Overview of Current Immunotherapies Targeting Mutated KRAS Cancers

Author(s): Winfrey Pui Yee Hoo, Pui Yan Siak, Lionel L.A. In*

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 23 , 2019

Become EABM
Become Reviewer
Call for Editor


The occurrence of somatic substitution mutations of the KRAS proto-oncogene is highly prevalent in certain cancer types, which often leads to constant activation of proliferative pathways and subsequent neoplastic transformation. It is often seen as a gateway mutation in carcinogenesis and has been commonly deemed as a predictive biomarker for poor prognosis and relapse when conventional chemotherapeutics are employed. Additionally, its mutational status also renders EGFR targeted therapies ineffective owing to its downstream location. Efforts to discover new approaches targeting this menacing culprit have been ongoing for years without much success, and with incidences of KRAS positive cancer patients being on the rise, researchers are now turning towards immunotherapies as the way forward. In this scoping review, recent immunotherapeutic developments and advances in both preclinical and clinical studies targeting K-ras directly or indirectly via its downstream signal transduction machinery will be discussed. Additionally, some of the challenges and limitations of various K-ras targeting immunotherapeutic approaches such as vaccines, adoptive T cell therapies, and checkpoint inhibitors against KRAS positive cancers will be deliberated.

Keywords: KRAS mutation, Cancer, Immunotherapies, Targeted therapies, Cancer vaccines, RTK.

Fernández-Medarde, A.; Santos, E. Ras in cancer and developmental diseases. Genes Cancer, 2011, 2(3), 344-358.
[http://dx.doi.org/10.1177/1947601911411084] [PMID: 21779504]
Hobbs, G.A.; Der, C.J.; Rossman, K.L. RAS isoforms and mutations in cancer at a glance. J. Cell Sci., 2016, 129(7), 1287-1292.
[http://dx.doi.org/10.1242/jcs.182873] [PMID: 26985062]
Kodaz, H.; Kostek, O.; Hacioglu, M.B.; Erdogan, B.; Kodaz, C.E.; Hacibekiroglu, I.; Turkmen, E.; Uzunoglu, S.; Cicin, I. Frequency of ras mutations (KRAS, NRAS, HRAS) in human solid cancer. EJMO, 2017, 1(1), 1-7.
Cox, A.D.; Fesik, S.W.; Kimmelman, A.C.; Luo, J.; Der, C.J. Drugging the undruggable RAS: Mission possible? Nat. Rev. Drug Discov., 2014, 13(11), 828-851.
[http://dx.doi.org/10.1038/nrd4389] [PMID: 25323927]
Soulières, D.; Greer, W.; Magliocco, A.M.; Huntsman, D.; Young, S.; Tsao, M.S.; Kamel-Reid, S. KRAS mutation testing in the treatment of metastatic colorectal cancer with anti-EGFR therapies. Curr. Oncol., 2010, 17(Suppl. 1), S31-S40.
[PMID: 20680106]
Rajasekharan, S.K.; Raman, T. Ras and Ras mutations in cancer. Cent. Eur. J. Biol., 2013, 8(7), 609-624.
Jancík, S.; Drábek, J.; Radzioch, D.; Hajdúch, M. Clinical relevance of KRAS in human cancers. J. Biomed. Biotechnol., 2010, 2010150960.
[http://dx.doi.org/10.1155/2010/150960] [PMID: 20617134]
Simanshu, D.K.; Nissley, D.V.; McCormick, F. RAS proteins and their regulators in human disease. Cell, 2017, 170(1), 17-33.
[http://dx.doi.org/10.1016/j.cell.2017.06.009] [PMID: 28666118]
Zeitouni, D.; Pylayeva-Gupta, Y.; Der, C.J.; Bryant, K.L. KRAS mutant pancreatic cancer: no lone path to an effective treatment. Cancers (Basel), 2016, 8(4), 45.
[http://dx.doi.org/10.3390/cancers8040045] [PMID: 27096871]
Bader, T.; Ismail, A. Higher prevalence of KRAS mutations in colorectal cancer in Saudi Arabia: propensity for lung metastasis. Alexandria J. Med., 2014, 50(3), 203-209.
Dobre, M.; Comănescu, M.; Arsene, D.; Iosif, C.; Bussolati, G. K-ras gene mutation status in colorectal cancer: comparative analysis of pyrosequencing and PCR-RFLP. Rom. J. Morphol. Embryol., 2013, 54(3), 567-574.
[PMID: 24068405]
Irahara, N.; Baba, Y.; Nosho, K.; Shima, K.; Yan, L.; Dias-Santagata, D.; Iafrate, A.J.; Fuchs, C.S.; Haigis, K.M.; Ogino, S. NRAS mutations are rare in colorectal cancer. Diagn. Mol. Pathol., 2010, 19(3), 157-163.
[http://dx.doi.org/10.1097/PDM.0b013e3181c93fd1] [PMID: 20736745]
Danielsen, S.A.; Eide, P.W.; Nesbakken, A.; Guren, T.; Leithe, E.; Lothe, R.A. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim. Biophys. Acta, 2015, 1855(1), 104-121.
[PMID: 25450577]
Garassino, M.C.; Marabese, M.; Rusconi, P.; Rulli, E.; Martelli, O.; Farina, G.; Scanni, A.; Broggini, M. Different types of K-Ras mutations could affect drug sensitivity and tumour behaviour in non-small-cell lung cancer. Ann. Oncol., 2011, 22(1), 235-237.
[http://dx.doi.org/10.1093/annonc/mdq680] [PMID: 21169473]
Porru, M.; Pompili, L.; Caruso, C.; Biroccio, A.; Leonetti, C. Targeting KRAS in metastatic colorectal cancer: current strategies and emerging opportunities. J. Exp. Clin. Cancer Res., 2018, 37(1), 57.
[http://dx.doi.org/10.1186/s13046-018-0719-1] [PMID: 29534749]
di Magliano, M.P.; Logsdon, C.D. Roles for KRAS in pancreatic tumor development and progression. Gastroenterology, 2013, 144(6), 1220-1229.
[http://dx.doi.org/10.1053/j.gastro.2013.01.071] [PMID: 23622131]
Tan, C.; Du, X. KRAS mutation testing in metastatic colorectal cancer. World J. Gastroenterol., 2012, 18(37), 5171-5180.
[PMID: 23066310]
Jinesh, G.G.; Sambandam, V.; Vijayaraghavan, S.; Balaji, K.; Mukherjee, S. Molecular genetics and cellular events of K-Ras-driven tumorigenesis. Oncogene, 2018, 37(7), 839-846.
[http://dx.doi.org/10.1038/onc.2017.377] [PMID: 29059163]
Conroy, T.; Desseigne, F.; Ychou, M.; Bouché, O.; Guimbaud, R.; Bécouarn, Y.; Adenis, A.; Raoul, J.L.; Gourgou-Bourgade, S.; de la Fouchardière, C.; Bennouna, J.; Bachet, J.B.; Khemissa-Akouz, F.; Péré-Vergé, D.; Delbaldo, C.; Assenat, E.; Chauffert, B.; Michel, P.; Montoto-Grillot, C.; Ducreux, M. Groupe tumeurs digestives of unicancer PRODIGE intergroup. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med., 2011, 364(19), 1817-1825.
[http://dx.doi.org/10.1056/NEJMoa1011923] [PMID: 21561347]
Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; Harris, M.; Reni, M.; Dowden, S.; Laheru, D.; Bahary, N.; Ramanathan, R.K.; Tabernero, J.; Hidalgo, M.; Goldstein, D.; Van Cutsem, E.; Wei, X.; Iglesias, J.; Renschler, M.F. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med., 2013, 369(18), 1691-1703.
[http://dx.doi.org/10.1056/NEJMoa1304369] [PMID: 24131140]
Goffin, J.; Lacchetti, C.; Ellis, P.M.; Ung, Y.C.; Evans, W.K. Lung Cancer Disease Site Group of Cancer Care Ontario’s Program in Evidence-Based Care. First-line systemic chemotherapy in the treatment of advanced non-small cell lung cancer: a systematic review. J. Thorac. Oncol., 2010, 5(2), 260-274.
[http://dx.doi.org/10.1097/JTO.0b013e3181c6f035] [PMID: 20101151]
Zeichner, S.B.; Terawaki, H.; Gogineni, K. A review of systemic treatment in metastatic triple-negative breast cancer. Breast Cancer (Auckl.), 2016, 10, 25-36.
[http://dx.doi.org/10.4137/BCBCR.S32783] [PMID: 27042088]
Ranpura, V.; Hapani, S.; Wu, S. Treatment-related mortality with bevacizumab in cancer patients: a meta-analysis. JAMA, 2011, 305(5), 487-494.
[http://dx.doi.org/10.1001/jama.2011.51] [PMID: 21285426]
Lau, T.P.; Roslani, A.C.; Lian, L.H.; Lee, P.C.; Hilmi, I.; Goh, K.L.; Chua, K.H. Association between EGF and VEGF functional polymorphisms and sporadic colorectal cancer in the Malaysian population. Genet. Mol. Res., 2014, 13(3), 5555-5561.
[http://dx.doi.org/10.4238/2014.July.25.9] [PMID: 25117311]
Hansen, T.F.; Jakobsen, A. Clinical implications of genetic variations in the VEGF system in relation to colorectal cancer. Pharmacogenomics, 2011, 12(12), 1681-1693.
[http://dx.doi.org/10.2217/pgs.11.118] [PMID: 22118052]
Kawalec, P.; Łopuch, S.; Mikrut, A. Effectiveness of targeted therapy in patients with previously untreated metastatic breast cancer: a systematic review and meta-analysis. Clin. Breast Cancer, 2015, 15(2), 90-100 e1..
[http://dx.doi.org/10.1016/j.clbc.2014.10.006] [PMID: 25441421]
Masoud, V.; Pagès, G. Targeted therapies in breast cancer: New challenges to fight against resistance. World J. Clin. Oncol., 2017, 8(2), 120-134.
