Combined QSAR Model and Chemical Similarity Search for Novel HMG-CoA Reductase Inhibitors for Coronary Heart Disease

Author(s): David Mary Rajathei*, Subbiah Parthasarathy, Samuel Selvaraj

Journal Name: Current Computer-Aided Drug Design

Volume 16 , Issue 4 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Coronary heart disease generally occurs due to cholesterol accumulation in the walls of the heart arteries. Statins are the most widely used drugs which work by inhibiting the active site of 3-Hydroxy-3-methylglutaryl-CoA reductase (HMGCR) enzyme that is responsible for cholesterol synthesis. A series of atorvastatin analogs with HMGCR inhibition activity have been synthesized experimentally which would be expensive and time-consuming.

Methods: In the present study, we employed both the QSAR model and chemical similarity search for identifying novel HMGCR inhibitors for heart-related diseases. To implement this, a 2D QSAR model was developed by correlating the structural properties to their biological activity of a series of atorvastatin analogs reported as HMGCR inhibitors. Then, the chemical similarity search of atorvastatin analogs was performed by using PubChem database search.

Results and Discussion: The three-descriptor model of charge (GATS1p), connectivity (SCH-7) and distance (VE1_D) of the molecules is obtained for HMGCR inhibition with the statistical values of R2= 0.67, RMSEtr= 0.33, R2 ext= 0.64 and CCCext= 0.76. The 109 novel compounds were obtained by chemical similarity search and the inhibition activities of the compounds were predicted using QSAR model, which were close in the range of experimentally observed threshold.

Conclusion: The present study suggests that the QSAR model and chemical similarity search could be used in combination for identification of novel compounds with activity by in silico with less computation and effort.

Keywords: Atorvastatin, QSAR model, chemical structure similarity, novel HMGCR inhibitors, GATS1p, coronary heart disease.

