Dietary Phytonutrients in the Prevention of Diabetes-related Complications

Author(s): Pamela Jha*, Sonit Kumari, Renitta Jobby, Nitin Desai, Ahmad Ali*

Journal Name: Current Diabetes Reviews

Volume 16 , Issue 7 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: The increasing prevalence of reported cases of diabetes has evidently become a major global public health concern. Although diabetes management is possible by the administration of synthetic anti-diabetic agents, there are profound side-effects associated with their long-term usage. Hence there is a demand for safer alternatives which could be possibly formulated using specific yet common phytonutrients.

Objectives: The main objective of this review is to describe the cellular mechanisms of phytonutrients as an alternative to commercially available synthetic anti-diabetic agents in the management of diabetes and related complications. Furthermore, the clinical evidence that supports this view is also highlighted.

Methodology: An in-depth review of published literature was carried out to identify the most promising phytonutrients in the management of diabetes and related complications.

Results: A number of phytonutrients are reported to be potential anti-diabetic agents. Few examples include biguanides, resveratrol, lycopene, thymoquinone and quercetin. However, suitable formulations using these phytonutrients and their clinical trials are still underway. Most of the reported findings focus on one aspect of several biochemical processes e.g. enhancement of glucose utilization, antioxidation, induction of insulin production, antiglycation, etc. An in-depth study of phytonutrients with respect to functional, immunological as well as biochemical factors suggesting their efficacy, as well as safety in the management of diabetes, is rarely reported.

Conclusion: Our study thus highlights the abundance of clinical evidence of the efficiency of phytonutrients, and at the same time, the scarcity of clinically approved and marketed phytonutrients, as drugs, for the management of diabetes and related complications.

Keywords: Anti-diabetic agents, antioxidants, chronic diseases, diabetes, glycation, hyperglycemia, phytonutrients.

[1]
Yadav M, Saraswat N, Wal P, Rai AK, Singh D. A comparative study of drug interaction and side effect of drug for treatment of Diabetes Mellitus: A Review. Int Res J Pharm 2018; 9: 14-6.
[http://dx.doi.org/10.7897/2230-8407.09682]
[2]
Jacob B, Narendhirakannan RT. Role of medicinal plants in the management of diabetes mellitus: A review. 3 Biotech 2019; 9: 4.
[3]
Kharroubi AT, Darwish HM. Diabetes mellitus: The epidemic of the century. World J Diabetes 2015; 6(6): 850-67.
[http://dx.doi.org/10.4239/wjd.v6.i6.850] [PMID: 26131326]
[4]
Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998; 15(7): 539-53.
[http://dx.doi.org/10.1002/(SICI)1096-9136(199807)15:7<539:AID-DIA668>3.0.CO;2-S] [PMID: 9686693]
[5]
American Diabetes Association Diagnosis and classification of diabetes mellitus Diabetes Care. 2010; 33(Suppl. 1): S62-9.
[http://dx.doi.org/10.2337/dc10-S062] [PMID: 20042775]
[6]
Rahman AU, Qureshi MM, Zaman K, Malik S, Ali SS. The alkaloids of Rhazyastricta and R. orientalis-a review. Fitoterapia 1989; 60: 291-322.
[7]
Farag YM, Gaballa MR. Diabesity: an overview of a rising epidemic. Nephrol Dial Transplant 2011; 26(1): 28-35.
[http://dx.doi.org/10.1093/ndt/gfq576] [PMID: 21045078]
[8]
Holt RI, Cockram C, Flyvbjerg A, Goldstein BJ. Textbook of diabetes. John Wiley & Sons 2017.
[http://dx.doi.org/10.1002/9781118924853]
[9]
Singh S, Garg V, Yadav D. Antihyperglycemic and antioxidative ability of Stevia rebaudiana (Bertoni) leaves in diabetes induced mice. Int J Pharm Pharm Sci 2013; 5: 297-302.
[10]
Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem 1992; 59(5): 1609-23.
[http://dx.doi.org/10.1111/j.1471-4159.1992.tb10990.x] [PMID: 1402908]
[11]
Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 1999; 48(1): 1-9.
[http://dx.doi.org/10.2337/diabetes.48.1.1] [PMID: 9892215]
[12]
Dembinska-Kiec A, Mykkänen O, Kiec-Wilk B, Mykkänen H. Antioxidant phytochemicals against type 2 diabetes. Br J Nutr 2008; 99 E((Suppl. 1)): ES109-17.
[http://dx.doi.org/10.1017/S000711450896579X] [PMID: 18503731]
[13]
Zaid H, Mahdi AA, Tamrakar AK, Saad B, Razzaque MS, Dasgupta A. Natural active ingredients for diabetes and metabolism disorders treatment. Evid Based Complement Alternat Med 2016; 2016 2965214
[http://dx.doi.org/10.1155/2016/2965214] [PMID: 27891158]
[14]
Umar A, Ahmed QU, Muhammad BY, Dogarai BB, Soad SZ. Anti-hyperglycemic activity of the leaves of Tetracera scandens Linn. Merr. (Dilleniaceae) in alloxan induced diabetic rats. J Ethnopharmacol 2010; 131(1): 140-5.
