MiR-125b-5p Inhibitor Might Protect Against Sevoflurane-induced Cognitive Impairments by Targeting LIMK1

Author(s): Jun Xiong, Huijun Wang, Feng Mu, Zhanxue Liu, Yin Bao, Yongxing Sun*

Journal Name: Current Neurovascular Research

Volume 16 , Issue 4 , 2019

Become EABM
Become Reviewer
Call for Editor


Purpose: Research has shown that exposure to anesthesia might increase the risks of cognitive impairments and learning difficulties. MiR-125b-5p contributed to anesthesia-induced hippocampal apoptosis. However, the role of miR-125b-5p in sevoflurane-induced cognitive impairments remains unclear.

Methods: Firstly, sevoflurane was used to establish a rat model and cognitive impairment was detected by the Morris water maze (MWM) test. The hippocampus was observed by HE staining. The lentivirus-miR-125b-5p antagomiR was transfected into rats to decrease miR-125b-5p. The interaction between miR-125b-5p and LIM domain kinase 1 (LIMK1) was confirmed by the luciferase reporter assay. The mRNA and expression levels of related genes and mRNA were examined by the Quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) and western blot.

Results: Sevoflurane induced the cognitive dysfunction presenting with longer latency time and few platform crossings in rats. Moreover, miR-125b-5p was observed to be up-regulated in both sevoflurane-anesthesia rats and sevoflurane-treated SH-SY5Y cells. More importantly, a decrease in miR-125b-5p could prevent sevoflurane-induced hippocampal apoptosis and inflammation in rats. Moreover, LIMK1 was the target gene of miR-125b-5p. Interestingly, si-LIMK1 could restore the sevoflurane-induced cell apoptosis in SH-SY5Y cells, which was alleviated by miR-125b-5p inhibitor. Finally, the miR-125b-5p inhibitor shortened the time to find the platform and increased the number of platform crossings compared to sevoflurane-anesthesia rats in the Morris water maze test. At the same time, the expression of LIMK1 was dramatically increased.

Conclusion: Altogether, these findings suggested that miR-125b-5p inhibitor could protect against the sevoflurane-induced cognitive impairments by targeting LIMK1.

Keywords: Sevoflurane, miR-125b-5p, cognitive impairments, LIMK1, Morris Water Maze (MWM), SH-SY5Y.

