LncRNA, Important Player in Bone Development and Disease

Author(s): Dijie Li, Chaofei Yang, Chong Yin, Fan Zhao, Zhihao Chen, Ye Tian, Kai Dang, Shanfeng Jiang, Wenjuan Zhang, Ge Zhang, Airong Qian*

Journal Name: Endocrine, Metabolic & Immune Disorders - Drug Targets
(Formerly Current Drug Targets - Immune, Endocrine & Metabolic Disorders)

Volume 20 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Bone is an important tissue and its normal function requires tight coordination of transcriptional networks and signaling pathways, and many of these networks/ pathways are dysregulated in pathological conditions affecting cartilage and bones. Long non-coding RNA (lncRNA) refers to a class of RNAs with a length of more than 200 nucleotides, lack of protein-coding potential, and exhibiting a wide range of biological functions. Although studies on lcnRNAs are still in their infancy, they have emerged as critical players in bone biology and bone diseases. The functions and exact mechanism of bone-related lncRNAs have not been fully classified yet.

Objective: The objective of this article is to summarize the current literature on lncRNAs on the basis of their role in bone biology and diseases, focusing on their emerging molecular mechanism, pathological implications and therapeutic potential.

Discussion: A number of lncRNAs have been identified and shown to play important roles in multiple bone cells and bone disease. The function and mechanism of bone-related lncRNA remain to be elucidated.

Conclusion: At present, majority of knowledge is limited to cellular levels and less is known on how lncRNAs could potentially control the development and homeostasis of bone. In the present review, we highlight some lncRNAs in the field of bone biology and bone disease. We also delineate some lncRNAs that might have deep impacts on understanding bone diseases and providing new therapeutic strategies to treat these diseases.

Keywords: Long noncoding RNA (lncRNA), bone, osteoblast, osteoclast, chondrocyte, osteosarcoma, osteoporosis, osteoarthritis.

[1]
Consortium, F. The transcriptional landscape of the mammalian genome (vol 310, pg 1559, 2005). Science, 2006, 311(5768), 1713-1713.
[PMID: 16556825]
[2]
Sundaram, G.M.; Veera Bramhachari, P. Molecular interplay of pro-inflammatory transcription factors and non-coding RNAs in esophageal squamous cell carcinoma. Tumour Biol., 2017, 39(6)1010428317705760
[http://dx.doi.org/10.1177/1010428317705760] [PMID: 28618941]
[3]
Derrien, T.; Johnson, R.; Bussotti, G.; Tanzer, A.; Djebali, S.; Tilgner, H.; Guernec, G.; Martin, D.; Merkel, A.; Knowles, D.G.; Lagarde, J.; Veeravalli, L.; Ruan, X.; Ruan, Y.; Lassmann, T.; Carninci, P.; Brown, J.B.; Lipovich, L.; Gonzalez, J.M.; Thomas, M.; Davis, C.A.; Shiekhattar, R.; Gingeras, T.R.; Hubbard, T.J.; Notredame, C.; Harrow, J.; Guigó, R. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res., 2012, 22(9), 1775-1789.
[http://dx.doi.org/10.1101/gr.132159.111] [PMID: 22955988]
[4]
Ponting, C.P.; Oliver, P.L.; Reik, W. Evolution and functions of long noncoding RNAs. Cell, 2009, 136(4), 629-641.
[http://dx.doi.org/10.1016/j.cell.2009.02.006] [PMID: 19239885]
[5]
Melé, M.; Rinn, J.L. “Cat’s Cradling” the 3D Genome by the Act of LncRNA Transcription. Mol. Cell, 2016, 62(5), 657-664.
[http://dx.doi.org/10.1016/j.molcel.2016.05.011] [PMID: 27259198]
[6]
Hung, T.; Wang, Y.; Lin, M.F.; Koegel, A.K.; Kotake, Y.; Grant, G.D.; Horlings, H.M.; Shah, N.; Umbricht, C.; Wang, P.; Wang, Y.; Kong, B.; Langerød, A.; Børresen-Dale, A.L.; Kim, S.K.; van de Vijver, M.; Sukumar, S.; Whitfield, M.L.; Kellis, M.; Xiong, Y.; Wong, D.J.; Chang, H.Y. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat. Genet., 2011, 43(7), 621-629.
[http://dx.doi.org/10.1038/ng.848] [PMID: 21642992]
[7]
Guo, F.; Guo, L.; Li, Y.; Zhou, Q.; Li, Z. MALAT1 is an oncogenic long non-coding RNA associated with tumor invasion in non-small cell lung cancer regulated by DNA methylation. Int. J. Clin. Exp. Pathol., 2015, 8(12), 15903-15910.
[PMID: 26884862]
[8]
Tong, X.; Gu, P.C.; Xu, S.Z.; Lin, X.J. Long non-coding RNA-DANCR in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis. Biosci. Biotechnol. Biochem., 2015, 79(5), 732-737.
[http://dx.doi.org/10.1080/09168451.2014.998617] [PMID: 25660720]
[9]
Zuo, C.; Wang, Z.; Lu, H.; Dai, Z.; Liu, X.; Cui, L. Expression profiling of lncRNAs in C3H10T1/2 mesenchymal stem cells undergoing early osteoblast differentiation. Mol. Med. Rep., 2013, 8(2), 463-467.
[http://dx.doi.org/10.3892/mmr.2013.1540] [PMID: 23799588]
[10]
Huang, Y.; Zheng, Y.; Jia, L.; Li, W.; Long Noncoding, R.N.A. Long Noncoding RNA H19 Promotes Osteoblast Differentiation Via TGF-β1/Smad3/HDAC Signaling Pathway by Deriving miR-675. Stem Cells, 2015, 33(12), 3481-3492.
[http://dx.doi.org/10.1002/stem.2225] [PMID: 26417995]
[11]
Zhuang, W.; Ge, X.; Yang, S.; Huang, M.; Zhuang, W.; Chen, P.; Zhang, X.; Fu, J.; Qu, J.; Li, B. Upregulation of lncRNA MEG3 Promotes Osteogenic Differentiation of Mesenchymal Stem Cells From Multiple Myeloma Patients By Targeting BMP4 Transcription. Stem Cells, 2015, 33(6), 1985-1997.
[http://dx.doi.org/10.1002/stem.1989] [PMID: 25753650]
[12]
Wang, Q.; Chen, B.; Ma, F.; Lin, S.; Cao, M.; Li, Y.; Gu, N. Magnetic iron oxide nanoparticles accelerate osteogenic differentiation of mesenchymal stem cells via modulation of long noncoding RNA INZEB2. Nano Res., 2017, 10(2), 626-642.
[http://dx.doi.org/10.1007/s12274-016-1322-4]
[13]
Zhang, L.; Yang, C.; Chen, S.; Wang, G.; Shi, B.; Tao, X.; Zhou, L.; Zhao, J.; Long Noncoding, R.N.A. Long Noncoding RNA DANCR Is a Positive Regulator of Proliferation and Chondrogenic Differentiation in Human Synovium-Derived Stem Cells. DNA Cell Biol., 2017, 36(2), 136-142.
[http://dx.doi.org/10.1089/dna.2016.3544] [PMID: 27982693]
[14]
Pachnis, V.; Belayew, A.; Tilghman, S.M. Locus unlinked to alpha-fetoprotein under the control of the murine raf and Rif genes. Proc. Natl. Acad. Sci. USA, 1984, 81(17), 5523-5527.
[http://dx.doi.org/10.1073/pnas.81.17.5523] [PMID: 6206499]
[15]
Li, Z.; Yan, M.; Yu, Y.; Wang, Y.; Lei, G.; Pan, Y.; Li, N.; Gobin, R.; Yu, J. LncRNA H19 promotes the committed differentiation of stem cells from apical papilla via miR-141/SPAG9 pathway. Cell Death Dis., 2019, 10(2), 130.
[http://dx.doi.org/10.1038/s41419-019-1337-3] [PMID: 30755596]
[16]
Liang, W-C.; Fu, W-M.; Wang, Y-B.; Sun, Y-X.; Xu, L-L.; Wong, C-W.; Chan, K-M.; Li, G.; Waye, M.M-Y.; Zhang, J-F. H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA. Sci. Rep., 2016, 6, 20121.
[http://dx.doi.org/10.1038/srep20121] [PMID: 26853553]
[17]
He, P.; Zhang, Z.; Huang, G.; Wang, H.; Xu, D.; Liao, W.; Kang, Y. miR-141 modulates osteoblastic cell proliferation by regulating the target gene of lncRNA H19 and lncRNA H19-derived miR-675. Am. J. Transl. Res., 2016, 8(4), 1780-1788.
