10.1002/cjoc.201090223]
[61]
Bilensoy, E.; Hincal, A.A. Recent advances and future directions in amphiphilic cyclodextrin nanoparticles. Expert Opin. Drug Deliv., 2009, 6(11), 1161-1173.
[http://dx.doi.org/10.1517/17425240903222218] [PMID: 19705965]
[62]
Cheng, J.; Khin, K.T.; Jensen, G.S.; Liu, A.; Davis, M.E. Synthesis of linear, β-cyclodextrin-based polymers and their camptothecin conjugates. Bioconjug. Chem., 2003, 14(5), 1007-1017.
[http://dx.doi.org/10.1021/bc0340924] [PMID: 13129405]
[63]
Svenson, S.; Wolfgang, M.; Hwang, J.; Ryan, J.; Eliasof, S. Preclinical to clinical development of the novel camptothecin nanopharmaceutical CRLX101. J. Control. Release, 2011, 153(1), 49-55.
[http://dx.doi.org/10.1016/j.jconrel.2011.03.007] [PMID: 21406204]
[64]
Zarrabi, A.; Adeli, M.; Vossoughi, M.; Shokrgozar, M.A. Design and synthesis of novel polyglycerol hybrid nanomaterials for potential applications in drug delivery systems. Macromol. Biosci., 2011, 11(3), 383-390.
[http://dx.doi.org/10.1002/mabi.201000336] [PMID: 21108456]
[65]
Zarrabi, A.; Shokrgozar, M.A.; Vossoughi, M.; Farokhi, M. In vitro biocompatibility evaluations of hyperbranched polyglycerol hybrid nanostructure as a candidate for nanomedicine applications. J. Mater. Sci. Mater. Med., 2014, 25(2), 499-506.
[http://dx.doi.org/10.1007/s10856-013-5094-z] [PMID: 24293238]
[66]
Zarrabi, A.; Vossoughi, M. Paclitaxel/β-CD-g-PG inclusion complex: An insight into complexation thermodynamics and guest solubility. J. Mol. Liq., 2015, 208, 145-150.
[http://dx.doi.org/10.1016/j.molliq.2015.04.019]
[67]
Jahandar, M.; Zarrabi, A.; Shokrgozar, M.A.; Mousavi, H. Synthesis, characterization and application of polyglycerol coated Fe3O4 nanoparticles as a nano-theranostics agent. Mater. Res. Express, 2015, 2(12)125002
[http://dx.doi.org/10.1088/2053-1591/2/12/125002]
[68]
Mousavi, H.; Movahedi, B.; Zarrabi, A.; Jahanda, M. A multifunctional hierarchically assembled magnetic nanostructure towards cancer nano-theranostics. RSC Advances, 2015, 5(94), 77255-77263.
[http://dx.doi.org/10.1039/C5RA16776K]
[69]
Li, C.; Luo, G.F.; Wang, H.Y.; Zhang, J.; Gong, Y.H.; Cheng, S.X.; Zhuo, R.X.; Zhang, X.Z. Host–guest assembly of pH-responsive degradable microcapsules with controlled drug release behavior. J. Phys. Chem. C, 2011, 115(36), 17651-17659.
[http://dx.doi.org/10.1021/jp203940s]
[70]
Xiao, W.; Chen, W.H.; Zhang, J.; Li, C.; Zhuo, R.X.; Zhang, X.Z. Design of a photoswitchable hollow microcapsular drug delivery system by using a supramolecular drug-loading approach. J. Phys. Chem. B, 2011, 115(46), 13796-13802.
[http://dx.doi.org/10.1021/jp208692c] [PMID: 22017588]
[71]
Wintgens, V.; Nielsen, T.T.; Larsen, K.L.; Amiel, C. Size-controlled nanoassemblies based on cyclodextrin-modified dextrans. Macromol. Biosci., 2011, 11(9), 1254-1263.
[http://dx.doi.org/10.1002/mabi.201100097] [PMID: 21728236]
[72]
Zhang, X.; Zhang, X.; Wu, Z.; Gao, X.; Cheng, C.; Wang, Z.; Li, C. A hydrotropic β-cyclodextrin grafted hyperbranched polyglycerol co-polymer for hydrophobic drug delivery. Acta Biomater., 2011, 7(2), 585-592.
