Catalytic Nanomedicine. Cu/TiO2–SiO2 Nanoparticles as Treatment of Diabetic Foot Ulcer: A Case Report

Author(s): Tessy López-Goerne*, Paola Ramírez-Olivares, Luis Armando Pérez-Dávalos, Javier Alejandro Velázquez-Muñoz, Jesús Reyes-González

Journal Name: Current Nanomedicine
(Formerly Recent Patents on Nanomedicine)

Volume 10 , Issue 3 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Introduction: Diabetes mellitus is one of the most important health issues worldwide. The rising incidence of the disease has resulted in a parallel increase of complications such as diabetic foot ulcers (DFU). It is estimated that 25% of patients with diabetes will develop foot ulcers over a lifetime. In Mexico, this lifetime incidence is about 40% to 50%, and 20% of the cases will require amputations. DFU can result in staggering financial burdens for the healthcare system and the patient. Therapies that promote rapid and complete healing and reduce the need for expensive surgical procedures would impact these costs substantially.

Methods: Cu/TiO2–SiO2 nanoparticles were synthesized by T. López et al. sol-gel patented method. After synthesis, they were characterized using transmission electron microscopy (TEM) and X-ray diffraction. Then, they were embedded in a polymeric gel matrix. The Cu/TiO2–SiO2 nanogel was used as conservative therapy for a chronic non-healing DFU on a 62-year old female with several comorbidities and chronic complications of diabetes. Wound debridement was performed prior to nanogel administration. The nanogel was applied over the ulcer on alternate days for an initial period of 2 weeks and then continued for 10 months.

Results: Significant improvement was observed in the wound healing process since the first applications. The infection was limited and tissue regeneration was enhanced until complete healing of the ulcer.

Conclusion: Cu/TiO2–SiO2 nanogel therapy enhanced reepithelialization and healing of the DFU. The successful outcome allowed to avoid the amputation that was proposed for the patient.

Keywords: Diabetic foot ulcer, diabetic foot disease, nanomedicine, catalytic nanomedicine, Cu/TiO2- SiO2 nanoparticles, case report, nanobiomaterials, nanobiocatalyzers.