[PMID: 27186302]
[18]
Wu, J.; Zhao, J.; Sun, L.; Pan, Y.; Wang, H.; Zhang, W.B. Long non-coding RNA H19 mediates mechanical tension-induced osteogenesis of bone marrow mesenchymal stem cells via FAK by sponging miR-138. Bone, 2018, 108, 62-70.
[http://dx.doi.org/10.1016/j.bone.2017.12.013] [PMID: 29253550]
[19]
Xing, D.; Liang, J.Q.; Li, Y.; Lu, J.; Jia, H.B.; Xu, L.Y.; Ma, X.L. Identification of long noncoding RNA associated with osteoarthritis in humans. Orthop. Surg., 2014, 6(4), 288-293.
[http://dx.doi.org/10.1111/os.12147] [PMID: 25430712]
[20]
Stuhlmüller, B.; Kunisch, E.; Franz, J.; Martinez-Gamboa, L.; Hernandez, M.M.; Pruss, A.; Ulbrich, N.; Erdmann, V.A.; Burmester, G.R.; Kinne, R.W. Detection of oncofetal h19 RNA in rheumatoid arthritis synovial tissue. Am. J. Pathol., 2003, 163(3), 901-911.
[http://dx.doi.org/10.1016/S0002-9440(10)63450-5] [PMID: 12937131]
[21]
Steck, E.; Boeuf, S.; Gabler, J.; Werth, N.; Schnatzer, P.; Diederichs, S.; Richter, W. Regulation of H19 and its encoded microRNA-675 in osteoarthritis and under anabolic and catabolic in vitro conditions. J. Mol. Med. (Berl.), 2012, 90(10), 1185-1195.
[http://dx.doi.org/10.1007/s00109-012-0895-y] [PMID: 22527881]
[22]
Hadji, F.; Boulanger, M-C.; Guay, S-P.; Gaudreault, N.; Amellah, S.; Mkannez, G.; Bouchareb, R.; Marchand, J.T.; Nsaibia, M.J.; Guauque-Olarte, S.; Pibarot, P.; Bouchard, L.; Bossé, Y.; Mathieu, P. Altered DNA Methylation of Long Noncoding RNA H19 in Calcific Aortic Valve Disease Promotes Mineralization by Silencing NOTCH1. Circulation, 2016, 134(23), 1848-1862.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.023116] [PMID: 27789555]
[23]
Miyoshi, N.; Wagatsuma, H.; Wakana, S.; Shiroishi, T.; Nomura, M.; Aisaka, K.; Kohda, T.; Surani, M. A.; Kaneko-Ishino, T.; Ishino, F. Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes to cells: devoted to molecular & cellular mechanisms, 2000, 5(3), 211-20.
[24]
Zhang, X.; Zhou, Y.; Mehta, K.R.; Danila, D.C.; Scolavino, S.; Johnson, S.R.; Klibanski, A. A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J. Clin. Endocrinol. Metab., 2003, 88(11), 5119-5126.
[http://dx.doi.org/10.1210/jc.2003-030222] [PMID: 14602737]
[25]
Zhuang, W.Z.; Chen, P.; Ge, X.P.; Fu, J.X.; Li, B.Z. Upregulation of lncRNA MEG3 Promotes osteogenic differentiation of mesenchymal Stem Cells from Multiple Myeloma By Targeting BMP4 Transcription. Blood, 2014, 124(21)
[http://dx.doi.org/10.1182/blood.V124.21.3435.3435]
[26]
Li, Z.; Jin, C.; Chen, S.; Zheng, Y.; Huang, Y.; Jia, L.; Ge, W.; Zhou, Y. Long non-coding RNA MEG3 inhibits adipogenesis and promotes osteogenesis of human adipose-derived mesenchymal stem cells via miR-140-5p. Mol. Cell. Biochem., 2017, 433(1-2), 51-60.
[http://dx.doi.org/10.1007/s11010-017-3015-z] [PMID: 28382492]
[27]
Wang, Q.; Li, Y.; Zhang, Y.; Ma, L.; Lin, L.; Meng, J.; Jiang, L.; Wang, L.; Zhou, P.; Zhang, Y. LncRNA MEG3 inhibited osteogenic differentiation of bone marrow mesenchymal stem cells from postmenopausal osteoporosis by targeting miR-133a-3p. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2017, 89, 1178-1186.
[28]
Su, W.; Xie, W.; Shang, Q.; Su, B. The Long Noncoding RNA MEG3 Is Downregulated and Inversely Associated with VEGF Levels in Osteoarthritis. BioMed Res. Int., 2015, 2015, 356893-356893.
[http://dx.doi.org/10.1155/2015/356893] [PMID: 26090403]
[29]
Tian, Z-Z.; Guo, X-J.; Zhao, Y-M.; Fang, Y. Decreased expression of long non-coding RNA MEG3 acts as a potential predictor biomarker in progression and poor prognosis of osteosarcoma. Int. J. Clin. Exp. Pathol., 2015, 8(11), 15138-15142.
[PMID: 26823857]
[30]
Sun, L.; Yang, C.; Xu, J.; Feng, Y.; Wang, L.; Cui, T.; Long Noncoding, R.N.A. Long Noncoding RNA EWSAT1 Promotes Osteosarcoma Cell Growth and Metastasis Through Suppression of MEG3 Expression. DNA Cell Biol., 2016, 35(12), 812-818.
[http://dx.doi.org/10.1089/dna.2016.3467] [PMID: 27860482]
[31]
Liu, Y.; Zeng, X.; Miao, J.; Liu, C.; Wei, F.; Liu, D.; Zheng, Z.; Ting, K.; Wang, C.; Guo, J. Upregulation of long noncoding RNA MEG3 inhibits the osteogenic differentiation of periodontal ligament cells. J. Cell. Physiol., 2019, 234(4), 4617-4626.
[http://dx.doi.org/10.1002/jcp.27248] [PMID: 30256394]
[32]
Jiang, M.; Wang, Y.R.; Xu, N.; Zhou, L.; An, Q. Long noncoding RNA MEG3 play an important role in osteosarcoma development through sponging microRNAs. J. Cell. Biochem., 2019, 120(4), 5151-5159.
[http://dx.doi.org/10.1002/jcb.27791] [PMID: 30324678]
[33]
Deng, L.; Hong, H.; Zhang, X.; Chen, D.; Chen, Z.; Ling, J.; Wu, L. Down-regulated lncRNA MEG3 promotes osteogenic differentiation of human dental follicle stem cells by epigenetically regulating Wnt pathway. Biochem. Biophys. Res. Commun., 2018, 503(3), 2061-2067.
[http://dx.doi.org/10.1016/j.bbrc.2018.07.160] [PMID: 30103943]
[34]
Xu, J.; Xu, Y. The lncRNA MEG3 downregulation leads to osteoarthritis progression via miR-16/SMAD7 axis. Cell Biosci., 2017, 7, 69.
[http://dx.doi.org/10.1186/s13578-017-0195-x] [PMID: 29255591]
[35]
Liu, C.; Cao, Z.; Bai, Y.; Dou, C.; Gong, X.; Liang, M.; Dong, R.; Quan, H.; Li, J.; Dai, J.; Kang, F.; Zhao, C.; Dong, S. LncRNA AK077216 promotes RANKL-induced osteoclastogenesis and bone resorption via NFATc1 by inhibition of NIP45. J. Cell. Physiol., 2019, 234(2), 1606-1617.
[http://dx.doi.org/10.1002/jcp.27031] [PMID: 30132869]
[36]
Dou, C.; Cao, Z.; Yang, B.; Ding, N.; Hou, T.; Luo, F.; Kang, F.; Li, J.; Yang, X.; Jiang, H.; Xiang, J.; Quan, H.; Xu, J.; Dong, S. Changing expression profiles of lncRNAs, mRNAs, circRNAs and miRNAs during osteoclastogenesis. Sci. Rep., 2016, 6, 21499.
[http://dx.doi.org/10.1038/srep21499] [PMID: 26856880]
[37]
Quan, H.; Liang, M.; Li, N.; Dou, C.; Liu, C.; Bai, Y.; Luo, W.; Li, J.; Kang, F.; Cao, Z.; Yang, X.; Jiang, H.; Dong, S. LncRNA-AK131850 Sponges MiR-93-5p in Newborn and Mature Osteoclasts to Enhance the Secretion of Vascular Endothelial Growth Factor a Promoting Vasculogenesis of Endothelial Progenitor Cells. Cell. Physiol. Biochem., 2018, 46(1), 401-417.