Sinner B, Becke K, Engelhard K. General anaesthetics and the developing brain: an overview. Anaesthesia 2014; 69(9): 1009-22.
[http://dx.doi.org/10.1111/anae.12637] [PMID: 24829066]
DiMaggio C, Sun LS, Li G. Early childhood exposure to anesthesia and risk of developmental and behavioral disorders in a sibling birth cohort. Anesth Analg 2011; 113(5): 1143-51.
[http://dx.doi.org/10.1213/ANE.0b013e3182147f42] [PMID: 21415431]
Ing C, DiMaggio C, Whitehouse A, et al. Long-term differences in language and cognitive function after childhood exposure to anesthesia. Pediatrics 2012; 130(3): e476-85.
[http://dx.doi.org/10.1542/peds.2011-3822] [PMID: 22908104]
Li W, Li DY, Zhao SM, et al. Rutin attenuates isoflurane-induced neuroapoptosis via modulating JNK and p38 MAPK pathways in the hippocampi of neonatal rats. Exp Ther Med 2017; 13(5): 2056-64.
[http://dx.doi.org/10.3892/etm.2017.4173] [PMID: 28565808]
Feng X, Liu JJ, Zhou X, et al. Single sevoflurane exposure decreases neuronal nitric oxide synthase levels in the hippocampus of developing rats. Br J Anaesth 2012; 109(2): 225-33.
[http://dx.doi.org/10.1093/bja/aes121] [PMID: 22535834]
Zhou X, Xian D, Xia J, et al. MicroRNA-34c is regulated by p53 and is involved in sevoflurane-induced apoptosis in the developing rat brain potentially via the mitochondrial pathway. Mol Med Rep 2017; 15(4): 2204-12.
[http://dx.doi.org/10.3892/mmr.2017.6268] [PMID: 28259954]
Pan Z, Lu XF, Shao C, et al. The effects of sevoflurane anesthesia on rat hippocampus: a genomic expression analysis. Brain Res 2011; 1381: 124-33.
[http://dx.doi.org/10.1016/j.brainres.2011.01.020] [PMID: 21241667]
Goto G, Hori Y, Ishikawa M, Tanaka S, Sakamoto A. Changes in the gene expression levels of microRNAs in the rat hippocampus by sevoflurane and propofol anesthesia. Mol Med Rep 2014; 9(5): 1715-22.
[http://dx.doi.org/10.3892/mmr.2014.2038] [PMID: 24626427]
Luo T, Yin S, Shi R, et al. miRNA expression profile and involvement of Let-7d-APP in aged rats with isoflurane-induced learning and memory impairment. PLoS One 2015; 10(3) e0119336
[http://dx.doi.org/10.1371/journal.pone.0119336] [PMID: 25799420]
Ma H, Wu Y, Yang H, et al. MicroRNAs in oral lichen planus and potential miRNA-mRNA pathogenesis with essential cytokines: A review. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 122(2): 164-73.
[http://dx.doi.org/10.1016/j.oooo.2016.03.018] [PMID: 27282956]
Mizuguchi Y, Takizawa T, Yoshida H, et al. Dysregulated miRNA in progression of hepatocellular carcinoma: A systematic review. Hepatol Res 2016; 46(5): 391-406.
Organista-Nava J, Gómez-Gómez Y, Illades-Aguiar B, Leyva-Vázquez MA. Regulation of the miRNA expression by TEL/AML1, BCR/ABL, MLL/AF4 and TCF3/PBX1 oncoproteins in acute lymphoblastic leukemia. [Review] Oncol Rep 2016; 36(3): 1226-32.
[http://dx.doi.org/10.3892/or.2016.4948] [PMID: 27431573]
Wen MM. Getting miRNA therapeutics into the target cells for neurodegenerative diseases: A mini-review. Front Mol Neurosci 2016; 9: 129.
[http://dx.doi.org/10.3389/fnmol.2016.00129] [PMID: 27920668]
Wang QX, Zhu YQ, Zhang H, et al. Altered MiRNA expression in gastric cancer: A systematic review and meta-analysis. Cell Physiol Biochem 2015; 35(3): 933-44.
Ganju A, Khan S, Hafeez BB, et al. miRNA nanotherapeutics for cancer. Drug Discov Today 2017; 22(2): 424-32.
[http://dx.doi.org/10.1016/j.drudis.2016.10.014] [PMID: 27815139]
Srivastava K, Srivastava A. Comprehensive review of genetic association studies and meta-analyses on miRNA polymorphisms and cancer risk. PLoS One 2012; 7(11) e50966
[http://dx.doi.org/10.1371/journal.pone.0050966] [PMID: 23226435]
Ratert N, Meyer HA, Jung M, et al. miRNA profiling identifies candidate mirnas for bladder cancer diagnosis and clinical outcome. J Mol Diagn 2013; 15(5): 695-705.
[http://dx.doi.org/10.1016/j.jmoldx.2013.05.008] [PMID: 23945108]
Yu X, Liu S, Li J, et al. MicroRNA-572 improves early post-operative cognitive dysfunction by down-regulating neural cell adhesion molecule 1. PLoS One 2015; 10(2) e0118511
[http://dx.doi.org/10.1371/journal.pone.0118511] [PMID: 25680004]
Ma X, Liu L, Meng J. MicroRNA-125b promotes neurons cell apoptosis and Tau phosphorylation in Alzheimer’s disease. Neurosci Lett 2017; 661: 57-62.
[http://dx.doi.org/10.1016/j.neulet.2017.09.043] [PMID: 28947385]
Banzhaf-Strathmann J, Benito E, May S, et al. MicroRNA-125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer’s disease. EMBO J 2014; 33(15): 1667-80.
[http://dx.doi.org/10.15252/embj.201387576] [PMID: 25001178]
Zhang L, Dong H, Si Y, et al. miR-125b promotes tau phosphorylation by targeting the neural cell adhesion molecule in neuropathological progression. Neurobiol Aging 2019; 73: 41-9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2018.09.011] [PMID: 30316051]