[1]
Ibrahim A, Jude E, Langton K, Martinez-De Jesus FR, Harkless LB, Gawish H, et al. IDF clinical practice recommendations on the diabetic foot 2017.
[2]
De Ética Q. Ortopedia y Traumatología. Rev Colomb Ortop Traumatol 2015.
[http://dx.doi.org/10.1016/j.rccot.2015.04.006]
[3]
Surgeons AA of O Pie diabético 2012; 56: 47-52.http://orthoinfo.aaos.org/topic.cfm?topic=A00683
[4]
Guadarrama FC. Cuidado de los pies en usuarios que viven con diabetes en el estado de México: bases para la sistematización de la asistencia de enfermería 2011; 2(1): 23-7.
[5]
Ruiz Parizzi P. Pezzotto. Estudio de casos y controles Métodos Investig clínica y epidemiológica 2013; 81(22): 131-7.
[6]
Vásquez-García R. Perfiles clínico y epidemiológico de los pacientes con pie diabético Clinical and epidemiological profiles of patients with diabetic foot. Rev Esp Med Quir 2015; 294-301.
[7]
Castro G, Liceaga G, Arrioja A, et al. Guía clínica basada en evidencia para el manejo del pie diabético. Med Int Mex 2009; 25(6): 481-526.
[8]
Embil JM, Papp K, Sibbald G, et al. Recombinant human platelet-derived growth factor-BB (becaplermin) for healing chronic lower extremity diabetic ulcers: an open-label clinical evaluation of efficacy. Wound Repair Regen 2000; 8(3): 162-8.
[http://dx.doi.org/10.1046/j.1524-475x.2000.00162.x] [PMID: 10886806]
[9]
Glover JL, Weingarten MS, Buchbinder DS, Poucher RL, Deitrick GA III, Fylling CP. A 4-year outcome-based retrospective study of wound healing and limb salvage in patients with chronic wounds. Adv Wound Care 1997; 10(1): 33-8.
[http://dx.doi.org/PMID: 9204802]
[10]
Harrington C, Zagari MJ, Corea J, Klitenic J. A cost analysis of diabetic lower-extremity ulcers. Diabetes Care 2000; 23(9): 1333-8.
[http://dx.doi.org/10.2337/diacare.23.9.1333] [PMID: 10977028]
[11]
Piaggesi A, Schipani E, Campi F, et al. Conservative surgical approach versus non-surgical management for diabetic neuropathic foot ulcers: a randomized trial. Diabet Med 1998; 15(5): 412-7.
[http://dx.doi.org/10.1002/(SICI)1096-9136(199805)15:5<412:AID-DIA584>3.0.CO;2-1] [PMID: 9609364]
[12]
López-Goerne T, Ramírez P, Alvarez D, et al. Physicochemical properties and in vivo evaluation of Pt/TiO2-SiO2 nanopowders. Nanomedicine (Lond) 2018; 13(17): 2171-85.
[http://dx.doi.org/10.2217/nnm-2018-0078] [PMID: 30277422]
[13]
Lopez T, Cuevas JL, Ilharco L, et al. XPS characterization and E. Coli DNA degradation using functionalized Cu/TiO2 nanobiocatalysts. Mol Catal 2018; 449: 62-71.
[http://dx.doi.org/10.1016/j.mcat.2018.02.010]
[14]
Tessy López Göerne and et al. Uso de la nanopartícula de SiO2-TiO2 en el tratamiento de úlceras en pie diabético: comunicación preliminar Revista de la Facultad de Medicina de la UNAM 2015.
[15]
Lopez Goerne T, Arévalo A, Ramírez P, Larraza P. Copper nanoparticles as treatment of diabetic foot ulcers: A case report. GARJMMS 2017; 6(10): 267-70.
[16]
Frykberg RG, Armstrong DG, Giurini J, et al. Diabetic foot disorders: a clinical practice guideline. J Foot Ankle Surg 2000; 39(5)(Suppl.): S1-S60.
[http://dx.doi.org/10.1016/S1067-2516(07)60001-5] [PMID: 11280471]
[17]
Consensus development conference on diabetic foot wound care, 7-8 April 1999, Boston, Massachusetts. Diabetes Care 1999; 22(8): 1354-60.
[http://dx.doi.org/10.2337/diacare.22.8.1354] [PMID: 10480782]
[18]
Guía clínica basada en evidencia para el manejo del pie diabético. Medicina Interna México 2009; 25(6): 481-526.
[19]
Reiber GE, Pecoraro RE, Koepsell TD. Risk factors for amputation in patients with diabetes mellitus. A case-control study. Ann Intern Med 1992; 117(2): 97-105.
[http://dx.doi.org/10.7326/0003-4819-117-2-97] [PMID: 1605439]
[20]
Martínez R, Rosalba M, et al. Epidemiología de la diabetes mellitus en México, en Aguilar Salinas, Carlos A et al, (eds), Acciones para enfrentar a la diabetes Documento de postura Academia Nacional de Medicina de México, México. 2015.
[21]
Reiber GE, Boyko EJ, Smith DG. Lower extremity foot ulcers and amputations in diabetesDiabetes in America. 2nd ed. Washington, DC: U.S. Government Printing Office 1995; pp. 409-28.
[22]
Gürkan Polat T, Demirel Topel S. pH-Responsive carboxymethyl cellulose conjugated superparamagnetic iron oxide nanocarriers. J Sci Perspect 2019; 3(2): 99-110.
[http://dx.doi.org/10.26900/jsp.3.011]
[23]
Allou NB, Yadav A, Pal M, Goswamee RL. Biocompatible nanocomposite of carboxymethyl cellulose and functionalized carbon–norfloxacin intercalated layered double hydroxides. Carbohydr Polym Elsevier 2018; 15(186): 282-9.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.066]
[24]
Reeves R, Ribeiro A, Lombardo L, Boyer R, Leach JB. Synthesis and characterization of carboxymethylcellulose-methacrylate hydrogel cell scaffolds. Polymers (Basel) 2010; 2(3): 252-64.
[http://dx.doi.org/10.3390/polym2030252] [PMID: 22708058]
[25]
Capanema NSV, Mansur AAP, Mansur HS, et al. Eco-friendly and biocompatible cross-linked carboxymethylcellulose hydrogels as adsorbents for the removal of organic dye pollutants for environmental applications. Environ Technol 2018; 39(22): 2856-72.
[http://dx.doi.org/10.1080/09593330.2017.1367845] [PMID: 28805161]
[26]
Capanema NSV, Mansur AAP, Carvalho SM, et al. Physicochemical properties and antimicrobial activity of biocompatible carboxymethylcellulose-silver nanoparticle hybrids for wound dressing and epidermal repair. J Appl Polym Sci. John Wiley & Sons. Ltd 2018; 135(6): 45812.
[27]
ALGhanem A, Fernandes G, Visser M, Dziak R, Renné WG, Sabatini C. Biocompatibility and bond degradation of poly-acrylic acid coated copper iodide-adhesives. Dent Mater Elsevier 2017; 33(9): 336-47.
[28]
Zheng LL, Vanchinathan V, Dalal R, et al. Biocompatibility of poly(ethylene glycol) and poly(acrylic acid) interpenetrating network hydrogel by intrastromal implantation in rabbit cornea. J Biomed Mater Res A 2015; 103(10): 3157-65.
[http://dx.doi.org/10.1002/jbm.a.35453] [PMID: 25778285]
[29]
De Giglio E, Cafagna D, Ricci MA, Sabbatini L, Cometa S, Ferretti C, et al. Biocompatibility of poly(acrylic acid) thin coatings electro-synthesized onto TiAlV-based implants. J Bioact Compat Polym. SAGE PublicationsSage UK: London, England 2010; 25(4): 374-91.
[30]
Pecoraro RE, Reiber GE, Burgess EM. Pathways to diabetic limb amputation. Basis for prevention. Diabetes Care 1990; 13(5): 513-21.
[http://dx.doi.org/10.2337/diacare.13.5.513] [PMID: 2351029]
[31]
Prompers L, Huijberts M, Apelqvist J, et al. Optimal organization of health care in diabetic foot disease: introduction to the Eurodiale study. Int J Low Extrem Wounds 2007; 6(1): 11-7.
[http://dx.doi.org/10.1177/1534734606297245] [PMID: 17344196]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 3
Year: 2020
Page: [290 - 295]
Pages: 6
DOI: 10.2174/2468187309666190906121924

Article Metrics

PDF: 16
HTML: 2