[http://dx.doi.org/10.5306/wjco.v8.i2.120] [PMID: 28439493]
Chase, J.L. Clinical use of anti-vascular endothelial growth factor monoclonal antibodies in metastatic colorectal cancer. Pharmacotherapy, 2008, 28(11 Pt 2), 23S-30S.
[http://dx.doi.org/10.1592/phco.28.11-supp.23S] [PMID: 18980549]
Sandler, A.; Yi, J.; Dahlberg, S.; Kolb, M.M.; Wang, L.; Hambleton, J.; Schiller, J.; Johnson, D.H. Treatment outcomes by tumor histology in Eastern Cooperative Group Study E4599 of bevacizumab with paclitaxel/carboplatin for advanced non-small cell lung cancer. J. Thorac. Oncol., 2010, 5(9), 1416-1423.
[http://dx.doi.org/10.1097/JTO.0b013e3181da36f4] [PMID: 20686429]
Sandler, A.B.; Schiller, J.H.; Gray, R.; Dimery, I.; Brahmer, J.; Samant, M.; Wang, L.I.; Johnson, D.H. Retrospective evaluation of the clinical and radiographic risk factors associated with severe pulmonary hemorrhage in first-line advanced, unresectable non-small-cell lung cancer treated with Carboplatin and Paclitaxel plus bevacizumab. J. Clin. Oncol., 2009, 27(9), 1405-1412.
[http://dx.doi.org/10.1200/JCO.2008.16.2412] [PMID: 19224857]
Ferrer, I.; Zugazagoitia, J.; Herbertz, S.; John, W.; Paz-Ares, L.; Schmid-Bindert, G. KRAS-Mutant non-small cell lung cancer: From biology to therapy. Lung Cancer, 2018, 124, 53-64.
[http://dx.doi.org/10.1016/j.lungcan.2018.07.013] [PMID: 30268480]
Román, M.; Baraibar, I.; López, I.; Nadal, E.; Rolfo, C.; Vicent, S.; Gil-Bazo, I. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. Mol. Cancer, 2018, 17(1), 33.
[http://dx.doi.org/10.1186/s12943-018-0789-x] [PMID: 29455666]
Amanam, I.; Chung, V. Targeted therapies for pancreatic cancer. Cancers (Basel), 2018, 10(2), 36.
[http://dx.doi.org/10.3390/cancers10020036] [PMID: 29382159]
van Krieken, J.H.; Jung, A.; Kirchner, T.; Carneiro, F.; Seruca, R.; Bosman, F.T.; Quirke, P.; Fléjou, J.F.; Plato Hansen, T.; de Hertogh, G.; Jares, P.; Langner, C.; Hoefler, G.; Ligtenberg, M.; Tiniakos, D.; Tejpar, S.; Bevilacqua, G.; Ensari, A. KRAS mutation testing for predicting response to anti-EGFR therapy for colorectal carcinoma: proposal for an European quality assurance program. Virchows Arch., 2008, 453(5), 417-431.
[http://dx.doi.org/10.1007/s00428-008-0665-y] [PMID: 18802721]
Hagan, S.; Orr, M.C.; Doyle, B. Targeted therapies in colorectal cancer-an integrative view by PPPM. EPMA J., 2013, 4(1), 3.
[http://dx.doi.org/10.1186/1878-5085-4-3] [PMID: 23356214]
Lee, H.S.; Park, S.W. Systemic chemotherapy in advanced pancreatic cancer. Gut Liver, 2016, 10(3), 340-347.
[http://dx.doi.org/10.5009/gnl15465] [PMID: 27114434]
Miyamoto, Y.; Suyama, K.; Baba, H. Recent advances in targeting the EGFR signaling pathway for the treatment of metastatic colorectal cancer. Int. J. Mol. Sci., 2017, 18(4)E752
[http://dx.doi.org/10.3390/ijms18040752] [PMID: 28368335]
Lynch, T.J.; Patel, T.; Dreisbach, L.; McCleod, M.; Heim, W.J.; Hermann, R.C.; Paschold, E.; Iannotti, N.O.; Dakhil, S.; Gorton, S.; Pautret, V.; Weber, M.R.; Woytowitz, D. Cetuximab and first-line taxane/carboplatin chemotherapy in advanced non-small-cell lung cancer: results of the randomized multicenter phase III trial BMS099. J. Clin. Oncol., 2010, 28(6), 911-917.
[http://dx.doi.org/10.1200/JCO.2009.21.9618] [PMID: 20100966]
Pirker, R.; Pereira, J.R.; Szczesna, A.; von Pawel, J.; Krzakowski, M.; Ramlau, R.; Vynnychenko, I.; Park, K.; Yu, C.T.; Ganul, V.; Roh, J.K.; Bajetta, E.; O’Byrne, K.; de Marinis, F.; Eberhardt, W.; Goddemeier, T.; Emig, M.; Gatzemeier, U. FLEX Study Team. Cetuximab plus chemotherapy in patients with advanced non-small-cell lung cancer (FLEX): an open-label randomised phase III trial. Lancet, 2009, 373(9674), 1525-1531.
[http://dx.doi.org/10.1016/S0140-6736(09)60569-9] [PMID: 19410716]
Miller, V.A.; Hirsh, V.; Cadranel, J.; Chen, Y.M.; Park, K.; Kim, S.W.; Zhou, C.; Su, W.C.; Wang, M.; Sun, Y.; Heo, D.S.; Crino, L.; Tan, E.H.; Chao, T.Y.; Shahidi, M.; Cong, X.J.; Lorence, R.M.; Yang, J.C. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial. Lancet Oncol., 2012, 13(5), 528-538.
[http://dx.doi.org/10.1016/S1470-2045(12)70087-6] [PMID: 22452896]
Shaib, W.; Mahajan, R.; El-Rayes, B. Markers of resistance to anti-EGFR therapy in colorectal cancer. J. Gastrointest. Oncol., 2013, 4(3), 308-318.
[PMID: 23997942]
Forcella, M.; Oldani, M.; Epistolio, S.; Freguia, S.; Monti, E.; Fusi, P.; Frattini, M. Non-small cell lung cancer (NSCLC), EGFR downstream pathway activation and TKI targeted therapies sensitivity: Effect of the plasma membrane-associated NEU3. PLoS One, 2017, 12(10)e0187289
[http://dx.doi.org/10.1371/journal.pone.0187289] [PMID: 29088281]
Laheru, D.; Shah, P.; Rajeshkumar, N.V.; McAllister, F.; Taylor, G.; Goldsweig, H.; Le, D.T.; Donehower, R.; Jimeno, A.; Linden, S.; Zhao, M.; Song, D.; Rudek, M.A.; Hidalgo, M. Integrated preclinical and clinical development of S-trans, trans-Farnesylthiosalicylic Acid (FTS, Salirasib) in pancreatic cancer. Invest. New Drugs, 2012, 30(6), 2391-2399.
[http://dx.doi.org/10.1007/s10637-012-9818-6] [PMID: 22547163]
Bustinza-Linares, E.; Kurzrock, R.; Tsimberidou, A.M. Salirasib in the treatment of pancreatic cancer. Future Oncol., 2010, 6(6), 885-891.
[http://dx.doi.org/10.2217/fon.10.71] [PMID: 20528225]
Infante, J.R.; Somer, B.G.; Park, J.O.; Li, C.P.; Scheulen, M.E.; Kasubhai, S.M.; Oh, D.Y.; Liu, Y.; Redhu, S.; Steplewski, K.; Le, N. A randomised, double-blind, placebo-controlled trial of trametinib, an oral MEK inhibitor, in combination with gemcitabine for patients with untreated metastatic adenocarcinoma of the pancreas. Eur. J. Cancer, 2014, 50(12), 2072-2081.
[http://dx.doi.org/10.1016/j.ejca.2014.04.024] [PMID: 24915778]
Kota, J.; Hancock, J.; Kwon, J.; Korc, M. Pancreatic cancer: Stroma and its current and emerging targeted therapies. Cancer Lett., 2017, 391, 38-49.
[http://dx.doi.org/10.1016/j.canlet.2016.12.035] [PMID: 28093284]
Ostrem, J.M.L.; Shokat, K.M. Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design. Nat. Rev. Drug Discov., 2016, 15(11), 771-785.
[http://dx.doi.org/10.1038/nrd.2016.139] [PMID: 27469033]
Patricelli, M.P.; Janes, M.R.; Li, L.S.; Hansen, R.; Peters, U.; Kessler, L.V.; Chen, Y.; Kucharski, J.M.; Feng, J.; Ely, T.; Chen, J.H.; Firdaus, S.J.; Babbar, A.; Ren, P.; Liu, Y. Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state. Cancer Discov., 2016, 6(3), 316-329.
[http://dx.doi.org/10.1158/2159-8290.CD-15-1105] [PMID: 26739882]
Lito, P.; Solomon, M.; Li, L-S.; Hansen, R.; Rosen, N. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism. Science, 2016, 351(6273), 604-608.
[http://dx.doi.org/10.1126/science.aad6204] [PMID: 26841430]
Chan, B.A.; Hughes, B.G. Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl. Lung Cancer Res., 2015, 4(1), 36-54.
[PMID: 25806345]
Engelman, J.A.; Chen, L.; Tan, X.; Crosby, K.; Guimaraes, A.R.; Upadhyay, R.; Maira, M.; McNamara, K.; Perera, S.A.; Song, Y.; Chirieac, L.R.; Kaur, R.; Lightbown, A.; Simendinger, J.; Li, T.; Padera, R.F.; García-Echeverría, C.; Weissleder, R.; Mahmood, U.; Cantley, L.C.; Wong, K.K. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat. Med., 2008, 14(12), 1351-1356.