[http://dx.doi.org/10.1016/j.actbio.2010.08.029] [PMID: 20813209]
[73]
Zhang, X.J.; Zhang, X.G.; Wu, Z.M.; Gao, X.J.; Shu, S.J.; Wang, Z.; Li, C.X. β-Cyclodextrin grafting hyperbranched polyglycerols as carriers for nasal insulin delivery. Carbohydr. Polym., 2011, 84(4), 1419-1425.
[http://dx.doi.org/10.1016/j.carbpol.2011.01.057]
[74]
Shukla, A.; Ray, B.; Maiti, P. Grafted cyclodextrin as carrier for control drug delivery and efficient cell killing. J. Biomed. Mater. Res. A, 2019, 107(2), 434-444.
[http://dx.doi.org/10.1002/jbm.a.36560] [PMID: 30565855]
[75]
Chen, Y.; Yu, B.; Xu, S.; Ma, F.; Gong, J. Core-shell-structured cyclodextrin metal-organic frameworks for programmable cargo release. ACS Appl. Mater. Interfaces, 2019, 11(18), 16280-16284.
[http://dx.doi.org/10.1021/acsami.9b01040] [PMID: 31016977]
[76]
Prabaharan, M.; Gong, S.Q. Novel thiolated carboxymethyl chitosan-g-β-cyclodextrin as mucoadhesive hydrophobic drug delivery carriers. Carbohydr. Polym., 2008, 73(1), 117-125.
[http://dx.doi.org/10.1016/j.carbpol.2007.11.005]
[77]
Liu, Y.; Yu, Z.L.; Zhang, Y.M.; Guo, D.S.; Liu, Y.P. Supramolecular architectures of β-cyclodextrin-modified chitosan and pyrene derivatives mediated by carbon nanotubes and their DNA condensation. J. Am. Chem. Soc., 2008, 130(31), 10431-10439.
[http://dx.doi.org/10.1021/ja802465g] [PMID: 18627155]
[78]
Zhu, Y.; Che, L.; He, H.; Jia, Y.; Zhang, J.; Li, X. Highly efficient nanomedicines assembled via polymer-drug multiple interactions: Tissue-selective delivery carriers. J. Control. Release, 2011, 152(2), 317-324.
[http://dx.doi.org/10.1016/j.jconrel.2011.03.013] [PMID: 21435364]
[79]
Pun, S.H.; Bellocq, N.C.; Liu, A.; Jensen, G.; Machemer, T.; Quijano, E.; Schluep, T.; Wen, S.; Engler, H.; Heidel, J.; Davis, M.E. Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjug. Chem., 2004, 15(4), 831-840.
[http://dx.doi.org/10.1021/bc049891g] [PMID: 15264871]
[80]
Wang, H.; Wang, S.; Su, H.; Chen, K.J.; Armijo, A.L.; Lin, W.Y.; Wang, Y.; Sun, J.; Kamei, K.; Czernin, J.; Radu, C.G.; Tseng, H.R. A supramolecular approach for preparation of size-controlled nanoparticles. Angew. Chem. Int. Ed. Engl., 2009, 48(24), 4344-4348.
[http://dx.doi.org/10.1002/anie.200900063] [PMID: 19425037]
[81]
Huang, Y.; Kang, Q. Synthesis of conjugates of β-cyclodextrinwith polyamidoamine dendrimers and their molecular inclusion interaction with levofloxacin lactate. J. Incl. Phenom. Macrocycl. Chem., 2012, 72, 55-61.
[http://dx.doi.org/10.1007/s10847-011-9938-1]
[82]
Zhang, J.; Sun, H.; Ma, P.X. Host-guest interaction mediated polymeric assemblies: multifunctional nanoparticles for drug and gene delivery. ACS Nano, 2010, 4(2), 1049-1059.
[http://dx.doi.org/10.1021/nn901213a] [PMID: 20112968]
[83]
Fan, H.; Hu, Q.D.; Xu, F.J.; Liang, W.Q.; Tang, G.P.; Yang, W.T. In vivo treatment of tumors using host-guest conjugated nanoparticles functionalized with doxorubicin and therapeutic gene pTRAIL. Biomaterials, 2012, 33(5), 1428-1436.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.043] [PMID: 22079004]
[84]
Forrest, M.L.; Gabrielson, N.; Pack, D.W. Cyclodextrin-polyethylenimine conjugates for targeted in vitro gene delivery. Biotechnol. Bioeng., 2005, 89(4), 416-423.