[http://dx.doi.org/10.1159/000488474] [PMID: 29590659]
[38]
Song, J.; Kim, D.; Han, J.; Kim, Y.; Lee, M.; Jin, E-J. PBMC and exosome-derived Hotair is a critical regulator and potent marker for rheumatoid arthritis. Clin. Exp. Med., 2015, 15(1), 121-126.
[http://dx.doi.org/10.1007/s10238-013-0271-4] [PMID: 24722995]
[39]
Li, C.; Wang, S.; Xing, Z.; Lin, A.; Liang, K.; Song, J.; Hu, Q.; Yao, J.; Chen, Z.; Park, P.K.; Hawke, D.H.; Zhou, J.; Zhou, Y.; Zhang, S.; Liang, H.; Hung, M.C.; Gallick, G.E.; Han, L.; Lin, C.; Yang, L.A. ROR1-HER3-lncRNA signalling axis modulates the Hippo-YAP pathway to regulate bone metastasis. Nat. Cell Biol., 2017, 19(2), 106-119.
[http://dx.doi.org/10.1038/ncb3464] [PMID: 28114269]
[40]
Wang, Y.; Luo, T.B.; Liu, L.; Cui, Z.Q. LncRNA LINC00311 Promotes the Proliferation and Differentiation of Osteoclasts in Osteoporotic Rats Through the Notch Signaling Pathway by Targeting DLL3. Cell. Physiol. Biochem., 2018, 47(6), 2291-2306.
[http://dx.doi.org/10.1159/000491539] [PMID: 29975944]
[41]
Hemmatian, H.; Bakker, A.D.; Klein-Nulend, J.; van Lenthe, G.H. Aging, Osteocytes, and Mechanotransduction. Curr. Osteoporos. Rep., 2017, 15(5), 401-411.
[http://dx.doi.org/10.1007/s11914-017-0402-z] [PMID: 28891009]
[42]
van Oers, R.F.M.; Wang, H.; Bacabac, R.G. Osteocyte shape and mechanical loading. Curr. Osteoporos. Rep., 2015, 13(2), 61-66.
[http://dx.doi.org/10.1007/s11914-015-0256-1] [PMID: 25663071]
[43]
St John, H.C.; Bishop, K.A.; Meyer, M.B.; Benkusky, N.A.; Leng, N.; Kendziorski, C.; Bonewald, L.F.; Pike, J.W. The osteoblast to osteocyte transition: epigenetic changes and response to the vitamin D3 hormone. Mol. Endocrinol., 2014, 28(7), 1150-1165.
[http://dx.doi.org/10.1210/me.2014-1091] [PMID: 24877565]
[44]
Fan, Q.; Li, H.; Liu, Z.; Zhang, Z.Q.; Li, H.; Ding, J.; Zhang, Z.M. Leptin inhibits AMPK alpha 2 down-regulation induced decrease in the osteocytic MLO-Y4 cell proliferation and the expression of osteogenic markers. Int. J. Clin. Exp. Pathol., 2017, 10(8), 8544.
[45]
Govey, P.M.; Kawasawa, Y.I.; Donahue, H.J. Mapping the osteocytic cell response to fluid flow using RNA-Seq. J. Biomech., 2015, 48(16), 4327-4332.
[http://dx.doi.org/10.1016/j.jbiomech.2015.10.045] [PMID: 26573903]
[46]
Wang, L.; Li, Z.; Li, Z.; Yu, B.; Wang, Y. Long noncoding RNAs expression signatures in chondrogenic differentiation of human bone marrow mesenchymal stem cells. Biochem. Biophys. Res. Commun., 2015, 456(1), 459-464.
[http://dx.doi.org/10.1016/j.bbrc.2014.11.106] [PMID: 25482444]
[47]
Ou, F.; Su, K.; Sun, J.; Liao, W.; Yao, Y.; Zheng, Y.; Zhang, Z. The LncRNA ZBED3-AS1 induces chondrogenesis of human synovial fluid mesenchymal stem cells. Biochem. Biophys. Res. Commun., 2017, 487(2), 457-463.
[http://dx.doi.org/10.1016/j.bbrc.2017.04.090] [PMID: 28431932]
[48]
Zhang, L.; Chen, S.; Bao, N.; Yang, C.; Ti, Y.; Zhou, L.; Zhao, J. Sox4 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cell via activation of long noncoding RNA DANCR. J. Mol. Histol., 2015, 46(6), 467-473.
[http://dx.doi.org/10.1007/s10735-015-9638-z] [PMID: 26514989]
[49]
Long non-coding RNA DANCR regulates proliferation and apoptosis of chondrocytes in osteoarthritis via miR-216a-5p-JAK2- STAT3 axis. Biosci Rap, 2018, 38(6)
[http://dx.doi.org/10.1042/BSR20181228] [PMID: 30361290]
[50]
Carlson, H.L.; Quinn, J.J.; Yang, Y.W.; Thornburg, C.K.; Chang, H.Y.; Stadler, H.S. LncRNA-HIT Functions as an Epigenetic Regulator of Chondrogenesis through Its Recruitment of p100/CBP Complexes. PLoS Genet., 2015, 11(12)e1005680
[http://dx.doi.org/10.1371/journal.pgen.1005680] [PMID: 26633036]
[51]
Zhang, C.; Wang, P.; Jiang, P.; Lv, Y.; Dong, C.; Dai, X.; Tan, L.; Wang, Z. Upregulation of lncRNA HOTAIR contributes to IL-1β-induced MMP overexpression and chondrocytes apoptosis in temporomandibular joint osteoarthritis. Gene, 2016, 586(2), 248-253.
[http://dx.doi.org/10.1016/j.gene.2016.04.016] [PMID: 27063559]
[52]
Pearson, M.J.; Philp, A.M.; Heward, J.A.; Roux, B.T.; Walsh, D.A.; Davis, E.T.; Lindsay, M.A.; Jones, S.W. Long Intergenic Noncoding RNAs Mediate the Human Chondrocyte Inflammatory Response and Are Differentially Expressed in Osteoarthritis Cartilage. Arthritis Rheumatol., 2016, 68(4), 845-856.
[http://dx.doi.org/10.1002/art.39520] [PMID: 27023358]
[53]
Dou, P.; Hu, R.; Zhu, W.; Tang, Q.; Li, D.; Li, H.; Wang, W. Long non-coding RNA HOTAIR promotes expression of ADAMTS-5 in human osteoarthritic articular chondrocytes. Pharmazie, 2017, 72(2), 113-117.
[PMID: 29441864]
[54]
Liu, Q.; Zhang, X.; Dai, L.; Hu, X.; Zhu, J.; Li, L.; Zhou, C.; Ao, Y. Long noncoding RNA related to cartilage injury promotes chondrocyte extracellular matrix degradation in osteoarthritis. Arthritis Rheumatol., 2014, 66(4), 969-978.
[http://dx.doi.org/10.1002/art.38309] [PMID: 24757148]
[55]
Shui, X.; Zhou, C.; Lin, W.; Yu, Y.; Feng, Y.; Kong, J. Long non-coding RNA BCAR4 promotes chondrosarcoma cell proliferation and migration through activation of mTOR signaling pathway. Exp. Biol. Med. (Maywood), 2017, 242(10), 1044-1050.
[http://dx.doi.org/10.1177/1535370217700735] [PMID: 28399646]
[56]
Zhang, G.; Wu, Y.; Xu, D.; Yan, X.; Long Noncoding, R.N.A. Long Noncoding RNA UFC1 Promotes Proliferation of Chondrocyte in Osteoarthritis by Acting as a Sponge for miR-34a. DNA Cell Biol., 2016, 35(11), 691-695.
[http://dx.doi.org/10.1089/dna.2016.3397] [PMID: 27529373]
[57]
Li, Y.; Li, S.; Luo, Y.; Liu, Y.; Yu, N. LncRNA PVT1 Regulates Chondrocyte Apoptosis in Osteoarthritis by Acting as a Sponge for miR-488-3p. DNA Cell Biol., 2017, 36(7), 571-580.
[http://dx.doi.org/10.1089/dna.2017.3678] [PMID: 28520497]
[58]
Liu, Q.; Hu, X.; Zhang, X.; Dai, L.; Duan, X.; Zhou, C.; Ao, Y. The TMSB4 Pseudogene LncRNA Functions as a Competing Endogenous RNA to Promote Cartilage Degradation in Human Osteoarthritis. Mol. Ther., 2016, 24(10), 1726-1733.