[http://dx.doi.org/10.1038/nm.1890] [PMID: 19029981]
Hata, A.N.; Yeo, A.; Faber, A.C.; Lifshits, E.; Chen, Z.; Cheng, K.A.; Walton, Z.; Sarosiek, K.A.; Letai, A.; Heist, R.S.; Mino-Kenudson, M.; Wong, K.K.; Engelman, J.A. Failure to induce apoptosis via BCL-2 family proteins underlies lack of efficacy of combined MEK and PI3K inhibitors for KRAS-mutant lung cancers. Cancer Res., 2014, 74(11), 3146-3156.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3728] [PMID: 24675361]
Corcoran, R.B.; Cheng, K.A.; Hata, A.N.; Faber, A.C.; Ebi, H.; Coffee, E.M.; Greninger, P.; Brown, R.D.; Godfrey, J.T.; Cohoon, T.J.; Song, Y.; Lifshits, E.; Hung, K.E.; Shioda, T.; Dias-Santagata, D.; Singh, A.; Settleman, J.; Benes, C.H.; Mino-Kenudson, M.; Wong, K.K.; Engelman, J.A. Synthetic lethal interaction of combined BCL-XL and MEK inhibition promotes tumor regressions in KRAS mutant cancer models. Cancer Cell, 2013, 23(1), 121-128.
[http://dx.doi.org/10.1016/j.ccr.2012.11.007] [PMID: 23245996]
Molina-Arcas, M.; Hancock, D.C.; Sheridan, C.; Kumar, M.S.; Downward, J. Coordinate direct input of both KRAS and IGF1 receptor to activation of PI3 kinase in KRAS-mutant lung cancer. Cancer Discov., 2013, 3(5), 548-563.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0446] [PMID: 23454899]
Lujambio, A. A new hope for KRAS mutant cancers. Sci. Transl. Me., 2018, 429(10), eaas8964.
Karoulia, Z.; Gavathiotis, E.; Poulikakos, P.I. New perspectives for targeting RAF kinase in human cancer. Nat. Rev. Cancer, 2017, 17(11), 676-691.
[http://dx.doi.org/10.1038/nrc.2017.79] [PMID: 28984291]
Gardner, T.A.; Elzey, B.D.; Hahn, N.M. Sipuleucel-T (Provenge) autologous vaccine approved for treatment of men with asymptomatic or minimally symptomatic castrate-resistant metastatic prostate cancer. Hum. Vaccin. Immunother., 2012, 8(4), 534-539.
[http://dx.doi.org/10.4161/hv.19795] [PMID: 22832254]
Beatty, P.L.; Finn, O.J. Therapeutic and prophylactic cancer vaccines. Encyclopedia Immunobiol, 2016, 4, 542-549.
Cutts, F.T.; Hall, A.J. Vaccines for neonatal viral infections: hepatitis B vaccine. Expert Rev. Vaccines, 2004, 3(4), 349-352.
[http://dx.doi.org/10.1586/14760584.3.4.349] [PMID: 15270632]
Einstein, M.H.; Baron, M.; Levin, M.J.; Chatterjee, A.; Edwards, R.P.; Zepp, F.; Carletti, I.; Dessy, F.J.; Trofa, A.F.; Schuind, A.; Dubin, G. HPV-010 Study Group. Comparison of the immunogenicity and safety of Cervarix and Gardasil human papillomavirus (HPV) cervical cancer vaccines in healthy women aged 18-45 years. Hum. Vaccin., 2009, 5(10), 705-719.
[http://dx.doi.org/10.4161/hv.5.10.9518] [PMID: 19684472]
Sharma, P.; Wagner, K.; Wolchok, J.D.; Allison, J.P. Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat. Rev. Cancer, 2011, 11(11), 805-812.
[http://dx.doi.org/10.1038/nrc3153] [PMID: 22020206]
Syn, N.L.; Teng, M.W.L.; Mok, T.S.K.; Soo, R.A. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol., 2017, 18(12), e731-e741.
[http://dx.doi.org/10.1016/S1470-2045(17)30607-1] [PMID: 29208439]
Huang, Y.; Kim, B.Y.S.; Chan, C.K.; Hahn, S.M.; Weissman, I.L.; Jiang, W. Improving immune-vascular crosstalk for cancer immunotherapy. Nat. Rev. Immunol., 2018, 18(3), 195-203.
[http://dx.doi.org/10.1038/nri.2017.145] [PMID: 29332937]
Zhang, H.; Chen, J. Current status and future directions of cancer immunotherapy. J. Cancer, 2018, 9(10), 1773-1781.
[http://dx.doi.org/10.7150/jca.24577] [PMID: 29805703]
Riley, R.S.; June, C.H.; Langer, R.; Mitchell, M.J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov., 2019, 18(3), 175-196.
[http://dx.doi.org/10.1038/s41573-018-0006-z] [PMID: 30622344]
Xiang, B.; Snook, A.E.; Magee, M.S.; Waldman, S.A. Colorectal cancer immunotherapy. Discov. Med., 2013, 15(84), 301-308.
[PMID: 23725603]
Melero, I.; Gaudernack, G.; Gerritsen, W.; Huber, C.; Parmiani, G.; Scholl, S.; Thatcher, N.; Wagstaff, J.; Zielinski, C.; Faulkner, I.; Mellstedt, H. Therapeutic vaccines for cancer: an overview of clinical trials. Nat. Rev. Clin. Oncol., 2014, 11(9), 509-524.
[http://dx.doi.org/10.1038/nrclinonc.2014.111] [PMID: 25001465]
Kakimi, K.; Karasaki, T.; Matsushita, H.; Sugie, T. Advances in personalized cancer immunotherapy. Breast Cancer, 2017, 24(1), 16-24.
[http://dx.doi.org/10.1007/s12282-016-0688-1] [PMID: 27000871]
Sanmamed, M.F.; Chen, L. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell, 2018, 175(2), 313-326.
[http://dx.doi.org/10.1016/j.cell.2018.09.035] [PMID: 30290139]
Ascierto, P.A.; Marincola, F.M. What have we learned from cancer immunotherapy in the last 3 years? J. Transl. Med., 2014, 12, 141.
[http://dx.doi.org/10.1186/1479-5876-12-141] [PMID: 24886164]
Wang, M.; Yin, B.; Wang, H.Y.; Wang, R-F. Current advances in T-cell-based cancer immunotherapy. Immunotherapy, 2014, 6(12), 1265-1278.
[http://dx.doi.org/10.2217/imt.14.86] [PMID: 25524383]
Jeanbart, L.; Swartz, M.A. Engineering opportunities in cancer immunotherapy. Proc. Natl. Acad. Sci. USA, 2015, 112(47), 14467-14472.
[http://dx.doi.org/10.1073/pnas.1508516112] [PMID: 26598681]
Slingluff, C.L., Jr The present and future of peptide vaccines for cancer: single or multiple, long or short, alone or in combination? Cancer J., 2011, 17(5), 343-350.
[http://dx.doi.org/10.1097/PPO.0b013e318233e5b2] [PMID: 21952285]
Yaddanapudi, K.; Mitchell, R.A.; Eaton, J.W. Cancer vaccines: Looking to the future. OncoImmunology, 2013, 2(3)e23403
[http://dx.doi.org/10.4161/onci.23403] [PMID: 23802081]
Speiser, D.E.; Flatz, L. Cancer immunotherapy drives implementation science in oncology. Hum. Vaccin. Immunother., 2014, 10(11), 3107-3110.
[http://dx.doi.org/10.4161/21645515.2014.983000] [PMID: 25625923]
Farkona, S.; Diamandis, E.P.; Blasutig, I.M. Cancer immunotherapy: the beginning of the end of cancer? BMC Med., 2016, 14, 73.
[http://dx.doi.org/10.1186/s12916-016-0623-5] [PMID: 27151159]
Hurley, L.P.; Bridges, C.B.; Harpaz, R.; Allison, M.A.; O’ Leary, S.T.; Crane, L.A.; Brtnikova, M.; Stokley, S.; Beaty, B.L.; Jimenez-Zambrano, A.; Kempe, A. Physician attitudes toward adult vaccines and other preventive practices, United States, 2012. Public Health Rep., 2016, 131(2), 320-330.
[http://dx.doi.org/10.1177/003335491613100216] [PMID: 26957667]
Ye, Z.; Qian, Q.; Jin, H.; Qian, Q. Cancer vaccine: learning lessons from immune checkpoint inhibitors. J. Cancer, 2018, 9(2), 263-268.
[http://dx.doi.org/10.7150/jca.20059] [PMID: 29344272]
Smith, A.J.; Oertle, J.; Prato, D. Immunotherapy in cancer treatment. OJMM, 2014, 4, 178-191.
Yang, J.; Zhang, Q.; Li, K.; Yin, H.; Zheng, J.N. Composite peptide-based vaccines for cancer immunotherapy. (Review) Int. J. Mol. Med., 2015, 35(1), 17-23.
[http://dx.doi.org/ 10.3892/ijmm.2014.2000] [PMID: 25395173]
Katsuda, M.; Yamaue, H. Cancer vaccine therapy based on peptides. Trends Immunother., 2017, 1(1), 10-18.
Wada, S.; Yada, E.; Ohtake, J.; Sasada, T. Personalized peptide vaccines for cancer therapy: current progress and state of the art. Expert Rev. Precis. Med. Drug Dev., 2017, 2(6), 1-11.
Bos, R.; Sherman, L.A. CD4+ T-cell help in the tumor milieu is required for recruitment and cytolytic function of CD8+ T lymphocytes. Cancer Res., 2010, 70(21), 8368-8377.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1322] [PMID: 20940398]
Janssen, E.M.; Droin, N.M.; Lemmens, E.E.; Pinkoski, M.J.; Bensinger, S.J.; Ehst, B.D.; Griffith, T.S.; Green, D.R.; Schoenberger, S.P. CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature, 2005, 434(7029), 88-93.
[http://dx.doi.org/10.1038/nature03337] [PMID: 15744305]
Quezada, S.A.; Simpson, T.R.; Peggs, K.S.; Merghoub, T.; Vider, J.; Fan, X.; Blasberg, R.; Yagita, H.; Muranski, P.; Antony, P.A.; Restifo, N.P.; Allison, J.P. Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J. Exp. Med., 2010, 207(3), 637-650.