[1]
Grundy, S.M. Primary prevention of coronary heart disease: role of cholesterol control in the United States. J. Intern. Med., 1997, 241(4), 295-306.
[http://dx.doi.org/10.1046/j.1365-2796.1997.110123000.x] [PMID: 9159601]
[2]
Friesen, J.A.; Rodwell, V.W. The 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductases. Genome Biol., 2004, 5(11), 248.
[http://dx.doi.org/10.1186/gb-2004-5-11-248] [PMID: 15535874]
[3]
Franc, S.; Dejager, S.; Bruckert, E.; Chauvenet, M.; Giral, P.; Turpin, G. A comprehensive description of muscle symptoms associated with lipid-lowering drugs. Cardiovasc. Drugs Ther., 2003, 17(5-6), 459-465.
[http://dx.doi.org/10.1023/B:CARD.0000015861.26111.ab] [PMID: 15107601]
[4]
Bruckert, E.; Hayem, G.; Dejager, S.; Yau, C.; Bégaud, B. Mild to moderate muscular symptoms with high-dosage statin therapy in hyperlipidemic patients the PRIMO study. Cardiovasc. Drugs Ther., 2005, 19(6), 403-414.
[http://dx.doi.org/10.1007/s10557-005-5686-z] [PMID: 16453090]
[5]
Baer, A.N.; Wortmann, R.L. Myotoxicity associated with lipid-lowering drugs. Curr. Opin. Rheumatol., 2007, 19(1), 67-73.
[PMID: 17143099]
[6]
Hsiang, B.; Zhu, Y.; Wang, Z.; Wu, Y.; Sasseville, V.; Yang, W.P.; Kirchgessner, T.G. A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor transporters. J. Biol. Chem., 1999, 274(52), 37161-37168.
[http://dx.doi.org/10.1074/jbc.274.52.37161] [PMID: 10601278]
[7]
Malhotra, H.S.; Goa, K.L. Atorvastatin: an updated review of its pharmacological properties and use in dyslipidaemia. Drugs, 2001, 61(12), 1835-1881.
[http://dx.doi.org/10.2165/00003495-200161120-00012] [PMID: 11693468]
[8]
Vildhede, A.; Karlgren, M.; Svedberg, E.K.; Wisniewski, J.R.; Lai, Y.; Norén, A.; Artursson, P. Hepatic uptake of atorvastatin: influence of variability in transporter expression on uptake clearance and drug-drug interactions. Drug Metab. Dispos., 2014, 42(7), 1210-1218.
[http://dx.doi.org/10.1124/dmd.113.056309] [PMID: 24799396]
[9]
Pfefferkorn, J.A.; Song, Y.; Sun, K.L.; Miller, S.R.; Trivedi, B.K.; Choi, C.; Sorenson, R.J.; Bratton, L.D.; Unangst, P.C.; Larsen, S.D.; Poel, T.J.; Cheng, X.M.; Lee, C.; Erasga, N.; Auerbach, B.; Askew, V.; Dillon, L.; Hanselman, J.C.; Lin, Z.; Lu, G.; Robertson, A.; Olsen, K.; Mertz, T.; Sekerke, C.; Pavlovsky, A.; Harris, M.S.; Bainbridge, G.; Caspers, N.; Chen, H.; Eberstadt, M. Design and synthesis of hepatoselective, pyrrole-based HMG-CoA reductase inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(16), 4538-4544.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.096] [PMID: 17574412]
[10]
Hansch, C. Quantitative approach to biochemical structure-activity relationships. Acc. Chem. Res., 1969, 2(8), 232-239.
[http://dx.doi.org/10.1021/ar50020a002]
[11]
Neves, B.J.; Braga, R.C.; Melo-Filho, C.C.; Moreira-Filho, J.T.; Muratov, E.N.; Andrade, C.H. QSAR-Based Virtual Screening: Advances and Applications in Drug Discovery. Front. Pharmacol., 2018, 9, 1275.
[http://dx.doi.org/10.3389/fphar.2018.01275] [PMID: 30524275]
[12]
Zhang, Q.Y.; Wan, J.; Xu, X.; Yang, G.F.; Ren, Y.L.; Liu, J.J.; Wang, H.; Guo, Y. Structure-based rational quest for potential novel inhibitors of human HMG-CoA reductase by combining CoMFA 3D QSAR modeling and virtual screening. J. Comb. Chem., 2007, 9(1), 131-138.
[http://dx.doi.org/10.1021/cc060101e] [PMID: 17206841]
[13]
Barbosa, F.; Horvath, D. Molecular similarity and property similarity. Curr. Top. Med. Chem., 2004, 4(6), 589-600.
[http://dx.doi.org/10.2174/1568026043451186] [PMID: 14965296]
[14]
Wawer, M.J.; Li, K.; Gustafsdottir, S.M.; Ljosa, V.; Bodycombe, N.E.; Marton, M.A.; Sokolnicki, K.L.; Bray, M.A.; Kemp, M.M.; Winchester, E.; Taylor, B.; Grant, G.B.; Hon, C.S.; Duvall, J.R.; Wilson, J.A.; Bittker, J.A.; Dančík, V.; Narayan, R.; Subramanian, A.; Winckler, W.; Golub, T.R.; Carpenter, A.E.; Shamji, A.F.; Schreiber, S.L.; Clemons, P.A. Toward performance-diverse small-molecule libraries for cell-based phenotypic screening using multiplexed high-dimensional profiling. Proc. Natl. Acad. Sci. USA, 2014, 111(30), 10911-10916.