[http://dx.doi.org/10.1002/bit.20356] [PMID: 15627256]
[85]
Arima, H.; Kihara, F.; Hirayama, F.; Uekama, K. Enhancement of gene expression by polyamidoamine dendrimer conjugates with α-, β-, and γ-cyclodextrins. Bioconjug. Chem., 2001, 12(4), 476-484.
[http://dx.doi.org/10.1021/bc000111n] [PMID: 11459450]
[86]
Van De Manakker, F.; Braeckmans, K.; El Morabit, N.; Smedt, S.C.D.; Van Nostrum, C.F.; Hennink, W.E. Protein-release behavior of self-assembled PEG-â-cyclodextrin/PEG-cholesterol hydrogels. Adv. Funct. Mater., 2009, 19(18), 2992-3001.
[http://dx.doi.org/10.1002/adfm.200900603]
[87]
Zhang, J.; Ellsworth, K.; Ma, P.X. Synthesis of β-cyclodextrin containing copolymer via “click” chemistry and its self-assembly in the presence of guest compounds. Macromol. Rapid Commun., 2012, 33(8), 664-671.
[http://dx.doi.org/10.1002/marc.201100814] [PMID: 22318939]
[88]
Harada, A.; Furue, M.; Nozakura, S.I. Cyclodextrin-containing polymers. 1. Preparation of polymers. Macromolecules, 1976, 9(5), 701-704.
[http://dx.doi.org/10.1021/ma60053a003]
[89]
Munteanu, M.; Choi, S.W.; Ritter, H. Cyclodextrin methacrylate via microwave assisted click reaction. Macromolecules, 2008, 41(24), 9619-9623.
[http://dx.doi.org/10.1021/ma8018975]
[90]
Liu, Y.Y.; Fan, X.D.; Gao, L. Synthesis and characterization of β-cyclodextrin based functional monomers and its copolymers with N-isopropylacrylamide. Macromol. Biosci., 2003, 3(12), 715-719.
[http://dx.doi.org/10.1002/mabi.200300052]
[91]
Liu, Y.Y.; Zhong, Y.B.; Nan, J.K.; Tian, W. Star polymers with both temperature sensitivity and inclusion functionalities. Macromolecules, 2010, 43(24), 10221-10230.
[http://dx.doi.org/10.1021/ma1019973]
[92]
Wang, J.; Jiang, M. Polymeric self-assembly into micelles and hollow spheres with multiscale cavities driven by inclusion complexation. J. Am. Chem. Soc., 2006, 128(11), 3703-3708.
[http://dx.doi.org/10.1021/ja056775v] [PMID: 16536543]
[93]
Yhaya, F.; Binauld, S.; Kim, Y.; Stenzel, M.H. Shell cross-linking of cyclodextrin-based micelles via supramolecular chemistry for the delivery of drugs. Macromol. Rapid Commun., 2012, 33(21), 1868-1874.
[http://dx.doi.org/10.1002/marc.201200473] [PMID: 22915556]
[94]
Rodell, C.B.; Kaminski, A.L.; Burdick, J.A. Rational design of network properties in guest-host assembled and shear-thinning hyaluronic acid hydrogels. Biomacromolecules, 2013, 14(11), 4125-4134.
[http://dx.doi.org/10.1021/bm401280z] [PMID: 24070551]
[95]
Tsutsumi, T.; Hirayama, F.; Uekama, K.; Arima, H. Evaluation of polyamidoamine dendrimer/α-cyclodextrin conjugate (generation 3, G3) as a novel carrier for small interfering RNA (siRNA). J. Control. Release, 2007, 119(3), 349-359.
[http://dx.doi.org/10.1016/j.jconrel.2007.03.013] [PMID: 17477999]
[96]
Jazkewitsch, O.; Mondrzyk, A.; Staffel, R.; Ritter, H. Cyclodextrin-modified polyesters from lactones and from bacteria: An approach to new drug carrier systems. Macromolecules, 2011, 44(6), 1365-1371.
[http://dx.doi.org/10.1021/ma1027627]
[97]
Petter, R.C.; Salek, J.S.; Sikorski, C.T.; Kumaravel, G.; Lin, F.T. Cooperative binding by aggregated mono-6-(alkylamino)-.beta.-cyclodextrins. J. Am. Chem. Soc., 1990, 112(10), 3860-3868.
