Targeting Mutant KRAS for Anticancer Therapy

Author(s): Fengqian Chen, Martin P. Alphonse, Yan Liu, Qi Liu*

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 23 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Over the past decades, designing therapeutic strategies to target KRAS-mutant cancers, which is one of the most frequent mutant oncogenes among all cancer types, have proven unsuccessful regardless of many concerted attempts. There are key challenges for KRAS-mutant anticancer therapy, as the complex cellular processes involved in KRAS signaling has present. Herein, we highlight the emerging therapeutic approaches for inhibiting KRAS signaling and blocking KRAS functions, in hope to serve as a more effective guideline for future development of therapeutics.

Keywords: KRAS mutant, KRAS pathway, Anticancer therapeutics, Cell signaling, Guanosine triphosphate-bound RAS, Oncogene.

[1]
Malumbres, M.; Barbacid, M. RAS oncogenes: the first 30 years. Nat. Rev. Cancer, 2003, 3(6), 459-465.
[http://dx.doi.org/10.1038/nrc1097] [PMID: 12778136]
[2]
Forbes, S.A.; Bindal, N.; Bamford, S.; Cole, C.; Kok, C.Y.; Beare, D.; Jia, M.; Shepherd, R.; Leung, K.; Menzies, A.; Teague, J.W.; Campbell, P.J.; Stratton, M.R.; Futreal, P.A. COSMIC: mining complete cancer genomes in the Catalogue of somatic mutations in cancer. Nucleic Acids Res., 2011, 39(Database issue), D945-D950.
[http://dx.doi.org/10.1093/nar/gkq929] [PMID: 20952405]
[3]
Montagut, C.; Settleman, J. Targeting the RAF-MEK-ERK pathway in cancer therapy. Cancer Lett., 2009, 283(2), 125-134.
[http://dx.doi.org/10.1016/j.canlet.2009.01.022] [PMID: 19217204]
[4]
Fernández-Medarde, A.; Santos, E. Ras in cancer and developmental diseases. Genes Cancer, 2011, 2(3), 344-358.
[http://dx.doi.org/10.1177/1947601911411084] [PMID: 21779504]
[5]
Cox, A.D.; Fesik, S.W.; Kimmelman, A.C.; Luo, J.; Der, C.J. Drugging the undruggable RAS: Mission possible? Nat. Rev. Drug Discov., 2014, 13(11), 828-851.
[http://dx.doi.org/10.1038/nrd4389] [PMID: 25323927]
[6]
Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer, 2003, 3(1), 11-22.
[http://dx.doi.org/10.1038/nrc969] [PMID: 12509763]
[7]
Gysin, S.; Salt, M.; Young, A.; McCormick, F. Therapeutic strategies for targeting ras proteins. Genes Cancer, 2011, 2(3), 359-372.
[http://dx.doi.org/10.1177/1947601911412376] [PMID: 21779505]
[8]
Wang, W.; Fang, G.; Rudolph, J. Ras inhibition via direct Ras binding--is there a path forward? Bioorg. Med. Chem. Lett., 2012, 22(18), 5766-5776.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.082] [PMID: 22902659]
[9]
De Luca, A.; Maiello, M. R.; D'Alessio, A.; Pergameno, M.; Normanno, N. The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches Expert Opin. Ther. Targets, 2012, 16(sup2), s17-s27.
[http://dx.doi.org/10.1517/14728222.2011.639361] [PMID: 22443084]
[10]
LoRusso, P.; Shapiro, G.; Pandya, S.S.; Kwak, E.L.; Jones, C.; Belvin, M.; Musib, L.C.; de Crespigny, A.; McKenzie, M.; Gates, M.R.; Chan, I.T.-C.; Bendell, J.C. A first-in-human phase Ib study to evaluate the MEK inhibitor GDC-0973, combined with the pan- PI3K inhibitor GDC-0941, in patients with advanced solid tumors J. Clini. Oncol., 2012, 30(15_suppl), 2566-2566.