[http://dx.doi.org/10.1084/jem.20091918] [PMID: 20156971]
Xie, Y.; Akpinarli, A.; Maris, C.; Hipkiss, E.L.; Lane, M.; Kwon, E.K.M.; Muranski, P.; Restifo, N.P.; Antony, P.A. Naive tumor-specific CD4(+) T cells differentiated in vivo eradicate established melanoma. J. Exp. Med., 2010, 207(3), 651-667.
[http://dx.doi.org/10.1084/jem.20091921] [PMID: 20156973]
Braumüller, H.; Wieder, T.; Brenner, E.; Aßmann, S.; Hahn, M.; Alkhaled, M.; Schilbach, K.; Essmann, F.; Kneilling, M.; Griessinger, C.; Ranta, F.; Ullrich, S.; Mocikat, R.; Braungart, K.; Mehra, T.; Fehrenbacher, B.; Berdel, J.; Niessner, H.; Meier, F.; van den Broek, M.; Häring, H.U.; Handgretinger, R.; Quintanilla-Martinez, L.; Fend, F.; Pesic, M.; Bauer, J.; Zender, L.; Schaller, M.; Schulze-Osthoff, K.; Röcken, M. T-helper-1-cell cytokines drive cancer into senescence. Nature, 2013, 494(7437), 361-365.
[http://dx.doi.org/10.1038/nature11824] [PMID: 23376950]
Wedén, S.; Klemp, M.; Gladhaug, I.P.; Møller, M.; Eriksen, J.A.; Gaudernack, G.; Buanes, T. Long-term follow-up of patients with resected pancreatic cancer following vaccination against mutant K-ras. Int. J. Cancer, 2011, 128(5), 1120-1128.
[http://dx.doi.org/10.1002/ijc.25449] [PMID: 20473937]
Chaft, J.E.; Litvak, A.; Arcila, M.E.; Patel, P.; D’Angelo, S.P.; Krug, L.M.; Rusch, V.; Mattson, A.; Coeshott, C.; Park, B.; Apelian, D.M.; Kris, M.G.; Azzoli, C.G. Phase II study of the GI-4000 KRAS vaccine after curative therapy in patients with stage I-III lung adenocarcinoma harboring a KRAS G12C, G12D, or G12V mutation. Clin. Lung Cancer, 2014, 15(6), 405-410.
[http://dx.doi.org/10.1016/j.cllc.2014.06.002] [PMID: 25044103]
Hartley, M.L.; Bade, N.A.; Prins, P.A.; Ampie, L.; Marshall, J.L. Pancreatic cancer, treatment options, and GI-4000. Hum. Vaccin. Immunother., 2014, 10(11), 3347-3353.
[http://dx.doi.org/10.1080/21645515.2014.1004017] [PMID: 25585100]
Palmer, D.H.; Dueland, S.; Valle, J.W.; Aksnes, A-K. A phase I/II trial of TG01/GM-CSF and gemcitabine as adjuvant therapy for treating patients with resected RAS-mutant adenocarcinoma of the pancreas. J. Clin. Oncol., 2017, 35(15), (Suppl. 4119).
Pan, J.; Zhang, Q.; Sei, S.; Shoemaker, R.H.; Lubet, R.A.; Wang, Y.; You, M. Immunoprevention of KRAS-driven lung adenocarcinoma by a multipeptide vaccine. Oncotarget, 2017, 8(47), 82689-82699.
[http://dx.doi.org/10.18632/oncotarget.19831] [PMID: 29137294]
Li, W.; Joshi, M.D.; Singhania, S.; Ramsey, K.H.; Murthy, A.K. Peptide vaccine: progress and challenges. Vaccines (Basel), 2014, 2(3), 515-536.
[http://dx.doi.org/10.3390/vaccines2030515] [PMID: 26344743]
Knittelfelder, R.; Riemer, A.B.; Jensen-Jarolim, E. Mimotope vaccination-from allergy to cancer. Expert Opin. Biol. Ther., 2009, 9(4), 493-506.
[http://dx.doi.org/10.1517/14712590902870386] [PMID: 19344285]
Buhrman, J.D.; Slansky, J.E. Mimotope vaccine efficacy gets a “boost” from native tumor antigens. OncoImmunology, 2013, 2(4)e23492
[http://dx.doi.org/10.4161/onci.23492] [PMID: 23734309]
Jensen-Jarolim, E.; Singer, J. Cancer vaccines inducing antibody production: more pros than cons. Expert Rev. Vaccines, 2011, 10(9), 1281-1289.
[http://dx.doi.org/10.1586/erv.11.105] [PMID: 21919618]
Singer, J.; Manzano-Szalai, K.; Fazekas, J.; Thell, K.; Bentley-Lukschal, A.; Stremnitzer, C.; Roth-Walter, F.; Weghofer, M.; Ritter, M.; Pino Tossi, K.; Hörer, M.; Michaelis, U.; Jensen-Jarolim, E. Proof of concept study with an HER-2 mimotope anticancer vaccine deduced from a novel AAV-mimotope library platform. OncoImmunology, 2016, 5(7)e1171446
[http://dx.doi.org/10.1080/2162402X.2016.1171446] [PMID: 27622022]
Ng, A.W.R.; Tan, P.J.; Hoo, W.P.Y.; Liew, D.S.; Teo, M.Y.M.; Siak, P.Y.; Ng, S.M.; Tan, E.W.; Abdul Rahim, R.; Lim, R.L.H.; Song, A.A.L. In, L.L.A. In silico-guided sequence modifications of K-ras epitopes improve immunological outcome against G12V and G13D mutant KRAS antigens. PeerJ, 2018, 6e5056
[http://dx.doi.org/10.7717/peerj.5056] [PMID: 30042874]
Jiang, B.; Liu, W.; Qu, H.; Meng, L.; Song, S.; Ouyang, T.; Shou, C. A novel peptide isolated from a phage display peptide library with trastuzumab can mimic antigen epitope of HER-2. J. Biol. Chem., 2005, 280(6), 4656-4662.
[http://dx.doi.org/10.1074/jbc.M411047200] [PMID: 15536075]
Yang, L.; Jiang, H.; Shi, B.; Wang, H.; Li, J.; Wang, H.; Yao, M.; Li, Z. Identification and characterization of Ch806 mimotopes. Cancer Immunol. Immunother., 2010, 59(10), 1481-1487.
[http://dx.doi.org/10.1007/s00262-010-0872-7] [PMID: 20544195]
Brämswig, K.H.; Knittelfelder, R.; Gruber, S.; Untersmayr, E.; Riemer, A.B.; Szalai, K.; Horvat, R.; Kammerer, R.; Zimmermann, W.; Zielinski, C.C.; Scheiner, O.; Jensen-Jarolim, E. Immunization with mimotopes prevents growth of carcinoembryonic antigen positive tumors in BALB/c mice. Clin. Cancer Res., 2007, 13(21), 6501-6508.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0692] [PMID: 17975163]
Meng, F.P.; Ding, J.; Yu, Z.C.; Han, Q.L.; Guo, C.C.; Liu, N.; Fan, D.M. Oral attenuated Salmonella typhimurium vaccine against MG7-Ag mimotope of gastric cancer. World J. Gastroenterol., 2005, 11(12), 1833-1836.
[http://dx.doi.org/10.3748/wjg.v11.i12.1833] [PMID: 15793876]
Luo, W.; Ko, E.; Hsu, J.C.; Wang, X.; Ferrone, S. Targeting melanoma cells with human high molecular weight-melanoma associated antigen-specific antibodies elicited by a peptide mimotope: functional effects. J. Immunol., 2006, 176(10), 6046-6054.
[http://dx.doi.org/10.4049/jimmunol.176.10.6046] [PMID: 16670313]
Wagner, S.; Krepler, C.; Allwardt, D.; Latzka, J.; Strommer, S.; Scheiner, O.; Pehamberger, H.; Wiedermann, U.; Hafner, C.; Breiteneder, H. Reduction of human melanoma tumor growth in severe combined immunodeficient mice by passive transfer of antibodies induced by a high molecular weight melanoma-associated antigen mimotope vaccine. Clin. Cancer Res., 2008, 14(24), 8178-8183.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0371] [PMID: 19088033]
Perosa, F.; Favoino, E.; Vicenti, C.; Guarnera, A.; Racanelli, V.; De Pinto, V.; Dammacco, F. Two structurally different rituximab-specific CD20 mimotope peptides reveal that rituximab recognizes two different CD20-associated epitopes. J. Immunol., 2009, 182(1), 416-423.
[http://dx.doi.org/10.4049/jimmunol.182.1.416] [PMID: 19109173]
Gil, M.; Bieniasz, M.; Wierzbicki, A.; Bambach, B.J.; Rokita, H.; Kozbor, D. Targeting a mimotope vaccine to activating Fcgamma receptors empowers dendritic cells to prime specific CD8+ T cell responses in tumor-bearing mice. J. Immunol., 2009, 183(10), 6808-6818.
[http://dx.doi.org/10.4049/jimmunol.0900364] [PMID: 19846865]
Kozbor, D. Cancer vaccine with mimotopes of tumor-associated carbohydrate antigens. Immunol. Res., 2010, 46(1-3), 23-31.
[http://dx.doi.org/10.1007/s12026-009-8120-y] [PMID: 19763891]
Hafner, C.; Wagner, S.; Jasinska, J.; Allwardt, D.; Scheiner, O.; Wolff, K.; Pehamberger, H.; Wiedermann, U.; Breiteneder, H. Epitope-specific antibody response to Mel-CAM induced by mimotope immunization. J. Invest. Dermatol., 2005, 124(1), 125-131.
[http://dx.doi.org/10.1111/j.0022-202X.2004.23515.x] [PMID: 15654965]
Shanmugam, A.; Suriano, R.; Chaudhuri, D.; Rajoria, S.; George, A.; Mittelman, A.; Tiwari, R.K. Identification of PSA peptide mimotopes using phage display peptide library. Peptides, 2011, 32(6), 1097-1102.