[http://dx.doi.org/10.1021/ja00166a021]
[98]
Zhang, M.M.; Xiong, Q.Q.; Shen, W.; Zhang, Q.Q. Facile synthesis of well-defined cyclodextrin-pendant polymer via ATRP for nanostructure fabrication. RSC Adv., 2014, 4(58), 30566-30572.
[99]
Maciollek, A.; Munteanu, M.; Ritter, H. New generation of polymeric drugs: Copolymer from NIPAAM and cyclodextrin methacrylate containing supramolecular-attached antitumor derivative. Macromol. Chem. Phys., 2010, 211(2), 245-249.
[http://dx.doi.org/10.1002/macp.200900436]
[100]
Zhang, M.M.; Xiong, Q.Q.; Chen, J.Q.; Wang, Y.S.; Zhang, Q.Q. A novel cyclodextrin-containing pH-responsive star polymer for nanostructure fabrication and drug delivery. Polym. Chem., 2013, 4(19), 5086-5095.
[http://dx.doi.org/10.1039/c3py00656e]
[101]
Yhaya, F.; Lim, J.; Kim, Y.; Liang, M.; Gregory, A.M.; Stenzel, M.H. Development of micellar novel drug carrier utilizing temperature-sensitive block copolymers containing cyclodextrin moieties. Macromolecules, 2011, 44(21), 8433-8445.
[http://dx.doi.org/10.1021/ma2013964]
[102]
Ang, C.Y.; Tan, S.Y.; Wang, X.; Zhang, Q.; Khan, M.; Bai, L.; Tamil Selvan, S.; Ma, X.; Zhu, L.; Nguyen, K.T.; Tan, N.S.; Zhao, Y. Supramolecular nanoparticle carriers self-assembled from cyclodextrin- and adamantane-functionalized polyacrylates for tumor-targeted drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(13), 1879-1890.
[http://dx.doi.org/10.1039/c3tb21325k] [PMID: 32261524]
[103]
Shigekawa, H.; Miyake, K.; Sumaoka, J.; Harada, A.; Komiyama, M. The molecular abacus: STM manipulation of cyclodextrin necklace. J. Am. Chem. Soc., 2000, 122(22), 5411-5412.
[http://dx.doi.org/10.1021/ja000037j]
[104]
Harada, A.; Kamachi, M. Complex formation between poly(ethylene glycol) and α-cyclodextrin. Macromolecules, 1990, 23(10), 2821-2823.
[http://dx.doi.org/10.1021/ma00212a039]
[105]
Harada, A.; Li, J.; Kamachi, M. Preparation and properties of inclusion complexes of polyethylene glycol with. alpha-cyclodextrin. Macromolecules, 1993, 26(21), 5698-5703.
[http://dx.doi.org/10.1021/ma00073a026]
[106]
Harada, A.; Kamachi, M. Complex formation between cyclodextrin and poly(propylene glycol). J. Chem. Soc. Chem. Commun., 1990, 19, 1322-1323.
[http://dx.doi.org/10.1039/c39900001322]
[107]
Higashi, K.; Ideura, S.; Waraya, H.; Moribe, K.; Yamamoto, K. Incorporation of salicylic acid molecules into the intermolecular spaces of γ-cyclodextrin-polypseudorotaxane. Cryst. Growth Des., 2009, 9(10), 4243-4246.
[http://dx.doi.org/10.1021/cg900573w]
[108]
Ma, D.; Zhang, L.M.; Xie, X.; Liu, T.; Xie, M.Q. Tunable supramolecular hydrogel for in situ encapsulation and sustained release of bioactive lysozyme. J. Colloid Interface Sci., 2011, 359(2), 399-406.
[http://dx.doi.org/10.1016/j.jcis.2011.04.032] [PMID: 21536304]
[109]
Li, Q.; Xia, B.; Branham, M.; Ha, W.; Wu, H.; Peng, S.L.; Ding, L.S.; Li, B.J.; Zhang, S. Self-assembly of carboxymethyl konjac glucomannan-g-poly(ethylene glycol) and (α-cyclodextrin) to biocompatible hollow nanospheres for glucose oxidase encapsulation. Carbohydr. Polym., 2011, 86(1), 120-126.