[http://dx.doi.org/10.1016/j.jep.2010.06.016] [PMID: 20600771]
[15]
Goto Y, Hotta N, Shigeta Y, Sakamoto N, Kikkawa R. Effects of an aldose reductase inhibitor, epalrestat, on diabetic neuropathy. Clinical benefit and indication for the drug assessed from the results of a placebo-controlled double-blind study. Biomed Pharmacother 1995; 49(6): 269-77.
[http://dx.doi.org/10.1016/0753-3322(96)82642-4] [PMID: 7579007]
[16]
Pazdro R, Burgess JR. The role of vitamin E and oxidative stress in diabetes complications. Mech Ageing Dev 2010; 131(4): 276-86.
[http://dx.doi.org/10.1016/j.mad.2010.03.005] [PMID: 20307566]
[17]
Xiao C, Dash S, Morgantini C, Adeli K, Lewis GF. Gut peptides are novel regulators of intestinal lipoprotein secretion: Experimental and pharmacological manipulation of lipoprotein metabolism. Diabetes 2015; 64(7): 2310-8.
[http://dx.doi.org/10.2337/db14-1706] [PMID: 26106188]
[18]
Turk Z. Glycotoxines, carbonyl stress and relevance to diabetes and its complications. Physiol Res 2010; 59(2): 147-56.
[PMID: 19537931]
[19]
Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res 2010; 106(8): 1319-31.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.217117] [PMID: 20431074]
[20]
Vlassara H. Recent progress in advanced glycation end products and diabetic complications. Diabetes 1997; 46(Suppl. 2): S19-25.
[http://dx.doi.org/10.2337/diab.46.2.S19] [PMID: 9285494]
[21]
Oei L, Zillikens MC, Dehghan A, et al. High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control: the Rotterdam Study. Diabetes Care 2013; 36(6): 1619-28.
[http://dx.doi.org/10.2337/dc12-1188] [PMID: 23315602]
[22]
Oridupa OA, Saba AB. Diabetes mellitus in Nigeria and the on-going search for a cure from medicinal plants: a review. Afr J Diabetes Med 2017; 25: 1-3.
[23]
Tarling CA, Woods K, Zhang R, et al. The search for novel human pancreatic α-amylase inhibitors: high-throughput screening of terrestrial and marine natural product extracts. ChemBioChem 2008; 9(3): 433-8.
[http://dx.doi.org/10.1002/cbic.200700470] [PMID: 18214874]
[24]
Dastjerdi ZM, Namjoyan F, Azemi ME. Alpha amylase inhibition activity of some plants extract of Teucrium species. Eur J BiolSci 2015; 7: 26-31.
[25]
Sales PM, Souza PM, Simeoni LA, Silveira D. α-Amylase inhibitors: a review of raw material and isolated compounds from plant source. J Pharm Pharm Sci 2012; 15(1): 141-83.
[http://dx.doi.org/10.18433/J35S3K] [PMID: 22365095]
[26]
Gao H, Huang YN, Gao B, Li P, Inagaki C, Kawabata J. Inhibitory effect on α-glucosidase by Adhatoda vasica Nees. Food Chem 2008; 108(3): 965-72.
[http://dx.doi.org/10.1016/j.foodchem.2007.12.002] [PMID: 26065759]
[27]
Kumar S, Narwal S, Kumar V, Prakash O. α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn Rev 2011; 5(9): 19-29.
[http://dx.doi.org/10.4103/0973-7847.79096] [PMID: 22096315]
[28]
Jong-Anurakkun N, Bhandari MR, Kawabata J. α-glucosidase inhibitors from Devil tree (Alstoniascholaris). Food Chem 2007; 103: 1319-23.
[http://dx.doi.org/10.1016/j.foodchem.2006.10.043]
[29]
Bhandari MR, Jong-Anurakkun N, Hong G, Kawabata J. α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergeniaciliata, Haw.). Food Chem 2008; 106: 247-52.
[http://dx.doi.org/10.1016/j.foodchem.2007.05.077]
[30]
Shibano M, Kakutani K, Taniguchi M, Yasuda M, Baba K. Antioxidant constituents in the dayflower (Commelina communis L.) and their α-glucosidase-inhibitory activity. J Nat Med 2008; 62(3): 349-53.
[http://dx.doi.org/10.1007/s11418-008-0244-1] [PMID: 18409066]
[31]
Li H, Song F, Xing J, Tsao R, Liu Z, Liu S. Screening and structural characterization of α-glucosidase inhibitors from hawthorn leaf flavonoids extract by ultrafiltration LC-DAD-MS(n) and SORI-CID FTICR MS. J Am Soc Mass Spectrom 2009; 20(8): 1496-503.
[http://dx.doi.org/10.1016/j.jasms.2009.04.003] [PMID: 19443236]
[32]
Wansi JD, Lallemand MC, Chiozem DD, et al. alpha-Glucosidase inhibitory constituents from stem bark of Terminalia superba (Combretaceae). Phytochemistry 2007; 68(15): 2096-100.
[http://dx.doi.org/10.1016/j.phytochem.2007.02.020] [PMID: 17434189]
[33]
Iwai K, Kim MY, Onodera A, Matsue H. Alpha-glucosidase inhibitory and antihyperglycemic effects of polyphenols in the fruit of Viburnum dilatatum Thunb. J Agric Food Chem 2006; 54(13): 4588-92.