[http://dx.doi.org/10.1016/j.peptides.2011.04.018] [PMID: 21539876]
Srivatsan, S.; Patel, J.M.; Bozeman, E.N.; Imasuen, I.E.; He, S.; Daniels, D.; Selvaraj, P. Allogeneic tumor cell vaccines: the promise and limitations in clinical trials. Hum. Vaccin. Immunother., 2014, 10(1), 52-63.
[http://dx.doi.org/10.4161/hv.26568] [PMID: 24064957]
Geresu, M.A.; Sultan, A.F.; Ahmed, S.K.; Kassa, G.M. Immunotherapy against cancer: a comprehensive review. J. Cancer. Res. Exp. Oncol, 2016, 8(2), 15-25.
Li, J.; King, A.V.; Stickel, S.L.; Burgin, K.E.; Zhang, X.; Wagner, T.E.; Wei, Y. Whole tumor cell vaccine with irradiated S180 cells as adjuvant. Vaccine, 2009, 27(4), 558-564.
[http://dx.doi.org/10.1016/j.vaccine.2008.11.014] [PMID: 19027812]
Keenan, B.P.; Jaffee, E.M. Whole cell vaccines--past progress and future strategies. Semin. Oncol., 2012, 39(3), 276-286.
[http://dx.doi.org/10.1053/j.seminoncol.2012.02.007] [PMID: 22595050]
Simons, J.W.; Jaffee, E.M.; Weber, C.E.; Levitsky, H.I.; Nelson, W.G.; Carducci, M.A.; Lazenby, A.J.; Cohen, L.K.; Finn, C.C.; Clift, S.M.; Hauda, K.M.; Beck, L.A.; Leiferman, K.M.; Owens, A.H., Jr; Piantadosi, S.; Dranoff, G.; Mulligan, R.C.; Pardoll, D.M.; Marshall, F.F. Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte-macrophage colony-stimulating factor gene transfer. Cancer Res., 1997, 57(8), 1537-1546.
[PMID: 9108457]
Deacon, D.H.; Hogan, K.T.; Swanson, E.M.; Chianese-Bullock, K.A.; Denlinger, C.E.; Czarkowski, A.R.; Schrecengost, R.S.; Patterson, J.W.; Teague, M.W.; Slingluff, C.L., Jr The use of gamma-irradiation and ultraviolet-irradiation in the preparation of human melanoma cells for use in autologous whole-cell vaccines. BMC Cancer, 2008, 8, 360.
[http://dx.doi.org/10.1186/1471-2407-8-360] [PMID: 19055839]
Sharma, A.; Bode, B.; Wenger, R.H.; Lehmann, K.; Sartori, A.A.; Moch, H.; Knuth, A.; Boehmer, Lv.; Broek, Mv. γ-Radiation promotes immunological recognition of cancer cells through increased expression of cancer-testis antigens in vitro and in vivo. PLoS One, 2011, 6(11)e28217
[http://dx.doi.org/10.1371/journal.pone.0028217] [PMID: 22140550]
Schlom, J.; Gulley, J.L.; Arlen, P.M. Role of vaccine therapy in cancer: biology and practice. Curr. Oncol., 2007, 14(6), 238-245.
[http://dx.doi.org/10.3747/co.2007.158] [PMID: 18080016]
Mohebtash, M.; Madan, R.A.; Gulley, J.L.; Arlen, P.M. Therapeutic prostate cancer vaccines: a review of the latest developments. Curr. Opin. Investig. Drugs, 2008, 9(12), 1296-1301.
[PMID: 19037836]
Tian, H.; Shi, G.; Yang, G.; Zhang, J.; Li, Y.; Du, T.; Wang, J.; Xu, F.; Cheng, L.; Zhang, X.; Dai, L.; Chen, X.; Zhang, S.; Yang, Y.; Yu, D.; Wei, Y.; Deng, H. Cellular immunotherapy using irradiated lung cancer cell vaccine co-expressing GM-CSF and IL-18 can induce significant antitumor effects. BMC Cancer, 2014, 14, 48.
[http://dx.doi.org/10.1186/1471-2407-14-48] [PMID: 24475975]
Palucka, K. Banchereau, J. Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer, 2012, 12(4), 265-277.
[http://dx.doi.org/10.1038/nrc3258] [PMID: 22437871]
Schuler, G. Dendritic cells in cancer immunotherapy. Eur. J. Immunol., 2010, 40(8), 2123-2130.
[http://dx.doi.org/10.1002/eji.201040630] [PMID: 20853498]
Sabado, R.L.; Bhardwaj, N. Dendritic cell immunotherapy. Ann. N. Y. Acad. Sci., 2013, 1284, 31-45.
[http://dx.doi.org/10.1111/nyas.12125] [PMID: 23651191]
Meiliana, A.; Dewi, N.M.; Wijaya, A. Cancer immunotherapy: a review. Indones. Biomed. J., 2016, 8(1), 1-20.
Hammerstrom, A.E.; Cauley, D.H.; Atkinson, B.J.; Sharma, P. Cancer immunotherapy: sipuleucel-T and beyond. Pharmacotherapy, 2011, 31(8), 813-828.
[http://dx.doi.org/10.1592/phco.31.8.813] [PMID: 21923608]
Fishman, M. A changing world for DCvax: a PSMA loaded autologous dendritic cell vaccine for prostate cancer. Expert Opin. Biol. Ther., 2009, 9(12), 1565-1575.
[http://dx.doi.org/10.1517/14712590903446921] [PMID: 19916735]
Graff, J.N.; Chamberlain, E.D. Sipuleucel-T in the treatment of prostate cancer: an evidence-based review of its place in therapy. Core Evid., 2014, 10, 1-10.
[http://dx.doi.org/10.2147/CE.S54712] [PMID: 25565923]
Fioretti, D.; Iurescia, S.; Fazio, V.M.; Rinaldi, M. DNA vaccines: developing new strategies against cancer. J. Biomed. Biotechnol., 2010, 2010174378.
[http://dx.doi.org/10.1155/2010/174378] [PMID: 20368780]
Yang, B.; Jeang, J.; Yang, A.; Wu, T.C.; Hung, C-F. DNA vaccine for cancer immunotherapy. Hum. Vaccin. Immunother., 2014, 10(11), 3153-3164.
[http://dx.doi.org/10.4161/21645515.2014.980686] [PMID: 25625927]
Anderson, R.J.; Schneider, J. Plasmid DNA and viral vector-based vaccines for the treatment of cancer. Vaccine, 2007, 25(Suppl. 2), B24-B34.
[http://dx.doi.org/10.1016/j.vaccine.2007.05.030] [PMID: 17698262]
MacGregor, R.R.; Boyer, J.D.; Ugen, K.E.; Lacy, K.E.; Gluckman, S.J.; Bagarazzi, M.L.; Chattergoon, M.A.; Baine, Y.; Higgins, T.J.; Ciccarelli, R.B.; Coney, L.R.; Ginsberg, R.S.; Weiner, D.B. First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. J. Infect. Dis., 1998, 178(1), 92-100.
[http://dx.doi.org/10.1086/515613] [PMID: 9652427]
Smith, H.A. Regulation and review of DNA vaccine products. Dev. Biol. (Basel), 2000, 104, 57-62.
[PMID: 11713825]
Rinaldi, M.; Signori, E.; Rosati, P.; Cannelli, G.; Parrella, P.; Iannace, E.; Monego, G.; Ciafrè, S.A.; Farace, M.G.; Iurescia, S.; Fioretti, D.; Rasi, G.; Fazio, V.M. Feasibilty of in utero DNA vaccination following naked gene transfer into pig fetal muscle: transgene expression, immunity and safety. Vaccine, 2006, 24(21), 4586-4591.
[http://dx.doi.org/10.1016/j.vaccine.2005.08.030] [PMID: 16154671]
Weng, T.Y.; Yen, M.C.; Huang, C.T.; Hung, J.J.; Chen, Y.L.; Chen, W.C.; Wang, C.Y.; Chang, J.Y.; Lai, M.D. DNA vaccine elicits an efficient antitumor response by targeting the mutant Kras in a transgenic mouse lung cancer model. Gene Ther., 2014, 21(10), 888-896.
[http://dx.doi.org/10.1038/gt.2014.67] [PMID: 25077772]
Larocca, C.; Schlom, J. Viral vector-based therapeutic cancer vaccines. Cancer J., 2011, 17(5), 359-371.
[http://dx.doi.org/10.1097/PPO.0b013e3182325e63] [PMID: 21952287]
Lundstrom, K. New era in gene therapy.Novel Approaches and Strategies for Biologics, Vaccines and Cancer Therapies; Singh, M; Salnikova, M., Ed.; Elsevier: California, 2015, pp. 13-37.
Kantor, J.; Irvine, K.; Abrams, S.; Kaufman, H.; DiPietro, J.; Schlom, J. Antitumor activity and immune responses induced by a recombinant carcinoembryonic antigen-vaccinia virus vaccine. J. Natl. Cancer Inst., 1992, 84(14), 1084-1091.
[http://dx.doi.org/10.1093/jnci/84.14.1084] [PMID: 1619682]
Kass, E.; Schlom, J.; Thompson, J.; Guadagni, F.; Graziano, P.; Greiner, J.W. Induction of protective host immunity to carcinoembryonic antigen (CEA), a self-antigen in CEA transgenic mice, by immunizing with a recombinant vaccinia-CEA virus. Cancer Res., 1999, 59(3), 676-683.
[PMID: 9973217]
Lin, Y.; Zhang, H.; Liang, J.; Li, K.; Zhu, W.; Fu, L.; Wang, F.; Zheng, X.; Shi, H.; Wu, S.; Xiao, X.; Chen, L.; Tang, L.; Yan, M.; Yang, X.; Tan, Y.; Qiu, P.; Huang, Y.; Yin, W.; Su, X.; Hu, H.; Hu, J.; Yan, G. Identification and characterization of alphavirus M1 as a selective oncolytic virus targeting ZAP-defective human cancers. Proc. Natl. Acad. Sci. USA, 2014, 111(42), E4504-E4512.