[http://dx.doi.org/10.1016/j.carbpol.2011.04.017]
[110]
Dandekar, P.; Jain, R.; Keil, M.; Loretz, B.; Muijs, L.; Schneider, M.; Auerbach, D.; Jung, G.; Lehr, C.M.; Wenz, G. Cellular delivery of polynucleotides by cationic cyclodextrin polyrotaxanes. J. Control. Release, 2012, 164(3), 387-393.
[http://dx.doi.org/10.1016/j.jconrel.2012.06.040] [PMID: 22789529]
[111]
Wang, Y.; Wang, H.; Chen, Y.; Liu, X.; Jin, Q.; Ji, J. Biomimetic pseudopolyrotaxane prodrug micelles with high drug content for intracellular drug delivery. Chem. Commun. (Camb.), 2013, 49(64), 7123-7125.
[http://dx.doi.org/10.1039/c3cc43687j] [PMID: 23828234]
[112]
Hayashida, K.; Higashi, T.; Kono, D.; Motoyama, K.; Wada, K.; Arima, H. Preparation and evaluation of cyclodextrin polypseudorotaxane with PEGylated liposome as a sustained release drug carrier. Beilstein J. Org. Chem., 2014, 10(1), 2756-2764.
[http://dx.doi.org/10.3762/bjoc.10.292] [PMID: 25550741]
[113]
Harada, A.; Li, J.; Kamachi, M. The molecular necklace: A rotaxane containing many threaded α-cyclodextrins. Nature, 1992, 356(6367), 325-327.
[http://dx.doi.org/10.1038/356325a0]
[114]
Wenz, G.; Han, B.H.; Müller, A. Cyclodextrin rotaxanes and polyrotaxanes. Chem. Rev., 2006, 106(3), 782-817.
[http://dx.doi.org/10.1021/cr970027+] [PMID: 16522009]
[115]
Ooya, T.; Eguchi, M.; Yui, N. Supramolecular design for multivalent interaction: maltose mobility along polyrotaxane enhanced binding with concanavalin A. J. Am. Chem. Soc., 2003, 125(43), 13016-13017.
[http://dx.doi.org/10.1021/ja034583z] [PMID: 14570461]
[116]
Li, J.; Yang, C.; Li, H.Z.; Wang, X.; Goh, S.H.; Ding, J.L.; Wang, D.Y.; Leong, K.W. Cationic supramolecules composed of multiple oligoethylenimine-grafted β-cyclodextrins threaded on a polymer chain for efficient gene delivery. Adv. Mater., 2006, 18(22), 2969-2974.
[http://dx.doi.org/10.1002/adma.200600812]
[117]
Ooya, T.; Yui, N. Polyrotaxanes: Synthesis, structure, and potential in drug delivery. Crit. Rev. Ther. Drug Carrier Syst., 1999, 16(3), 289-330.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v16.i3.20] [PMID: 10706521]
[118]
Zhang, L.; Su, T.; He, B.; Gu, Z. Self-assembly polyrotaxanes nanoparticles as carriers for anticancer drug methotrexate delivery. Nano-Micro Lett., 2014, 6(2), 108-115.
[http://dx.doi.org/10.1007/BF03353774]
[119]
Yu, S.; Zhang, Y.; Wang, X.; Zhen, X.; Zhang, Z.; Wu, W.; Jiang, X. Synthesis of paclitaxel-conjugated β-cyclodextrin polyrotaxane and its antitumor activity. Angew. Chem. Int. Ed. Engl., 2013, 52(28), 7272-7277.
[http://dx.doi.org/10.1002/anie.201301397] [PMID: 23740531]
[120]
Liu, R.; Lai, Y.; He, B.; Li, Y.; Wang, G.; Chang, S.; Gu, Z. Supramolecular nanoparticles generated by the self-assembly of polyrotaxanes for antitumor drug delivery. Int. J. Nanomedicine, 2012, 7, 5249-5258.
[PMID: 23055732]
[121]
Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev., 2002, 54(1), 3-12.
[http://dx.doi.org/10.1016/S0169-409X(01)00239-3] [PMID: 11755703]
[122]
Peppas, N.A.; Hilt, J.Z.; Khademhosseini, A.; Langer, R. Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater., 2006, 18(11), 1345-1360.
[http://dx.doi.org/10.1002/adma.200501612]
[123]
Kopecek, J. Hydrogel biomaterials: A smart future? Biomaterials, 2007, 28(34), 5185-5192.