[http://dx.doi.org/10.1021/jf0606353] [PMID: 16787002]
[34]
Xia X, Yan J, Shen Y, et al. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis. PLoS One 2011; 6(2) e16556
[http://dx.doi.org/10.1371/journal.pone.0016556] [PMID: 21304897]
[35]
Yang W, Lu J, Weng J, et al. China National Diabetes and Metabolic Disorders Study Group Prevalence of diabetes among men and women in China N Engl J Med. 2010; 362(12): 1090-1.
[http://dx.doi.org/10.1056/NEJMoa0908292] [PMID: 20335585]
[36]
Hosseini M, Asgary S, Najafi S. Inhibitory potential of pure isoflavonoids, red clover, and alfalfa extracts on hemoglobin glycosylation. ARYA Atheroscler 2015; 11(2): 133-8.
[PMID: 26405442]
[37]
Garber AJ, Abrahamson MJ, Barzilay JI, et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm-2017 executive summary. Endocr Pract 2017; 23(2): 207-38.
[http://dx.doi.org/10.4158/EP161682.CS] [PMID: 28095040]
[38]
Jeffcoate SL. Diabetes control and complications: the role of glycated haemoglobin, 25 years on. Diabet Med 2004; 21(7): 657-65.
[http://dx.doi.org/10.1046/j.1464-5491.2003.01065.x] [PMID: 15209755]
[39]
Modak M, Dixit P, Londhe J, Ghaskadbi S, Devasagayam TP. Indian herbs and herbal drugs used for the treatment of diabetes. J Clin Biochem Nutr 2007; 40(3): 163-73.
[http://dx.doi.org/10.3164/jcbn.40.163] [PMID: 18398493]
[40]
Li J, Yu H, Wang S, et al. Natural products, an important resource for discovery of multitarget drugs and functional food for regulation of hepatic glucose metabolism. Drug Des Devel Ther 2018; 12: 121-35.
[http://dx.doi.org/10.2147/DDDT.S151860] [PMID: 29391777]
[41]
Al-Hasani H, Tschöp MH, Cushman SW. Two birds with one stone: novel glucokinase activator stimulates glucose-induced pancreatic insulin secretion and augments hepatic glucose metabolism. Mol Interv 2003; 3(7): 367-70.
[http://dx.doi.org/10.1124/mi.3.7.367] [PMID: 14993457]
[42]
Kim HI, Kim JW, Kim SH, Cha JY, Kim KS, Ahn YH. Identification and functional characterization of the peroxisomal proliferator response element in rat GLUT2 promoter. Diabetes 2000; 49(9): 1517-24.
[http://dx.doi.org/10.2337/diabetes.49.9.1517] [PMID: 10969836]
[43]
Cha JY, Kim H, Kim KS, Hur MW, Ahn Y. Identification of transacting factors responsible for the tissue-specific expression of human glucose transporter type 2 isoform gene. Cooperative role of hepatocyte nuclear factors 1alpha and 3beta. J Biol Chem 2000; 275(24): 18358-65.
[http://dx.doi.org/10.1074/jbc.M909536199] [PMID: 10748140]
[44]
Baradaran A, Nasri H, Rafieian-Kopaei M. Oxidative stress and hypertension: Possibility of hypertension therapy with antioxidants. J Res Med Sci 2014; 19(4): 358-67.
[PMID: 25097610]
[45]
Tiwari AK, Rao JM. Diabetes mellitus and multiple therapeutic approaches of phytochemicals: Present status and future prospects. Curr Sci 2002; 83: 30-8.
[46]
Sango K, Kato K, Tsukamoto M, Niimi N, Utsunomiya K, Watabe K. hysiological and pathological roles of aldose reductase in Schwann cells. J Mol Genet Med 2014; (S1)012.
[47]
Ahmed N. Advanced glycation endproducts--role in pathology of diabetic complications. Diabetes Res Clin Pract 2005; 67(1): 3-21.
[http://dx.doi.org/10.1016/j.diabres.2004.09.004] [PMID: 15620429]
[48]
Thornalley PJ, Langborg A, Minhas HS. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J 1999; 344(Pt 1): 109-16.
[http://dx.doi.org/10.1042/bj3440109] [PMID: 10548540]
[49]
Kislinger T, Fu C, Huber B, et al. N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J Biol Chem 1999; 274(44): 31740-9.
[http://dx.doi.org/10.1074/jbc.274.44.31740] [PMID: 10531386]
[50]
Hudson BI, Bucciarelli LG, Wendt T, et al. Blockade of receptor for advanced glycation endproducts: a new target for therapeutic intervention in diabetic complications and inflammatory disorders. Arch Biochem Biophys 2003; 419(1): 80-8.
[http://dx.doi.org/10.1016/j.abb.2003.08.030] [PMID: 14568011]
[51]
Elosta A, Ghous T, Ahmed N. Natural products as anti-glycation agents: possible therapeutic potential for diabetic complications. Curr Diabetes Rev 2012; 8(2): 92-108.
[http://dx.doi.org/10.2174/157339912799424528] [PMID: 22268395]
[52]
Ramkissoon JS, Mahomoodally MF, Ahmed N, Subratty AH. Relationship between total phenolic content, antioxidant potential, and antiglycation abilities of common culinary herbs and spices. J Med Food 2012; 15(12): 1116-23.