[http://dx.doi.org/10.1073/pnas.1408759111] [PMID: 25288727]
Lin, E.; Nemunaitis, J. Oncolytic viral therapies. Cancer Gene Ther., 2004, 11(10), 643-664.
[http://dx.doi.org/10.1038/sj.cgt.7700733] [PMID: 15286681]
Lundstrom, K. Latest trends in cancer therapy applying viral vectors. Future Virol., 2017, 12(11), 667-684.
Schiedner, G.; Morral, N.; Parks, R.J.; Wu, Y.; Koopmans, S.C.; Langston, C.; Graham, F.L.; Beaudet, A.L.; Kochanek, S. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat. Genet., 1998, 18(2), 180-183.
[http://dx.doi.org/10.1038/ng0298-180] [PMID: 9462752]
Raper, S.E.; Chirmule, N.; Lee, F.S.; Wivel, N.A.; Bagg, A.; Gao, G.P.; Wilson, J.M.; Batshaw, M.L. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol. Genet. Metab., 2003, 80(1-2), 148-158.
[http://dx.doi.org/10.1016/j.ymgme.2003.08.016] [PMID: 14567964]
Wang, F.; Wang, Z.; Tian, H.; Qi, M.; Zhai, Z.; Li, S.; Li, R.; Zhang, H.; Wang, W.; Fu, S.; Lu, J.; Rodriguez, R.; Guo, Y.; Zhou, L. Biodistribution and safety assessment of bladder cancer specific recombinant oncolytic adenovirus in subcutaneous xenografts tumor model in nude mice. Curr. Gene Ther., 2012, 12(2), 67-76.
[http://dx.doi.org/10.2174/156652312800099599] [PMID: 22384806]
Fukazawa, T.; Matsuoka, J.; Yamatsuji, T.; Maeda, Y.; Durbin, M.L.; Naomoto, Y. Adenovirus-mediated cancer gene therapy and virotherapy. (Review) Int. J. Mol. Med., 2010, 25(1), 3-10.
[PMID: 19956895]
Matthews, K.S.; Alvarez, R.D.; Curiel, D.T. Advancements in adenoviral based virotherapy for ovarian cancer. Adv. Drug Deliv. Rev., 2009, 61(10), 836-841.
[http://dx.doi.org/10.1016/j.addr.2009.04.012] [PMID: 19422865]
Ekblad, M.; Halldén, G. Adenovirus-based therapy for prostate cancer. Curr. Opin. Mol. Ther., 2010, 12(4), 421-431.
[PMID: 20677093]
Fu, Y.J.; Du, J.; Yang, R.J.; Yin, L.T.; Liang, A.H. Potential adenovirus-mediated gene therapy of glioma cancer. Biotechnol. Lett., 2010, 32(1), 11-18.
[http://dx.doi.org/10.1007/s10529-009-0132-0] [PMID: 19784809]
Shapira, S.; Shapira, A.; Kazanov, D.; Hevroni, G.; Kraus, S.; Arber, N. Selective eradication of cancer cells by delivery of adenovirus-based toxins. Oncotarget, 2017, 8(24), 38581-38591.
[http://dx.doi.org/10.18632/oncotarget.16934] [PMID: 28445136]
Chaurasiya, S.; Warner, S. Viroimmunotherapy for colorectal cancer: clinical studies. Biomedicines, 2017, 5(1), 11.
[http://dx.doi.org/10.3390/biomedicines5010011] [PMID: 28536354]
Schlake, T.; Thess, A.; Fotin-Mleczek, M.; Kallen, K-J. Developing mRNA-vaccine technologies. RNA Biol., 2012, 9(11), 1319-1330.
[http://dx.doi.org/10.4161/rna.22269] [PMID: 23064118]
Fiedler, K.; Lazzaro, S.; Lutz, J.; Rauch, S.; Heidenreich, R. mRNA Cancer Vaccines. In: Current Strategies in Cancer Gene Therapy; Wolfgang Walther, Ed.; Springer International Publishing: Cham, 2016; pp. 61-85.
Nair, S.K.; Heiser, A.; Boczkowski, D.; Majumdar, A.; Naoe, M.; Lebkowski, J.S.; Vieweg, J.; Gilboa, E. Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nat. Med., 2000, 6(9), 1011-1017.
[http://dx.doi.org/10.1038/79519] [PMID: 10973321]
Scheel, B.; Teufel, R.; Probst, J.; Carralot, J.P.; Geginat, J.; Radsak, M.; Jarrossay, D.; Wagner, H.; Jung, G.; Rammensee, H.G.; Hoerr, I.; Pascolo, S. Toll-like receptor-dependent activation of several human blood cell types by protamine-condensed mRNA. Eur. J. Immunol., 2005, 35(5), 1557-1566.
[http://dx.doi.org/10.1002/eji.200425656] [PMID: 15832293]
Fotin-Mleczek, M.; Duchardt, K.M.; Lorenz, C.; Pfeiffer, R.; Ojkić-Zrna, S.; Probst, J.; Kallen, K.J. Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J. Immunother., 2011, 34(1), 1-15.
[http://dx.doi.org/10.1097/CJI.0b013e3181f7dbe8] [PMID: 21150709]
Sayour, E.J.; Sanchez-Perez, L.; Flores, C.; Mitchell, D.A. Bridging infectious disease vaccines with cancer immunotherapy: a role for targeted RNA based immunotherapeutics. J. Immunother. Cancer, 2015, 3, 13.
[http://dx.doi.org/10.1186/s40425-015-0058-0] [PMID: 25901285]
Yamamoto, A.; Kormann, M.; Rosenecker, J.; Rudolph, C. Current prospects for mRNA gene delivery. Eur. J. Pharm. Biopharm., 2009, 71(3), 484-489.
[http://dx.doi.org/10.1016/j.ejpb.2008.09.016] [PMID: 18948192]
Kreiter, S.; Diken, M.; Selmi, A.; Türeci, Ö.; Sahin, U. Tumor vaccination using messenger RNA: prospects of a future therapy. Curr. Opin. Immunol., 2011, 23(3), 399-406.
[http://dx.doi.org/10.1016/j.coi.2011.03.007] [PMID: 21497074]
Grunwitz, C.; Kranz, L.M. Messages that Prevail. In: Cancer Vaccines, Current Topics in Microbiology and Immunology; Natalia Savelyeva, Christian Ottensmeier, Eds.; Springer International Publishing: Cham,, 2017; 405, pp. 145-164.
Probst, J.; Weide, B.; Scheel, B.; Pichler, B.J.; Hoerr, I.; Rammensee, H.G.; Pascolo, S. Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid-specific, saturable and ion dependent. Gene Ther., 2007, 14(15), 1175-1180.
[http://dx.doi.org/10.1038/sj.gt.3302964] [PMID: 17476302]
Mitchell, D.A.; Nair, S.K. RNA-transfected dendritic cells in cancer immunotherapy. J. Clin. Invest., 2000, 106(9), 1065-1069.
[http://dx.doi.org/10.1172/JCI11405] [PMID: 11067858]
Kasper, B.; Tidow, N.; Grothues, D.; Welte, K. Differential expression and regulation of GTPases (RhoA and Rac2) and GDIs (LyGDI and RhoGDI) in neutrophils from patients with severe congenital neutropenia. Blood, 2000, 95(9), 2947-2953.
[PMID: 10779444]
Ancliff, P.J.; Gale, R.E.; Liesner, R.; Hann, I.M.; Linch, D.C. Mutations in the ELA2 gene encoding neutrophil elastase are present in most patients with sporadic severe congenital neutropenia but only in some patients with the familial form of the disease. Blood, 2001, 98(9), 2645-2650.
[http://dx.doi.org/10.1182/blood.V98.9.2645] [PMID: 11675333]
Rausch, S.; Schwentner, C.; Stenzl, A.; Bedke, J. mRNA vaccine CV9103 and CV9104 for the treatment of prostate cancer. Hum. Vaccin. Immunother., 2014, 10(11), 3146-3152.
[http://dx.doi.org/10.4161/hv.29553] [PMID: 25483661]
Sebastian, M.; Papachristofilou, A.; Weiss, C.; Früh, M.; Cathomas, R.; Hilbe, W.; Wehler, T.; Rippin, G.; Koch, S.D.; Scheel, B.; Fotin-Mleczek, M.; Heidenreich, R.; Kallen, K.J.; Gnad-Vogt, U.; Zippelius, A. Phase Ib study evaluating a self-adjuvanted mRNA cancer vaccine (RNActive®) combined with local radiation as consolidation and maintenance treatment for patients with stage IV non-small cell lung cancer. BMC Cancer, 2014, 14, 748.
[http://dx.doi.org/10.1186/1471-2407-14-748] [PMID: 25288198]
Rittig, S.M.; Haentschel, M.; Weimer, K.J.; Heine, A.; Muller, M.R.; Brugger, W.; Horger, M.S.; Maksimovic, O.; Stenzl, A.; Hoerr, I.; Rammensee, H.G.; Holderried, T.A.; Kanz, L.; Pascolo, S.; Brossart, P. Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol. Ther., 2011, 19(5), 990-999.
[http://dx.doi.org/10.1038/mt.2010.289] [PMID: 21189474]
Miliotou, A.N.; Papadopoulou, L.C. CAR T cell therapy: a new era in cancer immunotherapy. Curr. Pharm. Biotechnol., 2018, 19(1), 5-18.
[http://dx.doi.org/10.2174/1389201019666180418095526] [PMID: 29667553]
Rosenberg, S.A.; Lotze, M.T.; Muul, L.M.; Leitman, S.; Chang, A.E.; Ettinghausen, S.E.; Matory, Y.L.; Skibber, J.M.; Shiloni, E.; Vetto, J.T.; Seipp, C.A.; Simpson, C.; Reichert, C.M. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N. Engl. J. Med., 1985, 313(23), 1485-1492.