[http://dx.doi.org/10.1016/j.biomaterials.2007.07.044] [PMID: 17697712]
[124]
Lee, K.Y.; Mooney, D.J. Hydrogels for tissue engineering. Chem. Rev., 2001, 101(7), 1869-1879.
[http://dx.doi.org/10.1021/cr000108x] [PMID: 11710233]
[125]
Park, H.; Park, K. Biocompatibility issues of implantable drug delivery systems. Pharm. Res., 1996, 13(12), 1770-1776.
[http://dx.doi.org/10.1023/A:1016012520276] [PMID: 8987070]
[126]
Kim, S.W.; Bae, Y.H.; Okano, T. Hydrogels: Swelling, drug loading, and release. Pharm. Res., 1992, 9(3), 283-290.
[http://dx.doi.org/10.1023/A:1015887213431] [PMID: 1614957]
[127]
Arslan, M.; Sanyal, R.; Sanyal, A. Cyclodextrin embedded covalently crosslinked networks: synthesis and applications of hydrogels with nano-containers. Polym. Chem., 2020, 11, 615-629.
[http://dx.doi.org/10.1039/C9PY01679A]
[128]
van de Manakker, F.; Vermonden, T.; van Nostrum, C.F.; Hennink, W.E. Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules, 2009, 10(12), 3157-3175.
[http://dx.doi.org/10.1021/bm901065f] [PMID: 19921854]
[129]
Li, J. Self-assembled supramolecular hydrogels based on polymer–cyclodextrin inclusion complexes for drug delivery. NPG Asia Mater., 2010, 2(3), 112-118.
[http://dx.doi.org/10.1038/asiamat.2010.84]
[130]
Concheiro, A.; Alvarez-Lorenzo, C. Chemically cross-linked and grafted cyclodextrin hydrogels: from nanostructures to drug-eluting medical devices. Adv. Drug Deliv. Rev., 2013, 65(9), 1188-1203.
[http://dx.doi.org/10.1016/j.addr.2013.04.015] [PMID: 23631979]
[131]
dos Santos, J.F.R.; Couceiro, R.; Concheiro, A.; Torres-Labandeira, J.J.; Alvarez-Lorenzo, C. Poly(hydroxyethyl methacrylate-co-methacrylated-β-cyclodextrin) hydrogels: synthesis, cytocompatibility, mechanical properties and drug loading/release properties. Acta Biomater., 2008, 4(3), 745-755.
[http://dx.doi.org/10.1016/j.actbio.2007.12.008] [PMID: 18291738]
[132]
Zhang, L.; Zhou, J.; Zhang, L. Structure and properties of β-cyclodextrin/cellulose hydrogels prepared in NaOH/urea aqueous solution. Carbohydr. Polym., 2013, 94(1), 386-393.
[http://dx.doi.org/10.1016/j.carbpol.2012.12.077] [PMID: 23544553]
[133]
Nielsen, A.L.; Madsen, F.; Larsen, K.L. Cyclodextrin modified hydrogels of PVP/PEG for sustained drug release. Drug Deliv., 2009, 16(2), 92-101.
[http://dx.doi.org/10.1080/10717540802605129] [PMID: 19267300]
[134]
Rodriguez-Tenreiro, C.; Alvarez-Lorenzo, C.; Rodriguez-Perez, A.; Concheiro, A.; Torres-Labandeira, J.J. Estradiol sustained release from high affinity cyclodextrin hydrogels. Eur. J. Pharm. Biopharm., 2007, 66(1), 55-62.
[http://dx.doi.org/10.1016/j.ejpb.2006.09.003] [PMID: 17081737]
[135]
Salmaso, S.; Semenzato, A.; Bersani, S.; Matricardi, P.; Rossi, F.; Caliceti, P. Cyclodextrin/PEG based hydrogels for multi-drug delivery. Int. J. Pharm., 2007, 345(1-2), 42-50.
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.035] [PMID: 17597313]
[136]
Zawko, S.A.; Truong, Q.; Schmidt, C.E. Drug-binding hydrogels of hyaluronic acid functionalized with β-cyclodextrin. J. Biomed. Mater. Res. A, 2008, 87(4), 1044-1052.
[http://dx.doi.org/10.1002/jbm.a.31845] [PMID: 18257063]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 11
Year: 2020
Published on: 07 July, 2020
Page: [1327 - 1339]
Pages: 13
DOI: 10.2174/1871520619666190906160359
Price: $65

Article Metrics

PDF: 33
HTML: 1