[http://dx.doi.org/10.1089/jmf.2012.0113] [PMID: 23134460]
[53]
McCance DR, Dyer DG, Dunn JA, et al. Maillard reaction products and their relation to complications in insulin-dependent diabetes mellitus. J Clin Invest 1993; 91(6): 2470-8.
[http://dx.doi.org/10.1172/JCI116482] [PMID: 8514859]
[54]
Obayashi H, Nakano K, Shigeta H, et al. Formation of crossline as a fluorescent advanced glycation end product in vitro and in vivo. Biochem Biophys Res Commun 1996; 226(1): 37-41.
[http://dx.doi.org/10.1006/bbrc.1996.1308] [PMID: 8806589]
[55]
Frye EB, Degenhardt TP, Thorpe SR, Baynes JW. Role of the Maillard reaction in aging of tissue proteins. Advanced glycation end product-dependent increase in imidazolium cross-links in human lens proteins. J Biol Chem 1998; 273(30): 18714-9.
[http://dx.doi.org/10.1074/jbc.273.30.18714] [PMID: 9668043]
[56]
Farmar JG, Ulrich PC, Cerami A. Novel pyrroles from sulfite-inhibited Maillard reactions: insight into the mechanism of inhibition. J Org Chem 1988; 53: 2346-9.
[http://dx.doi.org/10.1021/jo00245a039]
[57]
Al-Abed Y, Bucala R. Structure of a synthetic glucose derived advanced glycation end product that is immunologically cross-reactive with its naturally occurring counterparts. Bioconjug Chem 2000; 11(1): 39-45.
[http://dx.doi.org/10.1021/bc990061q] [PMID: 10639083]
[58]
Smith MA, Taneda S, Richey PL, et al. Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc Natl Acad Sci USA 1994; 91(12): 5710-4.
[http://dx.doi.org/10.1073/pnas.91.12.5710] [PMID: 8202552]
[59]
Reddy S, Bichler J, Wells-Knecht KJ, Thorpe SR, Baynes JWN. N epsilon-(carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry 1995; 34(34): 10872-8.
[http://dx.doi.org/10.1021/bi00034a021] [PMID: 7662668]
[60]
Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev 2013; 9(1): 25-53.
[http://dx.doi.org/10.2174/157339913804143225] [PMID: 22974359]
[61]
Chakravarthy BK, Gupta S, Gode KD. Antidiabetic effect of (-)-epicatechin. Lancet 1982; 2(8292): 272-3.
[http://dx.doi.org/10.1016/S0140-6736(82)90355-5] [PMID: 6124698]
[62]
Cheng AY, Fantus IG. Oral antihyperglycemic therapy for type 2 diabetes mellitus. CMAJ 2005; 172(2): 213-26.
[http://dx.doi.org/10.1503/cmaj.1031414] [PMID: 15655244]
[63]
Nicholson G, Hall GM. Diabetes mellitus: new drugs for a new epidemic. Br J Anaesth 2011; 107(1): 65-73.
[http://dx.doi.org/10.1093/bja/aer120] [PMID: 21610015]
[64]
Verspohl EJ. Novel pharmacological approaches to the treatment of type 2 diabetes. Pharmacol Rev 2012; 64(2): 188-237.
[http://dx.doi.org/10.1124/pr.110.003319] [PMID: 22407617]
[65]
Zhang YJ, Gan RY, Li S, et al. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 2015; 20(12): 21138-56.
[http://dx.doi.org/10.3390/molecules201219753] [PMID: 26633317]
[66]
Gironés-Vilaplana A, Moreno DA, García-Viguera C. Phytochemistry and biological activity of Spanish Citrus fruits. Food Funct 2014; 5(4): 764-72.
[http://dx.doi.org/10.1039/C3FO60700C] [PMID: 24563112]
[67]
Kim HJ, Cha BY, Park IS, Lim JS, Woo JT, Kim JS. Dehydroglyasperin C, a component of liquorice, attenuates proliferation and migration induced by platelet-derived growth factor in human arterial smooth muscle cells. Br J Nutr 2013; 110(3): 391-400.
[http://dx.doi.org/10.1017/S0007114512005399] [PMID: 23298457]
[68]
Jeong GS, Lee DS, Song MY, et al. Butein from Rhus verniciflua protects pancreatic β cells against cytokine-induced toxicity mediated by inhibition of nitric oxide formation. Biol Pharm Bull 2011; 34(1): 97-102.
[http://dx.doi.org/10.1248/bpb.34.97] [PMID: 21212525]
[69]
Li Y, Ma C, Qian M, Wen Z, Jing H, Qian D. Butein induces cell apoptosis and inhibition of cyclooxygenase‑2 expression in A549 lung cancer cells. Mol Med Rep 2014; 9(2): 763-7.
[http://dx.doi.org/10.3892/mmr.2013.1850] [PMID: 24337484]
[70]
Mozos I, Stoian D, Caraba A, Malainer C, Horbańczuk JO, Atanasov AG. Lycopene and vascular health. Front Pharmacol 2018; 9: 521.
[http://dx.doi.org/10.3389/fphar.2018.00521] [PMID: 29875663]
[71]
Harris Z, Donovan MG, Branco GM, Limesand KH, Burd R. Quercetin as an emerging anti-melanoma agent: a four-focus area therapeutic development strategy. Front Nutr 2016; 3: 48.