Xu G, Lu H, Dong Y, et al. Coenzyme Q10 reduces sevoflurane-induced cognitive deficiency in young mice. Br J Anaesth 2017; 119(3): 481-91.
[http://dx.doi.org/10.1093/bja/aex071] [PMID: 28482003]
Schoen J, Husemann L, Tiemeyer C, et al. Cognitive function after sevoflurane- vs. propofol-based anaesthesia for on-pump cardiac surgery: A randomized controlled trial. Br J Anaesth 2011; 106(6): 840-50.
[http://dx.doi.org/10.1093/bja/aer091] [PMID: 21518736]
Zhu Y, Wang Y, Yao R, et al. Enhanced neuroinflammation mediated by DNA methylation of the glucocorticoid receptor triggers cognitive dysfunction after sevoflurane anesthesia in adult rats subjected to maternal separation during the neonatal period. J Neuroinflam 2017; 14(1): 6.
[http://dx.doi.org/10.1186/s12974-016-0782-5] [PMID: 28086911]
Le Freche H, Brouillette J, Fernandez-Gomez FJ, et al. Tau phosphorylation and sevoflurane anesthesia: an association to postoperative cognitive impairment. Anesthesiology 2012; 116(4): 779-87.
[http://dx.doi.org/10.1097/ALN.0b013e31824be8c7] [PMID: 22343471]
Sun Z, Satomoto M, Adachi YU, Kinoshita H, Makita K. Inhibiting NADPH oxidase protects against long-term memory impairment induced by neonatal sevoflurane exposure in mice. Br J Anaesth 2016; 117(1): 80-6.
[http://dx.doi.org/10.1093/bja/aew064] [PMID: 27147542]
Su R, Sun P, Zhang D, Xiao W, Feng C, Zhong L. Neuroprotective effect of miR-410-3p against sevoflurane anesthesia-induced cognitive dysfunction in rats through PI3K/Akt signaling pathway via targeting C-X-C motif chemokine receptor 5. Genes Genomics 2019; 41(10): 1223-31. [https://www.ncbi.nlm.nih.gov/pubmed/31350734
[PMID: 31350734]
Ambros V. The functions of animal microRNAs. Nature 2004; 431(7006): 350-5.
[http://dx.doi.org/10.1038/nature02871] [PMID: 15372042]
Mohammadipoor-Ghasemabad L, Sangtarash MH, Sheibani V, Sasan HA, Esmaeili-Mahani S. Hippocampal microRNA-191a-5p regulates BDNF expression and shows correlation with cognitive impairment induced by paradoxical sleep deprivation. Neuroscience 2019; 414: 49-59. [https://www.ncbi.nlm.nih.gov/pubmed/31279826 [31279826]
Luo X, Hu R, Zheng Y, et al. Metformin exhibits anti-inflammatory effects in murine macrophages through Dicer/miR-34a-5p and miR-125b-5p. J Diabetes Investig 2019. Epub ahead of print
Rasheed Z, Rasheed N, Abdulmonem WA, Khan MI. MicroRNA-125b-5p regulates IL-1β induced inflammatory genes via targeting TRAF6-mediated MAPKs and NF-κB signaling in human osteoarthritic chondrocytes. Sci Rep 2019; 9(1): 6882.
[http://dx.doi.org/10.1038/s41598-019-42601-3] [PMID: 31053727]
Bayoumi AS, Park KM, Wang Y, et al. A carvedilol-responsive microRNA, miR-125b-5p protects the heart from acute myocardial infarction by repressing pro-apoptotic bak1 and klf13 in cardiomyocytes. J Mol Cell Cardiol 2018; 114: 72-82.
[http://dx.doi.org/10.1016/j.yjmcc.2017.11.003] [PMID: 29122578]
Wang Q, Yuan J, Yu Z, et al. FGF21 Attenuates high-fat diet-induced cognitive impairment via metabolic regulation and anti-inflammation of obese mice. Mol Neurobiol 2018; 55(6): 4702-17.
[http://dx.doi.org/10.1007/s12035-017-0663-7] [PMID: 28712011]
Liu W, Wu J, Huang J, et al. Electroacupuncture regulates hippocampal synaptic plasticity via miR-134-mediated LIMK1 function in rats with ischemic stroke. Neural Plast 2017; 2017 9545646
[http://dx.doi.org/10.1155/2017/9545646] [PMID: 28116173]
George J, Soares C, Montersino A, Beique JC, Thomas GM. Palmitoylation of LIM Kinase-1 ensures spine-specific actin polymerization and morphological plasticity. eLife 2015; 4e06327
[http://dx.doi.org/10.7554/eLife.06327] [PMID: 25884247]
An L, Liu J, Li WW, et al. Distribution of LIM domain kinase 1 in the olfactory bulb, cerebral cortex, hippocampus, and cerebellum of the App/PS+/- mice. Genet Mol Res 2015; 14(4): 17244-51.
[http://dx.doi.org/10.4238/2015.December.16.24] [PMID: 26681218]
Amrock LG, Starner ML, Murphy KL, Baxter MG. Long-term effects of single or multiple neonatal sevoflurane exposures on rat hippocampal ultrastructure. Anesthesiology 2015; 122(1): 87-95.
[http://dx.doi.org/10.1097/ALN.0000000000000477] [PMID: 25289484]
Kodama M, Satoh Y, Otsubo Y, et al. Neonatal desflurane exposure induces more robust neuroapoptosis than do isoflurane and sevoflurane and impairs working memory. Anesthesiology 2011; 115(5): 979-91.
[http://dx.doi.org/10.1097/ALN.0b013e318234228b] [PMID: 21956042]
Xiao H, Liu B, Chen Y, Zhang J. Learning, memory and synaptic plasticity in hippocampus in rats exposed to sevoflurane. Int J Develop Neurosci 2016; 48: 38-49.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 23 December, 2019
Page: [382 - 391]
Pages: 10
DOI: 10.2174/1567202616666190906145936
Price: $65

Article Metrics

PDF: 21