[http://dx.doi.org/10.1007/s10637-019-00776-6] [PMID: 31020608]
[11]
Speranza, G.; Kinders, R.J.; Khin, S.; Weil, M.K.; Do, K.T.; Horneffer, Y.; Juwara, L.; Allen, D.; Williams, P.M.; Lih, C.J.; Rubinstein, L.; Doyle, L.A.; Doroshow, J.H.; Kummar, S. Pharmacodynamic biomarker-driven trial of MK-2206, an AKT inhibitor, with AZD6244 (selumetinib), a MEK inhibitor, in patients with advanced colorectal carcinoma (CRC). J. Clini. Oncol, 2012, 30(15_suppl), 3529-3529.2012,
[http://dx.doi.org/10.1007/s10637-015-0212-z] [PMID: 25637165]
[12]
Friday, B.B.; Adjei, A.A. K-ras as a target for cancer therapy. Biochimica et Biophysica Acta., 2005, 1756(2), 127-144.
[http://dx.doi.org/10.1016/j.bbcan.2005.08.001]
[13]
Pao, W.; Wang, T.Y.; Riely, G.J.; Miller, V.A.; Pan, Q.; Ladanyi, M.; Zakowski, M.F.; Heelan, R.T.; Kris, M.G.; Varmus, H.E. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med., 2005, 2(1), e17-e17.
[http://dx.doi.org/10.1371/journal.pmed.0020017] [PMID: 15696205]
[14]
Chandra, A.; Grecco, H.E.; Pisupati, V.; Perera, D.; Cassidy, L.; Skoulidis, F.; Ismail, S.A.; Hedberg, C.; Hanzal-Bayer, M.; Venkitaraman, A.R.; Wittinghofer, A.; Bastiaens, P.I.H. The GDI-like solubilizing factor PDEδ sustains the spatial organization and signalling of Ras family proteins. Nat. Cell Biol., 2011, 14(2), 148-158.
[http://dx.doi.org/10.1038/ncb2394] [PMID: 22179043]
[15]
Kolch, W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem. J., 2000, 351(Pt 2), 289-305.
[http://dx.doi.org/10.1042/bj3510289] [PMID: 11023813]
[16]
Hennessy, B.T.; Smith, D.L.; Ram, P.T.; Lu, Y.; Mills, G.B. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov., 2005, 4(12), 988-1004.
[http://dx.doi.org/10.1038/nrd1902] [PMID: 16341064]
[17]
Ferrari, E.; Lucca, C.; Foiani, M. A lethal combination for cancer cells: synthetic lethality screenings for drug discovery. Eur. J. Cancer, 2010, 46(16), 2889-2895.
[http://dx.doi.org/10.1016/j.ejca.2010.07.031] [PMID: 20724143]
[18]
Steckel, M.; Molina-Arcas, M.; Weigelt, B.; Marani, M.; Warne, P.H.; Kuznetsov, H.; Kelly, G.; Saunders, B.; Howell, M.; Downward, J.; Hancock, D.C. Determination of synthetic lethal interactions in KRAS oncogene-dependent cancer cells reveals novel therapeutic targeting s trategies. Cell Res., 2012, 22(8), 1227-1245.
[http://dx.doi.org/10.1038/cr.2012.82] [PMID: 22613949]
[19]
Perepelyuk, M.; Shoyele, O.; Birbe, R.; Thangavel, C.; Liu, Y.; Den, R.B.; Snook, A.E.; Lu, B.; Shoyele, S.A. siRNA-Encapsulated hybrid nanoparticles target mutant k-ras and inhibit metastatic tumor burden in a mouse model of lung cancer. Mol. Ther. Nucleic Acids, 2017, 6, 259-268.