[http://dx.doi.org/10.3389/fnut.2016.00048] [PMID: 27843913]
[72]
Salehi B, Fokou PVT, Sharifi-Rad M, et al. The therapeutic potential of naringenin: a review of clinical trials. Pharmaceuticals (Basel) 2019; 12(1): 11.
[http://dx.doi.org/10.3390/ph12010011] [PMID: 30634637]
[73]
Nepali S, Son JS, Poudel B, Lee JH, Lee YM, Kim DK. Luteolin is a bioflavonoid that attenuates adipocyte-derived inflammatory responses via suppression of nuclear factor-κB/mitogen-activated protein kinases pathway. Pharmacogn Mag 2015; 11(43): 627-35.
[http://dx.doi.org/10.4103/0973-1296.160470] [PMID: 26246742]
[74]
Cheong SH, Furuhashi K, Ito K, et al. Daidzein promotes glucose uptake through glucose transporter 4 translocation to plasma membrane in L6 myocytes and improves glucose homeostasis in Type 2 diabetic model mice. J Nutr Biochem 2014; 25(2): 136-43.
[http://dx.doi.org/10.1016/j.jnutbio.2013.09.012] [PMID: 24445037]
[75]
Ebrahimi T, Behdad B, Abbasi MA, et al. Retraction Note: High doses of garlic extract significantly attenuated the ratio of serum LDL to HDL level in rat-fed with hypercholesterolemia diet. Diagn Pathol 2016; 11(1): 119.
[http://dx.doi.org/10.1186/s13000-016-0557-4] [PMID: 27802804]
[76]
Bumrungpert A, Lilitchan S, Tuntipopipat S, Tirawanchai N, Komindr S. Ferulic acid supplementation improves lipidprofiles, oxidative stress, and inflammatory status inhyperlipidemic subjects: a randomized,double-blind, placebo-controlled clinical trial. Nutrients 2018; 10(6): 713.
[http://dx.doi.org/10.3390/nu10060713] [PMID: 29865227]
[77]
Xie S, Sinha RA, Singh BK, Li GD, Han W, Yen PM. Resveratrol induces insulin gene expression in mouse pancreatic α-cells. Cell Biosci 2013; 3(1): 47.
[http://dx.doi.org/10.1186/2045-3701-3-47] [PMID: 24330680]
[78]
Zhou XX, Yang Q, Xie YH, Sun JY, Qiu PC, Cao W, et al. Protective effect of tetrahydroxystilbeneglucoside against D-galactose induced aging process in mice. Phytochem Lett 2013; 6: 372-8.
[http://dx.doi.org/10.1016/j.phytol.2013.05.002]
[79]
Zhang Z, Zhang H, Li B, et al. Berberine activates thermogenesis in white and brown adipose tissue. Nat Commun 2014; 5: 5493.
[http://dx.doi.org/10.1038/ncomms6493] [PMID: 25423280]
[80]
Wu L, Velander P, Liu D, Xu B. Olive component oleuropein promotes β-cellinsulin secretion and protects β-cells from amylin amyloid-induced cytotoxicity. Biochemistry 2017; 56(38): 5035-9.
[http://dx.doi.org/10.1021/acs.biochem.7b00199] [PMID: 28829122]
[81]
Said O, Fulder S, Khalil K, Azaizeh H, Kassis E, Saad B. Maintaining a physiological blood glucose level with ‘glucolevel’, a combination of four anti-diabetes plants used in the traditional arab herbal medicine. Evid Based Complement Alternat Med 2008; 5(4): 421-8.
[http://dx.doi.org/10.1093/ecam/nem047] [PMID: 18955212]
[82]
Khanna P, Jain SC, Panagariya A, Dixit VP. Hypoglycemic activity of polypeptide-p from a plant source. J Nat Prod 1981; 44(6): 648-55.
[http://dx.doi.org/10.1021/np50018a002] [PMID: 7334382]
[83]
Omar EA, Kam A, Alqahtani A, et al. Herbal medicines and nutraceuticals for diabetic vascular complications: mechanisms of action and bioactive phytochemicals. Curr Pharm Des 2010; 16(34): 3776-807.
[http://dx.doi.org/10.2174/138161210794455076] [PMID: 21128894]
[84]
Chen Q, Chan LLY, Li ET. Bitter melon (Momordica charantia) reduces adiposity, lowers serum insulin and normalizes glucose tolerance in rats fed a high fat diet. J Nutr 2003; 133(4): 1088-93.
[http://dx.doi.org/10.1093/jn/133.4.1088] [PMID: 12672924]
[85]
Vroegrijk IO, van Diepen JA, van den Berg S, et al. Pomegranate seed oil, a rich source of punicic acid, prevents diet-induced obesity and insulin resistance in mice. Food Chem Toxicol 2011; 49(6): 1426-30.
[http://dx.doi.org/10.1016/j.fct.2011.03.037] [PMID: 21440024]
[86]
Okutan H, Ozcelik N, Yilmaz HR, Uz E. Effects of caffeic acid phenethyl ester on lipid peroxidation and antioxidant enzymes in diabetic rat heart. Clin Biochem 2005; 38(2): 191-6.