[http://dx.doi.org/10.1073/pnas.1410933111] [PMID: 25024206]
[15]
Sugunakala, S.; Selvaraj, S. 2D QSAR and virtual screening based on pyridopyrimidine analogs of epidermal growth factor receptor tyrosine kinase. Curr Comput Aided Drug Des, 2016, 12(3), 229-240.
[http://dx.doi.org/10.2174/1573409912666160606150323] [PMID: 27264509]
[16]
David, M.R.; Subbiah, P.; Samuel, S. QSAR analysis of Multi-modal Antidepressants Vortioxetine Analogs using Physico-chemical Descriptors and MLR Modeling; Curr; Comp; Aided Drug Des, 2018.
[17]
Gramatica, P.; Chirico, N.; Papa, E.; Cassani, S.; Kovarich, S. QSARINS: A new software for the development, analysis, and validation of QSAR MLR models. J. Comput. Chem. Soft. News and Updates., 2013, 34(24), 2121-2132.
[http://dx.doi.org/10.1002/jcc.23361]
[18]
Gramatica, P. Principles of QSAR models validation: internal and external. Mol. Inform., 2007, 26(5), 694-701.
[19]
Bolton, E.E.; Kim, S.; Bryant, S.H. PubChem3D: Similar conformers. J. Cheminform., 2011, 3, 13.
[http://dx.doi.org/10.1186/1758-2946-3-13] [PMID: 21554721]
[20]
Yap, C.W. PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem., 2011, 32(7), 1466-1474.
[http://dx.doi.org/10.1002/jcc.21707] [PMID: 21425294]
[21]
Tibshirani, R. Regression shrinkage and selection via the lasso, J.R Statist. Soc., (B),, 1996, 58(1), 267-288.
[22]
QSARINS 2.2.2. www.qsar.it2017.
[23]
Veerasamy, R.; Rajak, H.; Jain, A.; Sivadasan, S.; Varghese, C.P.; Agrawal, R. Validation of QSAR Models - Strategies and Importance. Int. J. Drug Des. Dis., 2011, 2(3), 511-519.
[24]
Shi, L.M.; Fang, H.; Tong, W.; Wu, J.; Perkins, R.; Blair, R.M.; Branham, W.S.; Dial, S.L.; Moland, C.L.; Sheehan, D.M. QSAR models using a large diverse set of estrogens. J. Chem. Inf. Comput. Sci., 2001, 41(1), 186-195.
[http://dx.doi.org/10.1021/ci000066d] [PMID: 11206373]
[25]
Schüürmann, G.; Ebert, R.U.; Chen, J.; Wang, B.; Kühne, R. External validation and prediction employing the predictive squared correlation coefficient test set activity mean vs training set activity mean. J. Chem. Inf. Model., 2008, 48(11), 2140-2145.
[http://dx.doi.org/10.1021/ci800253u] [PMID: 18954136]
[26]
Consonni, V.; Ballabio, D.; Todeschini, R. Comments on the definition of the Q2 parameter for QSAR validation. J. Chem. Inf. Model., 2009, 49(7), 1669-1678.
[http://dx.doi.org/10.1021/ci900115y] [PMID: 19527034]
[27]
Consonni, V.; Ballabiom, D.; Todeschini, R. Evaluation of model predictive ability by external validation techniques. J. Chemometr., 2010, 24(3-4), 194-201.
[http://dx.doi.org/10.1002/cem.1290]
[28]
Lin, L.I. A concordance correlation coefficient to evaluate reproducibility. Biometrics, 1989, 45(1), 255-268.
[http://dx.doi.org/10.2307/2532051] [PMID: 2720055]
[29]
Lin, L.I. Assay validation using the concordance correlation coefficient. Biometrics, 1992, 48(2), 599-604.
[http://dx.doi.org/10.2307/2532314]
[30]
Norinder, U. Single and domain made variable selection in 3D QSAR applications. J. Chemometr., 1996, 10, 95-105.
[http://dx.doi.org/10.1002/(SICI)1099-128X(199603)10:2<95:AID-CEM407>3.0.CO;2-M]
[31]
Rácz, A.; Bajusz, D.; Héberger, K. Consistency of QSAR models: Correct split of training and test sets, ranking of models and performance parameters. SAR QSAR Environ. Res., 2015, 26(7-9), 683-700.
[http://dx.doi.org/10.1080/1062936X.2015.1084647] [PMID: 26434574]
[32]
Gramatica, P.; Cassani, S.; Roy, P.P.; Kovarich, S.; Yap, C.W.; Papa, E. QSAR Modeling is not “Push a Button and Find a Correlation”: A Case Study of Toxicity of (Benzo-)triazoles on Algae. Mol. Inform., 2012, 31(11-12), 817-835.
[http://dx.doi.org/10.1002/minf.201200075] [PMID: 27476736]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 4
Year: 2020
Published on: 02 September, 2020
Page: [473 - 485]
Pages: 13
DOI: 10.2174/1573409915666190904114247
Price: $65

Article Metrics

PDF: 36
HTML: 1