[http://dx.doi.org/10.1038/mt.2016.151] [PMID: 27469625]
[59]
Bao, X.; Ren, T.; Huang, Y.; Sun, K.; Wang, S.; Liu, K.; Zheng, B.; Guo, W. Knockdown of long non-coding RNA HOTAIR increases miR-454-3p by targeting Stat3 and Atg12 to inhibit chondrosarcoma growth. Cell Death Dis., 2017, 8(2)e2605
[http://dx.doi.org/10.1038/cddis.2017.31] [PMID: 28182000]
[60]
Zhu, K.P.; Zhang, C.L.; Shen, G.Q.; Zhu, Z.S. Long noncoding RNA expression profiles of the doxorubicin-resistant human osteosarcoma cell line MG63/DXR and its parental cell line MG63 as ascertained by microarray analysis. Int. J. Clin. Exp. Pathol., 2015, 8(8), 8754-8773.
[PMID: 26464619]
[61]
Wang, Z.; Liu, Z.; Wu, S. Long non-coding RNA CTA sensitizes osteosarcoma cells to doxorubicin through inhibition of autophagy. Oncotarget, 2017, 8(19), 31465-31477.
[http://dx.doi.org/10.18632/oncotarget.16356] [PMID: 28415557]
[62]
Che, W.; Dong, Y.; Quan, H.B. RANKL inhibits cell proliferation by regulating MALAT1 expression in a human osteoblastic cell line hFOB 1.19. Cell. Mol. Biol., 2015, 61(1), 7-14.
[PMID: 25817340]
[63]
Xiao, X.; Zhou, T.; Guo, S.; Guo, C.; Zhang, Q.; Dong, N.; Wang, Y. LncRNA MALAT1 sponges miR-204 to promote osteoblast differentiation of human aortic valve interstitial cells through up-regulating Smad4. Int. J. Cardiol., 2017, 243, 404-412.
[http://dx.doi.org/10.1016/j.ijcard.2017.05.037] [PMID: 28522163]
[64]
Chan, L.H.; Wang, W.; Yeung, W.; Deng, Y.; Yuan, P.; Mak, K.K. Hedgehog signaling induces osteosarcoma development through Yap1 and H19 overexpression. Oncogene, 2014, 33(40), 4857-4866.
[http://dx.doi.org/10.1038/onc.2013.433] [PMID: 24141783]
[65]
Li, M.; Chen, H.; Zhao, Y.; Gao, S.; Cheng, C. H19 Functions as a ceRNA in Promoting Metastasis Through Decreasing miR-200s Activity in Osteosarcoma. DNA Cell Biol., 2016, 35(5), 235-240.
[http://dx.doi.org/10.1089/dna.2015.3171] [PMID: 27008415]
[66]
Ulaner, G.A.; Vu, T.H.; Li, T.; Hu, J.F.; Yao, X.M.; Yang, Y.; Gorlick, R.; Meyers, P.; Healey, J.; Ladanyi, M.; Hoffman, A.R. Loss of imprinting of IGF2 and H19 in osteosarcoma is accompanied by reciprocal methylation changes of a CTCF-binding site. Hum. Mol. Genet., 2003, 12(5), 535-549.
[http://dx.doi.org/10.1093/hmg/ddg034] [PMID: 12588801]
[67]
Wang, B.; Su, Y.; Yang, Q.; Lv, D.; Zhang, W.; Tang, K.; Wang, H.; Zhang, R.; Liu, Y. Overexpression of Long Non-Coding RNA HOTAIR Promotes Tumor Growth and Metastasis in Human Osteosarcoma. Mol. Cells, 2015, 38(5), 432-440.
[http://dx.doi.org/10.14348/molcells.2015.2327] [PMID: 25728753]
[68]
Ruan, W.; Wang, P.; Feng, S.; Xue, Y.; Li, Y. Long non-coding RNA small nucleolar RNA host gene 12 (SNHG12) promotes cell proliferation and migration by upregulating angiomotin gene expression in human osteosarcoma cells. Tumour Biol., 2016, 37(3), 4065-4073.
[http://dx.doi.org/10.1007/s13277-015-4256-7] [PMID: 26486328]
[69]
Flockhart, R.J.; Webster, D.E.; Qu, K.; Mascarenhas, N.; Kovalski, J.; Kretz, M.; Khavari, P.A. BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration. Genome Res., 2012, 22(6), 1006-1014.
[http://dx.doi.org/10.1101/gr.140061.112] [PMID: 22581800]
[70]
Chen, R.; Wang, G.; Zheng, Y.; Hua, Y.; Cai, Z. Long non-coding RNAs in osteosarcoma. Oncotarget, 2017, 8(12), 20462-20475.
[http://dx.doi.org/10.18632/oncotarget.14726] [PMID: 28103585]
[71]
Li, W.; Xie, P.; Ruan, W.H. Overexpression of lncRNA UCA1 promotes osteosarcoma progression and correlates with poor prognosis. J. Bone Oncol., 2016, 5(2), 80-85.
[http://dx.doi.org/10.1016/j.jbo.2016.05.003] [PMID: 27335776]
[72]
Wen, J.J.; Ma, Y.D.; Yang, G.S.; Wang, G.M. Analysis of circulating long non-coding RNA UCA1 as potential biomarkers for diagnosis and prognosis of osteosarcoma. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(3), 498-503.
[PMID: 28239821]
[73]
O’Leary, V.B.; Maugg, D.; Smida, J.; Baumhoer, D.; Nathrath, M.; Ovsepian, S.V.; Atkinson, M.J. The long non-coding RNA PARTICLE is associated with WWOX and the absence of FRA16D breakage in osteosarcoma patients. Oncotarget, 2017, 8(50), 87431-87441. [http://dx.doi.org/10.18632/oncotarget.21086].
[http://dx.doi.org/10.18632/oncotarget.21086] [PMID: 29152092]
[74]
Hao, L.; Fu, J.; Tian, Y.; Wu, J. Systematic analysis of lncRNAs, miRNAs and mRNAs for the identification of biomarkers for osteoporosis in the mandible of ovariectomized mice. Int. J. Mol. Med., 2017, 40(3), 689-702. [http://dx.doi.org/10.3892/ijmm.2017.3062].
[http://dx.doi.org/10.3892/ijmm.2017.3062] [PMID: 28713971]
[75]
Chen, X.; Yang, L.; Ge, D.; Wang, W.; Yin, Z.; Yan, J.; Cao, X.; Jiang, C.; Zheng, S.; Liang, B. Long non-coding RNA XIST promotes osteoporosis through inhibiting bone marrow mesenchymal stem cell differentiation. Exp. Ther. Med., 2019, 17(1), 803-811.
[PMID: 30651866]
[76]
Yang, L.; Li, Y.; Gong, R.; Gao, M.; Feng, C.; Liu, T.; Sun, Y.; Jin, M.; Wang, D.; Yuan, Y.; Yan, G.; He, M.; Idiiatullina, E.; Ma, W.; Han, Z.; Zhang, L.; Huang, Q.; Ding, F.; Cai, B.; Yang, F. The Long Non-coding RNA-ORLNC1 Regulates Bone Mass by Directing Mesenchymal Stem Cell Fate. Mol. Ther., 2019, 27(2), 394-410.
[http://dx.doi.org/10.1016/j.ymthe.2018.11.019] [PMID: 30638773]
[77]
Loeser, R.F.; Collins, J.A.; Diekman, B.O. Ageing and the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol., 2016, 12(7), 412-420.
[http://dx.doi.org/10.1038/nrrheum.2016.65] [PMID: 27192932]
[78]
Pereira, D.; Ramos, E.; Branco, J. Osteoarthritis. Acta Med. Port., 2015, 28(1), 99-106.
[http://dx.doi.org/10.20344/amp.5477] [PMID: 25817486]
[79]
Palazzo, C.; Nguyen, C.; Lefevre-Colau, M-M.; Rannou, F.; Poiraudeau, S. Risk factors and burden of osteoarthritis. Ann. Phys. Rehabil. Med., 2016, 59(3), 134-138.
[http://dx.doi.org/10.1016/j.rehab.2016.01.006] [PMID: 26904959]
[80]
Liu, Q.; Zhang, X.; Hu, X.; Dai, L.; Fu, X.; Zhang, J.; Ao, Y. Circular RNA Related to the Chondrocyte ECM Regulates MMP13 Expression by Functioning as a MiR-136 ‘Sponge’ in Human Cartilage Degradation. Sci. Rep., 2016, 6, 22572.
[http://dx.doi.org/10.1038/srep22572] [PMID: 26931159]
[81]
Liu, S.; Yang, H.; Hu, B.; Zhang, M. Sirt1 regulates apoptosis and extracellular matrix degradation in resveratrol-treated osteoarthritis chondrocytes via the Wnt/β-catenin signaling pathways. Exp. Ther. Med., 2017, 14(5), 5057-5062.