[http://dx.doi.org/10.1016/j.clinbiochem.2004.10.003] [PMID: 15642285]
[87]
Meng S, Cao J, Feng Q, Peng J, Hu Y. Roles of chlorogenic Acid on regulating glucose and lipids metabolism: a review. Evid Based Complement Alternat Med 2013; 2013 801457
[http://dx.doi.org/10.1155/2013/801457] [PMID: 24062792]
[88]
Anlar HG, Bacanlı M, Çal T, et al. Effects of cinnamic acid on complications of diabetes. Turk J Med Sci 2018; 48(1): 168-77.
[http://dx.doi.org/10.3906/sag-1708-8] [PMID: 29479980]
[89]
Fatima N, Hafizur RM, Hameed A, Ahmed S, Nisar M, Kabir N. Ellagic acid in Emblica officinalis exerts anti-diabetic activity through the action on β-cells of pancreas. Eur J Nutr 2017; 56(2): 591-601.
[http://dx.doi.org/10.1007/s00394-015-1103-y] [PMID: 26593435]
[90]
Karandrea S, Yin H, Liang X, Slitt AL, Heart EA. Thymoquinone ameliorates diabetic phenotype in Diet-Induced Obesity mice via activation of SIRT-1-dependent pathways. PLoS One 2017; 12 e0185374
[91]
Eze ED, Mohammed A, Tanko Y, Ahmed A, Rabiu KM. Hypoglycaemic effect of lycopene in streptozotocin-induced diabetic wistar rats. Br J Med Med Res 2015; 7: 762-70.
[http://dx.doi.org/10.9734/BJMMR/2015/15908]
[92]
Jagetia GC, Baliga MS, Venkatesh P, Ulloor JN. Influence of ginger rhizome (Zingiber officinale Rosc) on survival, glutathione and lipid peroxidation in mice after whole-body exposure to gamma radiation. Radiat Res 2003; 160(5): 584-92.
[http://dx.doi.org/10.1667/RR3057] [PMID: 14565823]
[93]
Su HC, Hung LM, Chen JK. Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats. Am J Physiol Endocrinol Metab 2006; 290(6): E1339-46.
[http://dx.doi.org/10.1152/ajpendo.00487.2005] [PMID: 16434553]
[94]
Szkudelski T, Szkudelska K. Anti-diabetic effects of resveratrol. Ann N Y Acad Sci 2011; 1215: 34-9.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05844.x] [PMID: 21261639]
[95]
Fiori JL, Shin YK, Kim W, et al. Resveratrol prevents β-cell dedifferentiation in nonhuman primates given a high-fat/high-sugar diet. Diabetes 2013; 62(10): 3500-13.
[http://dx.doi.org/10.2337/db13-0266] [PMID: 23884882]
[96]
Kar P, Laight D, Rooprai HK, Shaw KM, Cummings M. Effects of grape seed extract in Type 2 diabetic subjects at high cardiovascular risk: a double blind randomized placebo controlled trial examining metabolic markers, vascular tone, inflammation, oxidative stress and insulin sensitivity. Diabet Med 2009; 26(5): 526-31.
[http://dx.doi.org/10.1111/j.1464-5491.2009.02727.x] [PMID: 19646193]
[97]
Brasnyó P, Molnár GA, Mohás M, et al. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br J Nutr 2011; 106(3): 383-9.
[http://dx.doi.org/10.1017/S0007114511000316] [PMID: 21385509]
[98]
Bhatt JK, Thomas S, Nanjan MJ. Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus. Nutr Res 2012; 32(7): 537-41.
[http://dx.doi.org/10.1016/j.nutres.2012.06.003] [PMID: 22901562]
[99]
Lee MS, Hsu CC, Wahlqvist ML, Tsai HN, Chang YH, Huang YC. Type 2 diabetes increases and metformin reduces total, colorectal, liver and pancreatic cancer incidences in Taiwanese: a representative population prospective cohort study of 800,000 individuals. BMC Cancer 2011; 11: 20.
[http://dx.doi.org/10.1186/1471-2407-11-20] [PMID: 21241523]
[100]
Shirakawa S, Matsumoto I, Toyama H, et al. Pancreatic volumetric assessment as a predictor of new-onset diabetes following distal pancreatectomy. J Gastrointest Surg 2012; 16(12): 2212-9.
[http://dx.doi.org/10.1007/s11605-012-2039-7] [PMID: 23054900]
[101]
Alipour M, Salehi I, Ghadiri Soufi F. Effect of exercise on diabetes-induced oxidative stress in the rat hippocampus. Iran Red Crescent Med J 2012; 14(4): 222-8.
[PMID: 22754685]
[102]
Yar AS, Menevse S, Alp E. The effects of resveratrol on cyclooxygenase-1 and -2, nuclear factor kappa beta, matrix metalloproteinase-9, and sirtuin 1 mRNA expression in hearts of streptozotocin-induced diabetic rats. Genet Mol Res 2011; 10(4): 2962-75.
[http://dx.doi.org/10.4238/2011.November.29.7] [PMID: 22179968]
[103]
Ramadori G, Gautron L, Fujikawa T, Vianna CR, Elmquist JK, Coppari R. Central administration of resveratrol improves diet-induced diabetes. Endocrinology 2009; 150(12): 5326-33.