[http://dx.doi.org/10.1016/j.omtn.2016.12.009] [PMID: 28325292]
[20]
Mao, C-Q.; Xiong, M-H.; Liu, Y.; Shen, S.; Du, X-J.; Yang, X-Z.; Dou, S.; Zhang, P-Z.; Wang, J. Synthetic lethal therapy for KRAS mutant non-small-cell lung carcinoma with nanoparticle-mediated CDK4 siRNA delivery. Mol. Ther., 2014, 22(5), 964-973.
[http://dx.doi.org/10.1038/mt.2014.18] [PMID: 24496383]
[21]
Chen, N.; Fang, W.; Lin, Z.; Peng, P.; Wang, J.; Zhan, J.; Hong, S.; Huang, J.; Liu, L.; Sheng, J.; Zhou, T.; Chen, Y.; Zhang, H.; Zhang, L. KRAS mutation-induced upregulation of PD-L1 mediates immune escape in human lung adenocarcinoma. Cancer Immunol. Immunother., 2017, 66(9), 1175-1187.
[http://dx.doi.org/10.1007/s00262-017-2005-z] [PMID: 28451792]
[22]
Casey, P.J.; Solski, P.A.; Der, C.J.; Buss, J.E. p21ras is modified by a farnesyl isoprenoid. Proc. Natl. Acad. Sci. USA, 1989, 86(21), 8323-8327.
[http://dx.doi.org/10.1073/pnas.86.21.8323] [PMID: 2682646]
[23]
Seabra, M.C.; Reiss, Y.; Casey, P.J.; Brown, M.S.; Goldstein, J.L. Protein farnesyltransferase and geranylgeranyltransferase share a common α subunit. Cell, 1991, 65(3), 429-434.
[http://dx.doi.org/10.1016/0092-8674(91)90460-G] [PMID: 2018975]
[24]
Laude, A.J.; Prior, I.A. Palmitoylation and localisation of RAS isoforms are modulated by the hypervariable linker domain. J. Cell Sci., 2008, 121(Pt 4), 421-427.
[http://dx.doi.org/10.1242/jcs.020107] [PMID: 18211960]
[25]
Dekker, F.J.; Rocks, O.; Vartak, N.; Menninger, S.; Hedberg, C.; Balamurugan, R.; Wetzel, S.; Renner, S.; Gerauer, M.; Schölermann, B.; Rusch, M.; Kramer, J.W.; Rauh, D.; Coates, G.W.; Brunsveld, L.; Bastiaens, P.I.; Waldmann, H. Small-molecule inhibition of APT1 affects Ras localization and signaling. Nat. Chem. Biol., 2010, 6(6), 449-456.
[http://dx.doi.org/10.1038/nchembio.362] [PMID: 20418879]
[26]
Jeng, H-H.; Taylor, L.J.; Bar-Sagi, D. Sos-mediated cross-activation of wild-type Ras by oncogenic Ras is essential for tumorigenesis. Nat. Commun., 2012, 3, 1168.
[http://dx.doi.org/10.1038/ncomms2173] [PMID: 23132018]
[27]
Burns, M.C.; Sun, Q.; Daniels, R.N.; Camper, D.; Kennedy, J.P.; Phan, J.; Olejniczak, E.T.; Lee, T.; Waterson, A.G.; Rossanese, O.W.; Fesik, S.W. Approach for targeting Ras with small molecules that activate SOS-mediated nucleotide exchange. Proc. Natl. Acad. Sci. USA, 2014, 111(9), 3401-3406.
[http://dx.doi.org/10.1073/pnas.1315798111] [PMID: 24550516]
[28]
McCormick, F. KRAS as a Therapeutic Target. Clin. Cancer Res., 2015, 21(8), 1797-1801.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2662] [PMID: 25878360]
[29]
Zhu, Z.; Golay, H.G.; Barbie, D.A. Targeting pathways downstream of KRAS in lung adenocarcinoma. Pharmacogenomics, 2014, 15(11), 1507-1518.