[http://dx.doi.org/10.3892/etm.2017.5165] [PMID: 29201214]
[82]
Zeng, G.; Cui, X.; Liu, Z.; Zhao, H.; Zheng, X.; Zhang, B.; Xia, C. Disruption of phosphoinositide-specific phospholipases Cγ1 contributes to extracellular matrix synthesis of human osteoarthritis chondrocytes. Int. J. Mol. Sci., 2014, 15(8), 13236-13246.
[http://dx.doi.org/10.3390/ijms150813236] [PMID: 25073093]
[83]
Hwang, H.S.; Kim, H.A. Chondrocyte Apoptosis in the Pathogenesis of Osteoarthritis. Int. J. Mol. Sci., 2015, 16(11), 26035-26054.
[http://dx.doi.org/10.3390/ijms161125943] [PMID: 26528972]
[84]
Li, Y.S.; Zhang, F.J.; Zeng, C.; Luo, W.; Xiao, W.F.; Gao, S.G.; Lei, G.H. Autophagy in osteoarthritis. Joint Bone Spine, 2016, 83(2), 143-148.
[http://dx.doi.org/10.1016/j.jbspin.2015.06.009] [PMID: 26453105]
[85]
Robinson, W.H.; Lepus, C.M.; Wang, Q.; Raghu, H.; Mao, R.; Lindstrom, T.M.; Sokolove, J. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol., 2016, 12(10), 580-592.
[http://dx.doi.org/10.1038/nrrheum.2016.136] [PMID: 27539668]
[86]
Rahmati, M.; Mobasheri, A.; Mozafari, M. Inflammatory mediators in osteoarthritis: A critical review of the state-of-the-art, current prospects, and future challenges. Bone, 2016, 85, 81-90.
[http://dx.doi.org/10.1016/j.bone.2016.01.019] [PMID: 26812612]
[87]
Ramos, Y.F.; Meulenbelt, I. The role of epigenetics in osteoarthritis: current perspective. Curr. Opin. Rheumatol., 2017, 29(1), 119-129.
[http://dx.doi.org/10.1097/BOR.0000000000000355] [PMID: 27749371]
[88]
Zhang, M.; Wang, J. Epigenetics and Osteoarthritis. Genes Dis., 2015, 2(1), 69-75.
[http://dx.doi.org/10.1016/j.gendis.2014.12.005] [PMID: 25961070]
[89]
Fu, M.; Huang, G.; Zhang, Z.; Liu, J.; Zhang, Z.; Huang, Z.; Yu, B.; Meng, F. Expression profile of long noncoding RNAs in cartilage from knee osteoarthritis patients. Osteoarthritis Cartilage, 2015, 23(3), 423-432.
[http://dx.doi.org/10.1016/j.joca.2014.12.001] [PMID: 25524778]
[90]
Shen, H.; Wang, Y.; Shi, W.; Sun, G.; Hong, L.; Zhang, Y. LncRNA SNHG5/miR-26a/SOX2 signal axis enhances proliferation of chondrocyte in osteoarthritis. Acta Biochim. Biophys. Sin. (Shanghai), 2018, 50(2), 191-198.
[http://dx.doi.org/10.1093/abbs/gmx141] [PMID: 29409014]
[91]
Pearson, M.J.; Jones, S.W. Review: Long Noncoding RNAs in the Regulation of Inflammatory Pathways in Rheumatoid Arthritis and Osteoarthritis. Arthritis Rheumatol., 2016, 68(11), 2575-2583.
[http://dx.doi.org/10.1002/art.39759] [PMID: 27214788]
[92]
Kim, D.; Song, J.; Han, J.; Kim, Y.; Chun, C-H.; Jin, E-J. Two non-coding RNAs, MicroRNA-101 and HOTTIP contribute cartilage integrity by epigenetic and homeotic regulation of integrin-α1. Cell. Signal., 2013, 25(12), 2878-2887.
[http://dx.doi.org/10.1016/j.cellsig.2013.08.034] [PMID: 24018042]
[93]
Xie, Z.; Li, J.; Wang, P.; Li, Y.; Wu, X.; Wang, S.; Su, H.; Deng, W.; Liu, Z.; Cen, S.; Ouyang, Y.; Wu, Y.; Shen, H. Differential Expression Profiles of Long Noncoding RNA and mRNA of Osteogenically Differentiated Mesenchymal Stem Cells in Ankylosing Spondylitis. J. Rheumatol., 2016, 43(8), 1523-1531.
[http://dx.doi.org/10.3899/jrheum.151181] [PMID: 27182066]
[94]
Huang, W.; Thomas, B.; Flynn, R.A.; Gavzy, S.J.; Wu, L.; Kim, S.V.; Hall, J.A.; Miraldi, E.R.; Ng, C.P.; Rigo, F.; Meadows, S.; Montoya, N.R.; Herrera, N.G.; Domingos, A.I.; Rastinejad, F.; Myers, R.M.; Fuller-Pace, F.V.; Bonneau, R.; Chang, H.Y.; Acuto, O.; Littman, D.R. DDX5 and its associated lncRNA Rmrp modulate TH17 cell effector functions. Nature, 2015, 528(7583), 517-522.
[http://dx.doi.org/10.1038/nature16193] [PMID: 26675721]
[95]
Zhao, N.; Zeng, L.; Liu, Y.; Han, D.; Liu, H.; Xu, J.; Jiang, Y.; Li, C.; Cai, T.; Feng, H.; Wang, Y. DLX3 promotes bone marrow mesenchymal stem cell proliferation through H19/miR-675 axis. Clin. Sci. (Lond.), 2017, 131(22), 2721-2735.
[http://dx.doi.org/10.1042/CS20171231] [PMID: 28963438]
[96]
Huang, Y.; Zheng, Y.; Jin, C.; Li, X.; Jia, L.; Li, W. Long Non-coding RNA H19 Inhibits Adipocyte Differentiation of Bone Marrow Mesenchymal Stem Cells through Epigenetic Modulation of Histone Deacetylases. Sci. Rep., 2016, 6, 28897.
[http://dx.doi.org/10.1038/srep28897] [PMID: 27349231]
[97]
Li, B.; Chen, P.; Qu, J.; Shi, L.; Zhuang, W.; Fu, J.; Li, J.; Zhang, X.; Sun, Y.; Zhuang, W. Activation of LTBP3 gene by a long noncoding RNA (lncRNA) MALAT1 transcript in mesenchymal stem cells from multiple myeloma. J. Biol. Chem., 2014, 289(42), 29365-29375.
[http://dx.doi.org/10.1074/jbc.M114.572693] [PMID: 25187517]
[98]
Wang, Y.; Liang, T.; Wang, Y.; Huang, Y.; Li, Y. Long non-coding RNA AK093407 promotes proliferation and inhibits apoptosis of human osteosarcoma cells via STAT3 activation. Am. J. Cancer Res., 2017, 7(4), 892-902.
[PMID: 28469961]
[99]
Liu, C.; Lin, J. Long noncoding RNA ZEB1-AS1 acts as an oncogene in osteosarcoma by epigenetically activating ZEB1. Am. J. Transl. Res., 2016, 8(10), 4095-4105.
[PMID: 27829995]
[100]
Liu, G.; Wang, L.; Han, H.; Li, Y.; Lu, S.; Li, T.; Cheng, C. LncRNA ZFAS1 promotes growth and metastasis by regulating BMI1 and ZEB2 in osteosarcoma. Am. J. Cancer Res., 2017, 7(7), 1450-1462.
[PMID: 28744396]
[101]
Kun-Peng, Z.; Xiao-Long, M.; Chun-Lin, Z. LncRNA FENDRR sensitizes doxorubicin-resistance of osteosarcoma cells through down-regulating ABCB1 and ABCC1. Oncotarget, 2017, 8(42), 71881-71893.
[http://dx.doi.org/10.18632/oncotarget.17985] [PMID: 29069754]
[102]
Giovarelli, M.; Bucci, G.; Ramos, A.; Bordo, D.; Wilusz, C.J.; Chen, C.Y.; Puppo, M.; Briata, P.; Gherzi, R. H19 long noncoding RNA controls the mRNA decay promoting function of KSRP. Proc. Natl. Acad. Sci. USA, 2014, 111(47), E5023-E5028.
[http://dx.doi.org/10.1073/pnas.1415098111] [PMID: 25385579]
[103]
Yi, J.; Liu, D.; Xiao, J. LncRNA MALAT1 sponges miR-30 to promote osteoblast differentiation of adipose-derived mesenchymal stem cells by promotion of Runx2 expression. Cell Tissue Res., 2019, 376(1), 113-121.