[http://dx.doi.org/10.1056/NEJM198512053132327] [PMID: 3903508]
Rosenberg, S.A.; Yannelli, J.R.; Yang, J.C.; Topalian, S.L.; Schwartzentruber, D.J.; Weber, J.S.; Parkinson, D.R.; Seipp, C.A.; Einhorn, J.H.; White, D.E. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J. Natl. Cancer Inst., 1994, 86(15), 1159-1166.
[http://dx.doi.org/10.1093/jnci/86.15.1159] [PMID: 8028037]
Dudley, M.E.; Wunderlich, J.R.; Yang, J.C.; Hwu, P.; Schwartzentruber, D.J.; Topalian, S.L.; Sherry, R.M.; Marincola, F.M.; Leitman, S.F.; Seipp, C.A.; Rogers-Freezer, L.; Morton, K.E.; Nahvi, A.; Mavroukakis, S.A.; White, D.E.; Rosenberg, S.A. A phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma. J. Immunother., 2002, 25(3), 243-251.
[http://dx.doi.org/10.1097/00002371-200205000-00007] [PMID: 12000866]
Jiang, S.S.; Tang, Y.; Zhang, Y.J.; Weng, D.S.; Zhou, Z.G.; Pan, K.; Pan, Q.Z.; Wang, Q.J.; Liu, Q.; He, J.; Zhao, J.J.; Li, J.; Chen, M.S.; Chang, A.E.; Li, Q.; Xia, J.C. A phase I clinical trial utilizing autologous tumor-infiltrating lymphocytes in patients with primary hepatocellular carcinoma. Oncotarget, 2015, 6(38), 41339-41349.
[http://dx.doi.org/10.18632/oncotarget.5463] [PMID: 26515587]
Rosenberg, S.A.; Packard, B.S.; Aebersold, P.M.; Solomon, D.; Topalian, S.L.; Toy, S.T.; Simon, P.; Lotze, M.T.; Yang, J.C.; Seipp, C.A.; Simpson, C.; Carter, C.; Bock, S.; Schwartzentruber, D.; Wei, J.P.; White, D.E. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N. Engl. J. Med., 1988, 319(25), 1676-1680.
[http://dx.doi.org/10.1056/NEJM198812223192527] [PMID: 3264384]
Rosenberg, S.A.; Restifo, N.P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science, 2015, 348(6230), 62-68.
[http://dx.doi.org/10.1126/science.aaa4967] [PMID: 25838374]
Rosenberg, S.A.; Yang, J.C.; Sherry, R.M.; Kammula, U.S.; Hughes, M.S.; Phan, G.Q.; Citrin, D.E.; Restifo, N.P.; Robbins, P.F.; Wunderlich, J.R.; Morton, K.E.; Laurencot, C.M.; Steinberg, S.M.; White, D.E.; Dudley, M.E. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res., 2011, 17(13), 4550-4557.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0116] [PMID: 21498393]
Pilon-Thomas, S.; Kuhn, L.; Ellwanger, S.; Janssen, W.; Royster, E.; Marzban, S.; Kudchadkar, R.; Zager, J.; Gibney, G.; Sondak, V.K.; Weber, J.; Mulé, J.J.; Sarnaik, A.A. Efficacy of adoptive cell transfer of tumor-infiltrating lymphocytes after lymphopenia induction for metastatic melanoma. J. Immunother., 2012, 35(8), 615-620.
[http://dx.doi.org/10.1097/CJI.0b013e31826e8f5f] [PMID: 22996367]
Radvanyi, L.G.; Bernatchez, C.; Zhang, M.; Fox, P.S.; Miller, P.; Chacon, J.; Wu, R.; Lizee, G.; Mahoney, S.; Alvarado, G.; Glass, M.; Johnson, V.E.; McMannis, J.D.; Shpall, E.; Prieto, V.; Papadopoulos, N.; Kim, K.; Homsi, J.; Bedikian, A.; Hwu, W-J.; Patel, S.; Ross, M.I.; Lee, J.E.; Gershenwald, J.E.; Lucci, A.; Royal, R.; Cormier, J.N.; Davies, M.A.; Mansaray, R.; Fulbright, O.J.; Toth, C.; Ramachandran, R.; Wardell, S.; Gonzalez, A.; Hwu, P. Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients. Clin. Cancer Res., 2012, 18(24), 6758-6770.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1177] [PMID: 23032743]
Besser, M.J.; Shapira-Frommer, R.; Itzhaki, O.; Treves, A.J.; Zippel, D.B.; Levy, D.; Kubi, A.; Shoshani, N.; Zikich, D.; Ohayon, Y.; Ohayon, D.; Shalmon, B.; Markel, G.; Yerushalmi, R.; Apter, S.; Ben-Nun, A.; Ben-Ami, E.; Shimoni, A.; Nagler, A.; Schachter, J. Adoptive transfer of tumor-infiltrating lymphocytes in patients with metastatic melanoma: intent-to-treat analysis and efficacy after failure to prior immunotherapies. Clin. Cancer Res., 2013, 19(17), 4792-4800.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0380] [PMID: 23690483]
Goff, S.L.; Dudley, M.E.; Citrin, D.E.; Somerville, R.P.; Wunderlich, J.R.; Danforth, D.N.; Zlott, D.A.; Yang, J.C.; Sherry, R.M.; Kammula, U.S.; Klebanoff, C.A.; Hughes, M.S.; Restifo, N.P.; Langhan, M.M.; Shelton, T.E.; Lu, L.; Kwong, M.L.; Ilyas, S.; Klemen, N.D.; Payabyab, E.C.; Morton, K.E.; Toomey, M.A.; Steinberg, S.M.; White, D.E.; Rosenberg, S.A. 2; Klemen, N.D.; Payabyab, E.C.; Morton, K.E.; Toomey, M.A.; Steinberg, S.M.; White, D.E.; Rosenberg, S.A. Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma. J. Clin. Oncol., 2016, 34(20), 2389-2397.
[http://dx.doi.org/10.1200/JCO.2016.66.7220] [PMID: 27217459]
Koury, J.; Lucero, M.; Cato, C.; Chang, L.; Geiger, J.; Henry, D.; Hernandez, J.; Hung, F.; Kaur, P.; Teskey, G.; Tran, A. Immunotherapies: exploiting the immune system for cancer treatment. J. Immunol. Res., 2018, 20189585614
[http://dx.doi.org/10.1155/2018/9585614] [PMID: 29725606]
Tran, E.; Robbins, P.F.; Lu, Y-C.; Prickett, T.D.; Gartner, J.J.; Jia, L.; Pasetto, A.; Zheng, Z.; Ray, S.; Groh, E.M.; Kriley, I.R.; Rosenberg, S.A. T cell transfer therapy targeting mutant KRAS in cancer. N. Engl. J. Med., 2016, 375(23), 2255-2262.
[http://dx.doi.org/10.1056/NEJMoa1609279] [PMID: 27959684]
Sadelain, M.; Brentjens, R.; Rivière, I. The basic principles of chimeric antigen receptor design. Cancer Discov., 2013, 3(4), 388-398.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0548] [PMID: 23550147]
Enblad, G.; Karlsson, H.; Loskog, A.S. CAR-T cell therapy: the role of physical barriers and immunosuppression in lymphoma. Hum. Gene Ther., 2015, 26(8), 498-505.
[http://dx.doi.org/10.1089/hum.2015.054] [PMID: 26230974]
Tang, H.; Qiao, J.; Fu, Y.X. Immunotherapy and tumor microenvironment. Cancer Lett., 2016, 370(1), 85-90.
[http://dx.doi.org/10.1016/j.canlet.2015.10.009] [PMID: 26477683]
Chmielewski, M.; Hombach, A.A.; Abken, H. Antigen-specific T cell activation independently of the MHC: chimeric antigen receptor-redirected T cells. Front. Immunol., 2013, 4, 371.
[http://dx.doi.org/10.3389/fimmu.2013.00371] [PMID: 24273543]
Zhao, Z.; Chen, Y.; Francisco, N.M.; Zhang, Y.; Wu, M. The application of CAR-T cell therapy in hematological malignancies: advantages and challenges. Acta Pharm. Sin. B, 2018, 8(4), 539-551.
[http://dx.doi.org/10.1016/j.apsb.2018.03.001] [PMID: 30109179]
Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer, 2012, 12(4), 252-264.
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]
Postow, M.A.; Callahan, M.K.; Wolchok, J.D. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol., 2015, 33(17), 1974-1982.
[http://dx.doi.org/10.1200/JCO.2014.59.4358] [PMID: 25605845]
Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell, 2015, 27(4), 450-461.
[http://dx.doi.org/10.1016/j.ccell.2015.03.001] [PMID: 25858804]
Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science, 2018, 359(6382), 1350-1355.
[http://dx.doi.org/10.1126/science.aar4060] [PMID: 29567705]
Kim, L.; Liebowitz, D.; Lin, K.; Kasparek, K.; Pasetti, M.F.; Garg, S.J.; Gottlieb, K.; Trager, G.; Tucker, S.N. Safety and immunogenicity of an oral tablet norovirus vaccine, a phase I randomized, placebo-controlled trial. JCI Insight, 2018, 3(13)e121077
[http://dx.doi.org/10.1172/jci.insight.121077] [PMID: 29997294]
Oiseth, S.J.; Aziz, M.S. Cancer immunotherapy: A brief review of the history, possibilities, and challenges ahead. J. Cancer Metastasis Treat., 2017, 3, 250-261.
Lee, S.; Margolin, K. Cytokines in cancer immunotherapy. Cancers (Basel), 2011, 3(4), 3856-3893.
[http://dx.doi.org/10.3390/cancers3043856] [PMID: 24213115]
Golay, H.G.; Barbie, D.A. Targeting cytokine networks in KRAS-driven tumorigenesis. Expert Rev. Anticancer Ther., 2014, 14(8), 869-871.