[http://dx.doi.org/10.1210/en.2009-0528] [PMID: 19819963]
[104]
Tan Z, Zhou LJ, Mu PW, et al. Caveolin-3 is involved in the protection of resveratrol against high-fat-diet-induced insulin resistance by promoting GLUT4 translocation to the plasma membrane in skeletal muscle of ovariectomized rats. J Nutr Biochem 2012; 23(12): 1716-24.
[http://dx.doi.org/10.1016/j.jnutbio.2011.12.003] [PMID: 22569348]
[105]
Bashmakov YK, Assaad-Khalil S, Petyaev IM. Resveratrol may be beneficial in treatment of diabetic foot syndrome. Med Hypotheses 2011; 77(3): 364-7.
[http://dx.doi.org/10.1016/j.mehy.2011.05.016] [PMID: 21689891]
[106]
Tomé-Carneiro J, Larrosa M, Yáñez-Gascón MJ, et al. One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol Res 2013; 72: 69-82.
[http://dx.doi.org/10.1016/j.phrs.2013.03.011] [PMID: 23557933]
[107]
Movahed A, Nabipour I, Lieben Louis X, et al. Antihyperglycemic effects of short term resveratrol supplementation in type 2 diabetic patients. Evid Based Complement Alternat Med 2013; 2013 851267
[http://dx.doi.org/10.1155/2013/851267] [PMID: 24073011]
[108]
Bashmakov YK, Assaad-Khalil SH, Abou Seif M, et al. Resveratrol promotes foot ulcer size reduction in type 2 diabetes patients. ISRN Endocrinol 2014; 2014 816307
[http://dx.doi.org/10.1155/2014/816307] [PMID: 24701359]
[109]
Ciddi V, Dodda D. Therapeutic potential of resveratrol in diabetic complications: In vitro and in vivo studies. Pharmacol Rep 2014; 66(5): 799-803.
[http://dx.doi.org/10.1016/j.pharep.2014.04.006] [PMID: 25149983]
[110]
Bitterman JL, Chung JH. Metabolic effects of resveratrol: addressing the controversies. Cell Mol Life Sci 2015; 72(8): 1473-88.
[http://dx.doi.org/10.1007/s00018-014-1808-8] [PMID: 25548801]
[111]
Zhu X, Wu C, Qiu S, Yuan X, Li L. Effects of resveratrol on glucose control and insulin sensitivity in subjects with type 2 diabetes: systematic review and meta-analysis. Nutr Metab (Lond) 2017; 14: 60.
[http://dx.doi.org/10.1186/s12986-017-0217-z] [PMID: 29018489]
[112]
Kuhad A, Sethi R, Chopra K. Lycopene attenuates diabetes-associated cognitive decline in rats. Life Sci 2008; 83(3-4): 128-34.
[http://dx.doi.org/10.1016/j.lfs.2008.05.013] [PMID: 18585396]
[113]
Valero MA, Vidal A, Burgos R, et al. [Meta-analysis on the role of lycopene in type 2 diabetes mellitus]. Nutr Hosp 2011; 26(6): 1236-41.
[PMID: 22411366]
[114]
Neyestani TR, Shariatzadeh N, Gharavi A, Kalayi A, Khalaji N. Physiological dose of lycopene suppressed oxidative stress and enhanced serum levels of immunoglobulin M in patients with Type 2 diabetes mellitus: a possible role in the prevention of long-term complications. J Endocrinol Invest 2007; 30(10): 833-8.
[http://dx.doi.org/10.1007/BF03349224] [PMID: 18075285]
[115]
Bayramoglu A, Bayramoglu G, Senturk H. Lycopene partially reverses symptoms of diabetes in rats with streptozotocin-induced diabetes. J Med Food 2013; 16(2): 128-32.
[http://dx.doi.org/10.1089/jmf.2012.2277] [PMID: 23347319]
[116]
Guo Y, Liu Y, Wang Y. Beneficial effect of lycopene on anti-diabetic nephropathy through diminishing inflammatory response and oxidative stress. Food Funct 2015; 6(4): 1150-6.
[http://dx.doi.org/10.1039/C5FO00004A] [PMID: 25689917]
[117]
Su X, Ren Y, Yu N, Kong L, Kang J. Thymoquinone inhibits inflammation, neoangiogenesis and vascular remodeling in asthma mice. Int Immunopharmacol 2016; 38: 70-80.
[http://dx.doi.org/10.1016/j.intimp.2016.05.018] [PMID: 27240137]
[118]
Li W, Zhou P, Wang G, Lu X, Jiang Y, Zhao X. Anti-inflammatory effects of lycopene prevents cardiac dysfunction in streptozotocin-diabetic rats. Int J Clin Exp Med 2016; 9: 8047-54.
[119]
Ali BH, Blunden G. Pharmacological and toxicological properties of Nigella sativa. Phytother Res 2003; 17(4): 299-305.
[http://dx.doi.org/10.1002/ptr.1309] [PMID: 12722128]
[120]
Le PM, Benhaddou-Andaloussi A, Elimadi A, Settaf A, Cherrah Y, Haddad PS. The petroleum ether extract of Nigella sativa exerts lipid-lowering and insulin-sensitizing actions in the rat. J Ethnopharmacol 2004; 94(2-3): 251-9.
[http://dx.doi.org/10.1016/j.jep.2004.04.030] [PMID: 15325727]
[121]
Fararh KM, Shimizu Y, Shiina T, Nikami H, Ghanem MM, Takewaki T. Thymoquinone reduces hepatic glucose production in diabetic hamsters. Res Vet Sci 2005; 79(3): 219-23.