[http://dx.doi.org/10.1007/s00441-018-2963-2] [PMID: 30511267]
[104]
Fang, D.; Yang, H.; Lin, J.; Teng, Y.; Jiang, Y.; Chen, J.; Li, Y. 17β-estradiol regulates cell proliferation, colony formation, migration, invasion and promotes apoptosis by upregulating miR-9 and thus degrades MALAT-1 in osteosarcoma cell MG-63 in an estrogen receptor-independent manner. Biochem. Biophys. Res. Commun., 2015, 457(4), 500-506.
[http://dx.doi.org/10.1016/j.bbrc.2014.12.114] [PMID: 25592968]
[105]
Zhou, X.; Ye, F.; Yin, C.; Zhuang, Y.; Yue, G.; Zhang, G. The Interaction Between MiR-141 and lncRNA-H19 in Regulating Cell Proliferation and Migration in Gastric Cancer. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology, 2015, 36( 4), 1440-52.
[http://dx.doi.org/10.1159/000430309]
[106]
Thomson, D.W.; Dinger, M.E. Endogenous microRNA sponges: evidence and controversy. Nat. Rev. Genet., 2016, 17(5), 272-283.
[http://dx.doi.org/10.1038/nrg.2016.20] [PMID: 27040487]
[107]
Yu, C.; Li, L.; Xie, F.; Guo, S.; Liu, F.; Dong, N.; Wang, Y. LncRNA TUG1 sponges miR-204-5p to promote osteoblast differentiation through upregulating Runx2 in aortic valve calcification. Cardiovasc. Res., 2018, 114(1), 168-179.
[http://dx.doi.org/10.1093/cvr/cvx180] [PMID: 29016735]
[108]
Lu, Y.F.; Liu, Y.; Fu, W.M.; Xu, J.; Wang, B.; Sun, Y.X.; Wu, T.Y.; Xu, L.L.; Chan, K.M.; Zhang, J.F.; Li, G. Long noncoding RNA H19 accelerates tenogenic differentiation and promotes tendon healing through targeting miR-29b-3p and activating TGF-β1 signaling. FASEB J., 2017, 31(3), 954-964.
[http://dx.doi.org/10.1096/fj.201600722R] [PMID: 27895107]
[109]
Weng, J.; Peng, W.; Zhu, S.; Chen, S. Long Noncoding RNA Sponges miR-454 to Promote Osteogenic Differentiation in Maxillary Sinus Membrane Stem Cells. Implant Dent., 2017, 26(2), 178-186.
[http://dx.doi.org/10.1097/ID.0000000000000569] [PMID: 28301382]
[110]
Liang, J.; Xu, L.; Zhou, F.; Liu, A.M.; Ge, H.X.; Chen, Y.Y.; Tu, M. MALAT1/miR-127-5p Regulates Osteopontin (OPN)-Mediated Proliferation of Human Chondrocytes Through PI3K/Akt Pathway. J. Cell. Biochem., 2018, 119(1), 431-439.
[http://dx.doi.org/10.1002/jcb.26200] [PMID: 28590075]
[111]
Xie, C.; Chen, B.; Wu, B.; Guo, J.; Cao, Y. LncRNA TUG1 promotes cell proliferation and suppresses apoptosis in osteosarcoma by regulating miR-212-3p/FOXA1 axis. Biomed. Pharmacother., 2018, 97, 1645-1653.
[http://dx.doi.org/10.1016/j.biopha.2017.12.004] [PMID: 29793327]
[112]
Xie, C.H.; Cao, Y.M.; Huang, Y.; Shi, Q.W.; Guo, J.H.; Fan, Z.W.; Li, J.G.; Chen, B.W.; Wu, B.Y. Long non-coding RNA TUG1 contributes to tumorigenesis of human osteosarcoma by sponging miR-9-5p and regulating POU2F1 expression. Tumour Biol., 2016, 37(11), 15031-15041.
[http://dx.doi.org/10.1007/s13277-016-5391-5] [PMID: 27658774]
[113]
Li, G.; Liu, K.; Du, X.; Long Non-Coding, R.N.A. Long Non-Coding RNA TUG1 Promotes Proliferation and Inhibits Apoptosis of Osteosarcoma Cells by Sponging miR-132-3p and Upregulating SOX4 Expression. Yonsei Med. J., 2018, 59(2), 226-235.
[http://dx.doi.org/10.3349/ymj.2018.59.2.226] [PMID: 29436190]
[114]
Wang, Y.; Yang, T.; Zhang, Z.; Lu, M.; Zhao, W.; Zeng, X.; Zhang, W. Long non-coding RNA TUG1 promotes migration and invasion by acting as a ceRNA of miR-335-5p in osteosarcoma cells. Cancer Sci., 2017, 108(5), 859-867.
[http://dx.doi.org/10.1111/cas.13201] [PMID: 28205334]
[115]
Zhou, Q.; Chen, F.; Zhao, J.; Li, B.; Liang, Y.; Pan, W.; Zhang, S.; Wang, X.; Zheng, D. Long non-coding RNA PVT1 promotes osteosarcoma development by acting as a molecular sponge to regulate miR-195. Oncotarget, 2016, 7(50), 82620-82633.
[http://dx.doi.org/10.18632/oncotarget.13012] [PMID: 27813492]
[116]
Li, J.; Wu, Q.M.; Wang, X.Q.; Zhang, C.Q. Long Noncoding RNA miR210HG Sponges miR-503 to Facilitate Osteosarcoma Cell Invasion and Metastasis. DNA Cell Biol., 2017, 36(12), 1117-1125.
[http://dx.doi.org/10.1089/dna.2017.3888] [PMID: 28972855]
[117]
Zhang, R.; Xia, T. Long non-coding RNA XIST regulates PDCD4 expression by interacting with miR-21-5p and inhibits osteosarcoma cell growth and metastasis. Int. J. Oncol., 2017, 51(5), 1460-1470.
[http://dx.doi.org/10.3892/ijo.2017.4127] [PMID: 29048648]
[118]
Liu, C.; Pan, C.; Cai, Y.; Wang, H. Interplay Between Long Noncoding RNA ZEB1-AS1 and miR-200s Regulates Osteosarcoma Cell Proliferation and Migration. J. Cell. Biochem., 2017, 118(8), 2250-2260.
[http://dx.doi.org/10.1002/jcb.25879] [PMID: 28075045]
[119]
Liu, K.; Hou, Y.; Liu, Y.; Zheng, J. LncRNA SNHG15 contributes to proliferation, invasion and autophagy in osteosarcoma cells by sponging miR-141. J. Biomed. Sci., 2017, 24(1), 46.
[http://dx.doi.org/10.1186/s12929-017-0353-9] [PMID: 28720111]
[120]
Li, Y.F.; Li, S.H.; Liu, Y.; Luo, Y.T. Long Noncoding, RNA CIR Promotes Chondrocyte Extracellular Matrix Degradation in Osteoarthritis by Acting as a Sponge For Mir-27b. Cell. Physiol. Biochem., 2017, 43(2), 602-610.
[121]
Liu, Y.; Liu, H.; Titus, L.; Boden, S.D. Natural antisense transcripts enhance bone formation by increasing sense IFITM5 transcription. Bone, 2012, 51(5), 933-938.
[http://dx.doi.org/10.1016/j.bone.2012.07.024] [PMID: 22884724]
[122]
Lavorgna, G.; Dahary, D.; Lehner, B.; Sorek, R.; Sanderson, C.M.; Casari, G. In search of antisense. Trends Biochem. Sci., 2004, 29(2), 88-94.
[http://dx.doi.org/10.1016/j.tibs.2003.12.002] [PMID: 15102435]
[123]
Berdal, A.; Lezot, F.; Pibouin, L.; Hotton, D.; Ghoul-Mazgar, S.; Teillaud, C.; Robert, B.; MacDougall, M.; Blin, C. Msx1 homeogene antisense mRNA in mouse dental and bone cells. Connect. Tissue Res., 2002, 43(2-3), 148-152.
[http://dx.doi.org/10.1080/03008200290000970] [PMID: 12489151]
[124]
Babajko, S.; Petit, S.; Fernandes, I.; Méary, F.; LeBihan, J.; Pibouin, L.; Berdal, A. Msx1 expression regulation by its own antisense RNA: consequence on tooth development and bone regeneration. Cells Tissues Organs (Print), 2009, 189(1-4), 115-121.
[http://dx.doi.org/10.1159/000151748] [PMID: 18728357]
[125]
Sun, J.; Wang, X.; Fu, C.; Wang, X.; Zou, J.; Hua, H.; Bi, Z. Long noncoding RNA FGFR3-AS1 promotes osteosarcoma growth through regulating its natural antisense transcript FGFR3. Mol. Biol. Rep., 2016, 43(5), 427-436.