[http://dx.doi.org/10.1586/14737140.2014.928596] [PMID: 24928447]
Khosravi, N.; Caetano, M.S.; Cumpian, A.M.; Unver, N.; De la Garza Ramos, C.; Noble, O.; Daliri, S.; Hernandez, B.J.; Gutierrez, B.A.; Evans, S.E.; Hanash, S.; Alekseev, A.M.; Yang, Y.; Chang, S.H.; Nurieva, R.; Kadara, H.; Chen, J.; Ostrin, E.J.; Moghaddam, S.J. IL22 promotes KRAS-mutant lung cancer by induction of a protumor immune response and protection of stemness properties. Cancer Immunol. Res., 2018, 6(7), 788-797.
[http://dx.doi.org/10.1158/2326-6066.CIR-17-0655] [PMID: 29764837]
Weinberg, F.D.; Ramnath, N. Targeting IL22: a potential therapeutic approach for Kras mutant lung cancer? Transl. Lung Cancer Res., 2018, 7(Suppl. 3), S243-S247.
[http://dx.doi.org/10.21037/tlcr.2018.09.04] [PMID: 30393613]
François, V.; Ottaviani, S.; Renkvist, N.; Stockis, J.; Schuler, G.; Thielemans, K.; Colau, D.; Marchand, M.; Boon, T.; Lucas, S.; van der Bruggen, P. The CD4(+) T-cell response of melanoma patients to a MAGE-A3 peptide vaccine involves potential regulatory T cells. Cancer Res., 2009, 69(10), 4335-4345.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3726] [PMID: 19435913]
Leffers, N.; Lambeck, A.J.A.; Gooden, M.J.M.; Hoogeboom, B.N.; Wolf, R.; Hamming, I.E.; Hepkema, B.G.; Willemse, P.H.B.; Molmans, B.H.W.; Hollema, H.; Drijfhout, J.W.; Sluiter, W.J.; Valentijn, A.R.P.M.; Fathers, L.M.; Oostendorp, J.; van der Zee, A.G.J.; Melief, C.J.; van der Burg, S.H.; Daemen, T.; Nijman, H.W. Immunization with a P53 synthetic long peptide vaccine induces P53-specific immune responses in ovarian cancer patients, a phase II trial. Int. J. Cancer, 2009, 125(9), 2104-2113.
[http://dx.doi.org/10.1002/ijc.24597] [PMID: 19621448]
Walter, S.; Weinschenk, T.; Stenzl, A.; Zdrojowy, R.; Pluzanska, A.; Szczylik, C.; Staehler, M.; Brugger, W.; Dietrich, P.Y.; Mendrzyk, R.; Hilf, N.; Schoor, O.; Fritsche, J.; Mahr, A.; Maurer, D.; Vass, V.; Trautwein, C.; Lewandrowski, P.; Flohr, C.; Pohla, H.; Stanczak, J.J.; Bronte, V.; Mandruzzato, S.; Biedermann, T.; Pawelec, G.; Derhovanessian, E.; Yamagishi, H.; Miki, T.; Hongo, F.; Takaha, N.; Hirakawa, K.; Tanaka, H.; Stevanovic, S.; Frisch, J.; Mayer-Mokler, A.; Kirner, A.; Rammensee, H.G.; Reinhardt, C.; Singh-Jasuja, H. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat. Med., 2012, 18(8), 1254-1261.
[http://dx.doi.org/10.1038/nm.2883] [PMID: 22842478]
Cohen, E.P.; Chopra, A. O-Sullivan, I.; Kim, T.S. Enhancing cellular cancer vaccines. Immunotherapy, 2009, 1(3), 495-504.
[http://dx.doi.org/10.2217/imt.09.4] [PMID: 20352015]
Lokhov, P.G.; Balashova, E.E. Cellular cancer vaccines: an update on the development of vaccines generated from cell surface antigens. J. Cancer, 2010, 1, 230-241.
[http://dx.doi.org/10.7150/jca.1.230] [PMID: 21151581]
Thomas, M.C.; Greten, T.F.; Pardoll, D.M.; Jaffee, E.M. Enhanced tumor protection by granulocyte-macrophage colony-stimulating factor expression at the site of an allogeneic vaccine. Hum. Gene Ther., 1998, 9(6), 835-843.
[http://dx.doi.org/10.1089/hum.1998.9.6-835] [PMID: 9581906]
Nemunaitis, J.; Dillman, R.O.; Schwarzenberger, P.O.; Senzer, N.; Cunningham, C.; Cutler, J.; Tong, A.; Kumar, P.; Pappen, B.; Hamilton, C.; DeVol, E.; Maples, P.B.; Liu, L.; Chamberlin, T.; Shawler, D.L.; Fakhrai, H. Phase II study of belagenpumatucel-L, a transforming growth factor beta-2 antisense gene-modified allogeneic tumor cell vaccine in non-small-cell lung cancer. J. Clin. Oncol., 2006, 24(29), 4721-4730.
[http://dx.doi.org/10.1200/JCO.2005.05.5335] [PMID: 16966690]
Sahin, U.; Türeci, Ö. Personalized vaccines for cancer immunotherapy. Science, 2018, 359(6382), 1355-1360.
[http://dx.doi.org/10.1126/science.aar7112] [PMID: 29567706]
Probst, J.; Brechtel, S.; Scheel, B.; Hoerr, I.; Jung, G.; Rammensee, H-G.; Pascolo, S. Characterization of the ribonuclease activity on the skin surface. Genet. Vaccines Ther., 2006, 4, 4.
[http://dx.doi.org/10.1186/1479-0556-4-4] [PMID: 16732888]
Fotin-Mleczek, M.; Zanzinger, K.; Heidenreich, R.; Lorenz, C.; Thess, A.; Duchardt, K.M.; Kallen, K.J. Highly potent mRNA based cancer vaccines represent an attractive platform for combination therapies supporting an improved therapeutic effect. J. Gene Med., 2012, 14(6), 428-439.
[http://dx.doi.org/10.1002/jgm.2605] [PMID: 22262664]
Martinon, F.; Krishnan, S.; Lenzen, G.; Magné, R.; Gomard, E.; Guillet, J.G.; Lévy, J.P.; Meulien, P. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur. J. Immunol., 1993, 23(7), 1719-1722.
[http://dx.doi.org/10.1002/eji.1830230749] [PMID: 8325342]
Kochenderfer, J.N.; Dudley, M.E.; Feldman, S.A.; Wilson, W.H.; Spaner, D.E.; Maric, I.; Stetler-Stevenson, M.; Phan, G.Q.; Hughes, M.S.; Sherry, R.M.; Yang, J.C.; Kammula, U.S.; Devillier, L.; Carpenter, R.; Nathan, D.A.; Morgan, R.A.; Laurencot, C.; Rosenberg, S.A. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood, 2012, 119(12), 2709-2720.
[http://dx.doi.org/10.1182/blood-2011-10-384388] [PMID: 22160384]
Gore, L.; Zugmaier, G.; Handgretinger, R.; Locatelli, F.; Trippett, T.M.; Rheingold, S.R.; Bader, P.; Borkhardt, A.; Cooper, T.M.; O’Brien, M.M.; Zwaan, C.M.; Fischer, A.; Whitlock, J.; von Stackelberg, A. Cytological and molecular remissions with blinatumomab treatment in second or later bone marrow relapse in pediatric acute lymphoblastic leukemia (ALL). J. Clin. Oncol., 2013, 31(Suppl. 15), 10007-10007.
Riches, J.C.; Gribben, J.G. Understanding the immunodeficiency in chronic lymphocytic leukemia: potential clinical implications. Hematol. Oncol. Clin. North Am., 2013, 27(2), 207-235.
[http://dx.doi.org/10.1016/j.hoc.2013.01.003] [PMID: 23561470]
Bonifant, C.L.; Jackson, H.J.; Brentjens, R.J.; Curran, K.J. Toxicity and management in CAR T-cell therapy. Mol. Ther. Oncolytics, 2016, 3, 16011.
[http://dx.doi.org/10.1038/mto.2016.11] [PMID: 27626062]
Wei, G.; Ding, L.; Wang, J.; Hu, Y.; Huang, H. Advances of CD19-directed chimeric antigen receptor-modified T cells in refractory/relapsed acute lymphoblastic leukemia. Exp. Hematol. Oncol., 2017, 6, 10.
[http://dx.doi.org/10.1186/s40164-017-0070-9] [PMID: 28413717]
Allahyari, H.; Heidari, S.; Ghamgosha, M.; Saffarian, P.; Amani, J. Immunotoxin: A new tool for cancer therapy. Tumour Biol., 2017, 39(2)1010428317692226
[http://dx.doi.org/10.1177/1010428317692226] [PMID: 28218037]
FitzGerald, D.J.; Kreitman, R.; Wilson, W.; Squires, D.; Pastan, I. Recombinant immunotoxins for treating cancer. Int. J. Med. Microbiol., 2004, 293(7-8), 577-582.
[http://dx.doi.org/10.1078/1438-4221-00302] [PMID: 15149034]
Ghetie, V.; Vitetta, E.S. Chemical construction of immunotoxins. Mol. Biotechnol., 2001, 18(3), 251-268.
[http://dx.doi.org/10.1385/MB:18:3:251] [PMID: 11503519]
Emens, L.A.; Ascierto, P.A.; Darcy, P.K.; Demaria, S.; Eggermont, A.M.M.; Redmond, W.L.; Seliger, B.; Marincola, F.M. Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape. Eur. J. Cancer, 2017, 81, 116-129.
[http://dx.doi.org/10.1016/j.ejca.2017.01.035] [PMID: 28623775]
Liu, M.; Guo, F. Recent updates on cancer immunotherapy. Precis Clin Med, 2018, 1(2), 65-74.
[http://dx.doi.org/10.1093/pcmedi/pby011] [PMID: 30687562]
Stambrook, P.J.; Maher, J.; Farzaneh, F. Cancer immunotherapy: whence and whither. Mol. Cancer Res., 2017, 15(6), 635-650.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0427] [PMID: 28356330]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 15 November, 2019
Page: [2158 - 2175]
Pages: 18
DOI: 10.2174/1568026619666190904163524
Price: $65

Article Metrics

PDF: 60