[http://dx.doi.org/10.1016/j.rvsc.2005.01.001] [PMID: 16054891]
[122]
Sankaranarayanan C, Pari L. Thymoquinone ameliorates chemical induced oxidative stress and β-cell damage in experimental hyperglycemic rats. Chem Biol Interact 2011; 190(2-3): 148-54.
[http://dx.doi.org/10.1016/j.cbi.2011.02.029] [PMID: 21382363]
[123]
Vaishali K, Kumar KV, Adhikari P. UnniKrishnan B. Effects of yoga-based program on glycosylated hemoglobin level serum lipid profile in community dwelling elderly subjects with chronic type 2 diabetes mellitus–A randomized controlled trial. Phys Occup Ther Geriatr 2012; 30: 22-30.
[http://dx.doi.org/10.3109/02703181.2012.656835]
[124]
Bahmani M, Zargaran A, Rafieian-Kopaei M, Saki K. Ethnobotanical study of medicinal plants used in the management of diabetes mellitus in the Urmia, Northwest Iran. Asian Pac J Trop Med 2014; (7S1)S348-54.
[http://dx.doi.org/10.1016/S1995-7645(14)60257-1] [PMID: 25312149]
[125]
Kebapci N, Yenilmez A, Efe B, Entok E, Demirustu C. Bladder dysfunction in type 2 diabetic patients. Neurourol Urodyn 2007; 26(6): 814-9.
[http://dx.doi.org/10.1002/nau.20422] [PMID: 17455274]
[126]
Eid HM, Nachar A, Thong F, Sweeney G, Haddad PS. The molecular basis of the antidiabetic action of quercetin in cultured skeletal muscle cells and hepatocytes. Pharmacogn Mag 2015; 11(41): 74-81.
[http://dx.doi.org/10.4103/0973-1296.149708] [PMID: 25709214]
[127]
Angeloni C, Hrelia S. Quercetin reduces inflammatory responses in LPS-stimulated cardiomyoblasts. Oxid Med Cell Longev 2012; 2012 837104
[http://dx.doi.org/10.1155/2012/837104] [PMID: 22685622]
[128]
Monami M, Ahrén B, Dicembrini I, Mannucci E. Dipeptidyl peptidase-4 inhibitors and cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab 2013; 15(2): 112-20.
[http://dx.doi.org/10.1111/dom.12000] [PMID: 22925682]
[129]
Qadir NM, Ali KA, Qader SW. Antidiabetic effect of oleuropein from oleaeuropaea leaf against alloxaninduced type 1 diabetic in rats. Braz Arch Biol Technol 2016; 59 e16150116
[http://dx.doi.org/10.1590/1678-4324-2016150116]
[130]
Hussain SA, Jassim NA, Numan IT, Al-Khalifa II, Abdullah TA. Anti-inflammatory activity of silymarin in patients with knee osteoarthritis. A comparative study with piroxicam and meloxicam. Saudi Med J 2009; 30(1): 98-103.
[PMID: 19139781]
[131]
Badary OA, Nagi MN, al-Shabanah OA, al-Sawaf HA, al-Sohaibani MO, al-Bekairi AM. Thymoquinone ameliorates the nephrotoxicity induced by cisplatin in rodents and potentiates its antitumor activity. Can J Physiol Pharmacol 1997; 75(12): 1356-61.
[http://dx.doi.org/10.1139/y97-169] [PMID: 9534946]
[132]
Olthof MR, Hollman PC, Katan MB. Chlorogenic acid and caffeic acid are absorbed in humans. J Nutr 2001; 131(1): 66-71.
[http://dx.doi.org/10.1093/jn/131.1.66] [PMID: 11208940]
[133]
Eilerman RG. Cinnamic acid, cinnamaldehyde, and cinnamyl alcohol Kirk‐OthmerEncyclopedia of Chemical Technology. New York: Wiley & Sons 2000; pp. 1-1.
[134]
Wiesner J, Mitsch A, Wissner P, Jomaa H, Schlitzer M. Structure-activity relationships of novel anti-malarial agents. Part 2: cinnamic acid derivatives. Bioorg Med Chem Lett 2001; 11(3): 423-4.
[http://dx.doi.org/10.1016/S0960-894X(00)00684-3] [PMID: 11212126]
[135]
Natella F, Nardini M, Di Felice M, Scaccini C. Benzoic and cinnamic acid derivatives as antioxidants: structure-activity relation. J Agric Food Chem 1999; 47(4): 1453-9.
[http://dx.doi.org/10.1021/jf980737w] [PMID: 10563998]
[136]
Zhang YJ, Gan RY, Li S, et al. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 2015; 20(12): 21138-56.
[http://dx.doi.org/10.3390/molecules201219753] [PMID: 26633317]
[137]
Ganesan K, Sultan S. Oral Hypoglycemic MedicationsStatPearls [Internet] Treasure Island, FL: StatPearls Publishing 2019.Available from:. https://www.ncbi.nlm.nih.gov/books/NBK482386/


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 7
Year: 2020
Page: [657 - 673]
Pages: 17
DOI: 10.2174/1573399815666190906151319
Price: $65

Article Metrics

PDF: 22
HTML: 3
PRC: 1