[http://dx.doi.org/10.1007/s11033-016-3975-1] [PMID: 27022737]
[126]
Zhu, Z.; Tang, N.L.S.; Xu, L.; Qin, X.; Mao, S.; Song, Y.; Liu, L.; Li, F.; Liu, P.; Yi, L.; Chang, J.; Jiang, L.; Ng, B.K.W.; Shi, B.; Zhang, W.; Qiao, J.; Sun, X.; Qiu, X.; Wang, Z.; Wang, F.; Xie, D.; Chen, L.; Chen, Z.; Jin, M.; Han, X.; Hu, Z.; Zhang, Z.; Liu, Z.; Zhu, F.; Qian, B.P.; Yu, Y.; Wang, B.; Lee, K.M.; Lee, W.Y.W.; Lam, T.P.; Qiu, Y.; Cheng, J.C.Y. Genome-wide association study identifies new susceptibility loci for adolescent idiopathic scoliosis in Chinese girls. Nat. Commun., 2015, 6, 8355.
[http://dx.doi.org/10.1038/ncomms9355] [PMID: 26394188]
[127]
Kraus, P.; Sivakamasundari, V.; Lim, S.L.; Xing, X.; Lipovich, L.; Lufkin, T. Making sense of Dlx1 antisense RNA. Dev. Biol., 2013, 376(2), 224-235.
[http://dx.doi.org/10.1016/j.ydbio.2013.01.035] [PMID: 23415800]
[128]
Zhu, X.X.; Yan, Y.W.; Chen, D.; Ai, C.Z.; Lu, X.; Xu, S.S.; Jiang, S.; Zhong, G.S.; Chen, D.B.; Jiang, Y.Z. Long non-coding RNA HoxA-AS3 interacts with EZH2 to regulate lineage commitment of mesenchymal stem cells. Oncotarget, 2016, 7(39), 63561-63570.
[http://dx.doi.org/10.18632/oncotarget.11538] [PMID: 27566578]
[129]
Rossignol, F.; Vaché, C.; Clottes, E. Natural antisense transcripts of hypoxia-inducible factor 1alpha are detected in different normal and tumour human tissues. Gene, 2002, 299(1-2), 135-140.
[http://dx.doi.org/10.1016/S0378-1119(02)01049-1] [PMID: 12459261]
[130]
Thrash-Bingham, C.A.; Tartof, K.D. aHIF: a natural antisense transcript overexpressed in human renal cancer and during hypoxia. J. Natl. Cancer Inst., 1999, 91(2), 143-151.
[http://dx.doi.org/10.1093/jnci/91.2.143] [PMID: 9923855]
[131]
Xu, Y.; Wang, S.; Tang, C.; Chen, W. Upregulation of long non-coding RNA HIF 1α-anti-sense 1 induced by transforming growth factor-β-mediated targeting of sirtuin 1 promotes osteoblastic differentiation of human bone marrow stromal cells. Mol. Med. Rep., 2015, 12(5), 7233-7238.
[http://dx.doi.org/10.3892/mmr.2015.4415] [PMID: 26460121]
[132]
Chen, D.; Wu, L.; Liu, L.; Gong, Q.; Zheng, J.; Peng, C.; Deng, J. Comparison of HIF1A-AS1 and HIF1A-AS2 in regulating HIF-1α and the osteogenic differentiation of PDLCs under hypoxia. Int. J. Mol. Med., 2017, 40(5), 1529-1536.
[http://dx.doi.org/10.3892/ijmm.2017.3138] [PMID: 28949371]
[133]
Liu, S-H.; Zhu, J-W.; Xu, H-H.; Zhang, G-Q.; Wang, Y.; Liu, Y-M.; Liang, J-B.; Wang, Y-X.; Wu, Y.; Guo, Q-F. A novel antisense long non-coding RNA SATB2-AS1 overexpresses in osteosarcoma and increases cell proliferation and growth. Mol. Cell. Biochem., 2017, 430(1-2), 47-56.
[http://dx.doi.org/10.1007/s11010-017-2953-9] [PMID: 28190168]
[134]
Zhang, C.L.; Zhu, K.P.; Ma, X.L. Antisense lncRNA FOXC2-AS1 promotes doxorubicin resistance in osteosarcoma by increasing the expression of FOXC2. Cancer Lett., 2017, 396, 66-75.
[http://dx.doi.org/10.1016/j.canlet.2017.03.018] [PMID: 28323030]
[135]
Yuan, J.M.; Li, X.D.; Liu, Z.Y.; Hou, G.Q.; Kang, J.H.; Huang, D.Y.; Du, S.X. Cisplatin induces apoptosis via upregulating Wrap53 in U-2OS osteosarcoma cells. Asian Pac. J. Cancer Prev., 2011, 12(12), 3465-3469.
[PMID: 22471498]
[136]
Li, B.; Han, H.; Song, S.; Fan, G.; Xu, H.; Zhou, W.; Qiu, Y.; Qian, C.; Wang, Y.; Yuan, Z.; Gao, Y.; Zhang, Y.; Zhuang, W. HOXC10 Regulates Osteogenesis of Mesenchymal Stromal Cells Through Interaction with Its Natural Antisense Transcript lncHOXC-AS3. Stem Cells, 2019, 37(2), 247-256.
[http://dx.doi.org/10.1002/stem.2925] [PMID: 30353595]
[137]
Xu, H.; Han, H.; Song, S.; Yi, N.; Qian, C.; Qiu, Y.; Zhou, W.; Hong, Y.; Zhuang, W.; Li, Z.; Li, B.; Zhuang, W. Exosome-Transmitted PSMA3 and PSMA3-AS1 Promote Proteasome Inhibitor Resistance in Multiple Myeloma. Clin. Cancer Res., 2019, 25(6), 1923-1935.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2363] [PMID: 30610101]
[138]
Huang, Y.Z.; Zhao, L.; Wang, C.L.; Tian, S.J.; Liu, S.; Ge, J.F. RBM5-AS1 participates in fracture healing and inhibits apoptosis of bone cells through the up-regulation of β-catenin. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(16), 5091-5097.
[PMID: 30178827]
[139]
Zhang, W.; Dong, R.; Diao, S.; Du, J.; Fan, Z.; Wang, F. Differential long noncoding RNA/mRNA expression profiling and functional network analysis during osteogenic differentiation of human bone marrow mesenchymal stem cells. Stem Cell Res. Ther., 2017, 8(1), 30.
[http://dx.doi.org/10.1186/s13287-017-0485-6] [PMID: 28173844]
[140]
Song, W.Q.; Gu, W.Q.; Qian, Y.B.; Ma, X.; Mao, Y.J.; Liu, W.J. Identification of long non-coding RNA involved in osteogenic differentiation from mesenchymal stem cells using RNA-Seq data. Genet. Mol. Res., 2015, 14(4), 18268-18279.
[http://dx.doi.org/10.4238/2015.December.23.14] [PMID: 26782474]
[141]
Hartmann, C. A Wnt canon orchestrating osteoblastogenesis. Trends Cell Biol., 2006, 16(3), 151-158.
[http://dx.doi.org/10.1016/j.tcb.2006.01.001] [PMID: 16466918]
[142]
Burgers, T.A.; Williams, B.O. Regulation of Wnt/β-catenin signaling within and from osteocytes. Bone, 2013, 54(2), 244-249.
[http://dx.doi.org/10.1016/j.bone.2013.02.022] [PMID: 23470835]
[143]
Sassi, N.; Laadhar, L.; Allouche, M.; Achek, A.; Kallel-Sellami, M.; Makni, S.; Sellami, S. WNT signaling and chondrocytes: from cell fate determination to osteoarthritis physiopathology. J. Recept. Signal Transduct. Res., 2014, 34(2), 73-80.
[http://dx.doi.org/10.3109/10799893.2013.863919] [PMID: 24303940]
[144]
Li, B.; Liu, J.; Zhao, J.; Ma, J.X.; Jia, H.B.; Zhang, Y.; Xing, G.S.; Ma, X.L. LncRNA-H19 Modulates Wnt/β-catenin Signaling by Targeting Dkk4 in Hindlimb Unloaded Rat. Orthop. Surg., 2017, 9(3), 319-327.
[http://dx.doi.org/10.1111/os.12321] [PMID: 28447380]
[145]
Tian, J.; He, H.; Lei, G. Wnt/β-catenin pathway in bone cancers. Tumour Biol., 2014, 35(10), 9439-9445.
[http://dx.doi.org/10.1007/s13277-014-2433-8] [PMID: 25117074]
[146]
Chen, F.; Mo, J.; Zhang, L. Long noncoding RNA BCAR4 promotes osteosarcoma progression through activating GLI2-dependent gene transcription. Tumour Biol., 2016, 37(10), 13403-13412.
[http://dx.doi.org/10.1007/s13277-016-5256-y] [PMID: 27460090]
[147]
Ule, J.; Jensen, K.; Mele, A.; Darnell, R.B. CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods, 2005, 37(4), 376-386.
[http://dx.doi.org/10.1016/j.ymeth.2005.07.018] [PMID: 16314267]
[148]
Ule, J.; Hwang, H.W.; Darnell, R.B. The Future of Cross-Linking and Immunoprecipitation (CLIP). Cold Spring Harb. Perspect. Biol., 2018, 10(8)a032243
[http://dx.doi.org/10.1101/cshperspect.a032243] [PMID: 30068528]
[149]
Sethuraman, S.; Thomas, M.; Gay, L.A.; Renne, R. Computational analysis of ribonomics datasets identifies long non-coding RNA targets of γ-herpesviral miRNAs. Nucleic Acids Res., 2018, 46(16), 8574-8589.
[http://dx.doi.org/10.1093/nar/gky459] [PMID: 29846699]
[150]
Helwak, A.; Tollervey, D. Mapping the miRNA interactome by cross-linking ligation and sequencing of hybrids (CLASH). Nat. Protoc., 2014, 9(3), 711-728.
[http://dx.doi.org/10.1038/nprot.2014.043] [PMID: 24577361]
[151]
Quinn, J.J.; Ilik, I.A.; Qu, K.; Georgiev, P.; Chu, C.; Akhtar, A.; Chang, H.Y. Revealing long noncoding RNA architecture and functions using domain-specific chromatin isolation by RNA purification. Nat. Biotechnol., 2014, 32(9), 933-940.
[http://dx.doi.org/10.1038/nbt.2943] [PMID: 24997788]
[152]
Machyna, M.; Simon, M.D. Catching RNAs on chromatin using hybridization capture methods. Brief. Funct. Genomics, 2018, 17(2), 96-103.
[http://dx.doi.org/10.1093/bfgp/elx038] [PMID: 29126220]
[153]
Wang, L.; Wu, F.; Song, Y.; Li, X.; Wu, Q.; Duan, Y.; Jin, Z. Long noncoding RNA related to periodontitis interacts with miR-182 to upregulate osteogenic differentiation in periodontal mesenchymal stem cells of periodontitis patients. Cell Death Dis., 2016, 7(8)e2327
[http://dx.doi.org/10.1038/cddis.2016.125] [PMID: 27512949]
[154]
Jia, Q.; Jiang, W.; Ni, L. Down-regulated non-coding RNA (lncRNA-ANCR) promotes osteogenic differentiation of periodontal ligament stem cells. Arch. Oral Biol., 2015, 60(2), 234-241.
[http://dx.doi.org/10.1016/j.archoralbio.2014.10.007] [PMID: 25463901]
[155]
Cao, B.; Liu, N.; Wang, W. High glucose prevents osteogenic differentiation of mesenchymal stem cells via lncRNA AK028326/CXCL13 pathway. Biomed. Pharmacother., 2016, 84, 544-551.
[http://dx.doi.org/10.1016/j.biopha.2016.09.058] [PMID: 27693963]
[156]
Chen, H.W.; Qi, J.; Bi, Q.; Zhang, S.M. Expression profile of long noncoding RNA (HOTAIR) and its predicted target miR-17-3p in LPS-induced inflammatory injury in human articular chondrocyte C28/I2 cells. Int. J. Clin. Exp. Pathol., 2017, 10(9), 9146-9157.
[157]
Zhang, J.; Tao, Z.; Wang, Y. Long non-coding RNA DANCR regulates the proliferation and osteogenic differentiation of human bone-derived marrow mesenchymal stem cells via the p38 MAPK pathway. Int. J. Mol. Med., 2018, 41(1), 213-219.
[PMID: 29115577]
[158]
Chen, L.; Song, Z.; Huang, S.; Wang, R.; Qin, W.; Guo, J.; Lin, Z. lncRNA DANCR suppresses odontoblast-like differentiation of human dental pulp cells by inhibiting wnt/β-catenin pathway. Cell Tissue Res., 2016, 364(2), 309-318.
[http://dx.doi.org/10.1007/s00441-015-2333-2] [PMID: 26646542]
[159]
Jin, X.; Zhang, Z.; Lu, Y.; Fan, Z. Suppression of long non-coding RNA LET potentiates bone marrow-derived mesenchymal stem cells (BMSCs) proliferation by up-regulating TGF-β1. J. Cell. Biochem., 2018, 119(3), 2843-2850.
[http://dx.doi.org/10.1002/jcb.26459] [PMID: 29068476]
[160]
Zhang, S.Z.; Cai, L.; Li, B. MEG3 long non-coding RNA prevents cell growth and metastasis of osteosarcoma. Bratisl. Lek Listy, 2017, 118(10), 632-636.
[PMID: 29198132]
[161]
Liao, J.; Yu, X.; Hu, X.; Fan, J.; Wang, J.; Zhang, Z.; Zhao, C.; Zeng, Z.; Shu, Y.; Zhang, R.; Yan, S.; Li, Y.; Zhang, W.; Cui, J.; Ma, C.; Li, L.; Yu, Y.; Wu, T.; Wu, X.; Lei, J.; Wang, J.; Yang, C.; Wu, K.; Wu, Y.; Tang, J.; He, B.C.; Deng, Z.L.; Luu, H.H.; Haydon, R.C.; Reid, R.R.; Lee, M.J.; Wolf, J.M.; Huang, W.; He, T.C. lncRNA H19 mediates BMP9-induced osteogenic differentiation of mesenchymal stem cells (MSCs) through Notch signaling. Oncotarget, 2017, 8(32), 53581-53601.
[http://dx.doi.org/10.18632/oncotarget.18655] [PMID: 28881833]
[162]
Zhou, S.; Yu, L.; Xiong, M.; Dai, G. LncRNA SNHG12 promotes tumorigenesis and metastasis in osteosarcoma by upregulating Notch2 by sponging miR-195-5p. Biochem. Biophys. Res. Commun., 2018, 495(2), 1822-1832.
[http://dx.doi.org/10.1016/j.bbrc.2017.12.047] [PMID: 29229388]
[163]
Jiang, Z.; Jiang, C.; Fang, J. Up-regulated lnc-SNHG1 contributes to osteosarcoma progression through sequestration of miR-577 and activation of WNT2B/Wnt/β-catenin pathway. Biochem. Biophys. Res. Commun., 2018, 495(1), 238-245.
[http://dx.doi.org/10.1016/j.bbrc.2017.11.012] [PMID: 29108989]
[164]
Tian, Z.; Yang, G.; Jiang, P.; Zhang, L.; Wang, J.; Sun, S. Long non-coding RNA Sox4 promotes proliferation and migration by activating Wnt/β-catenin signaling pathway in osteosarcoma. Pharmazie, 2017, 72(9), 537-542.
[PMID: 29441981]
[165]
Zhao, H.X.; Zhao, Y.L.; Tao, J.G.; Ma, C.; Zhang, J.; Xu, H.B.; Dong, Y.Z. Up-regulated expression of lncRNA NEAT1 promotes progression of osteosarcoma by regulating the activity of Wnt/beta-catenin pathway. Int. J. Clin. Exp. Pathol., 2016, 9(11), 11466-11472.
[166]
Zhao, H.; Hou, W.; Tao, J.; Zhao, Y.; Wan, G.; Ma, C.; Xu, H. Upregulation of lncRNA HNF1A-AS1 promotes cell proliferation and metastasis in osteosarcoma through activation of the Wnt/β-catenin signaling pathway. Am. J. Transl. Res., 2016, 8(8), 3503-3512.
[PMID: 27648140]
[167]
Wang, Y.; Kong, D. Knockdown of lncRNA MEG3 inhibits viability, migration, and invasion and promotes apoptosis by sponging miR-127 in osteosarcoma cell. J. Cell. Biochem., 2018, 119(1), 669-679.
[http://dx.doi.org/10.1002/jcb.26230] [PMID: 28636101]
[168]
Dong, Y.; Liang, G.; Yuan, B.; Yang, C.; Gao, R.; Zhou, X. MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway. Tumour Biol., 2015, 36(3), 1477-1486.
[http://dx.doi.org/10.1007/s13277-014-2631-4] [PMID: 25431257]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 1
Year: 2020
Page: [50 - 66]
Pages: 17
DOI: 10.2174/1871530319666190904161707
Price: $65

Article Metrics

PDF: 29
HTML: 4
EPUB: 1