[http://dx.doi.org/10.2217/pgs.14.108] [PMID: 25303301]
[30]
Normanno, N.; Tejpar, S.; Morgillo, F.; De Luca, A.; Van Cutsem, E.; Ciardiello, F. Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nat. Rev. Clin. Oncol., 2009, 6(9), 519-527.
[http://dx.doi.org/10.1038/nrclinonc.2009.111] [PMID: 19636327]
[31]
Barbie, D.A.; Tamayo, P.; Boehm, J.S.; Kim, S.Y.; Moody, S.E.; Dunn, I.F.; Schinzel, A.C.; Sandy, P.; Meylan, E.; Scholl, C.; Fröhling, S.; Chan, E.M.; Sos, M.L.; Michel, K.; Mermel, C.; Silver, S.J.; Weir, B.A.; Reiling, J.H.; Sheng, Q.; Gupta, P.B.; Wadlow, R.C.; Le, H.; Hoersch, S.; Wittner, B.S.; Ramaswamy, S.; Livingston, D.M.; Sabatini, D.M.; Meyerson, M.; Thomas, R.K.; Lander, E.S.; Mesirov, J.P.; Root, D.E.; Gilliland, D.G.; Jacks, T.; Hahn, W.C. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 2009, 462(7269), 108-112.
[http://dx.doi.org/10.1038/nature08460] [PMID: 19847166]
[32]
Litvak, A. M.; Drilon, A. E.; Rekhtman, N.; Pietanza, M. C.; Chaft, J. E.; Woo, K.; Paik, P. K.; Kris, M. G.; Riely, G. J. Phase II trial of bortezomib in KRAS G12D mutant lung cancers. J. Clin. Oncol., 2005, 33(15_suppl), e19002-e19002.
[http://dx.doi.org/10.1101/mcs.a003665] [PMID: 30936194]
[33]
Iskandar, K.; Rezlan, M.; Yadav, S.K.; Foo, C.H.J.; Sethi, G.; Qiang, Y.; Bellot, G.L.; Pervaiz, S. Synthetic lethality of a novel small molecule against mutant KRAS-expressing cancer cells involves AKT-dependent ROS production. Antioxid. Redox Signal., 2016, 24(14), 781-794.
[http://dx.doi.org/10.1089/ars.2015.6362] [PMID: 26714745]
[34]
Prior, I.A.; Lewis, P.D.; Mattos, C. A comprehensive survey of Ras mutations in cancer. Cancer Res., 2012, 72(10), 2457-2467.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2612] [PMID: 22589270]
[35]
Knickelbein, K.; Zhang, L. Mutant KRAS as a critical determinant of the therapeutic response of colorectal cancer. Genes Dis., 2015, 2(1), 4-12.
[http://dx.doi.org/10.1016/j.gendis.2014.10.002] [PMID: 25815366]
[36]
Xie, C.; Li, Y.; Li, L-L.; Fan, X-X.; Wang, Y-W.; Wei, C-L.; Liu, L.; Leung, E.L-H.; Yao, X-J. Identification of a new potent inhibitor targeting KRAS in non-small cell lung cancer cells. Front. Pharmacol., 2017, 8, 823.
[http://dx.doi.org/10.3389/fphar.2017.00823] [PMID: 29184501]
[37]
Silvius, J.R.; Bhagatji, P.; Leventis, R.; Terrone, D. K-ras4B and prenylated proteins lacking “second signals” associate dynamically with cellular membranes. Mol. Biol. Cell, 2006, 17(1), 192-202.
[http://dx.doi.org/10.1091/mbc.e05-05-0408] [PMID: 16236799]
[38]
Ahearn, I.; Zhou, M.; Philips, M.R. Posttranslational modifications of RAS proteins. Cold Spring Harb. Perspect. Med., 2018, 8(11)a031484
[http://dx.doi.org/10.1101/cshperspect.a031484] [PMID: 29311131]
[39]
Suenaga, M.; Dudley, B.; Karloski, E.; Borges, M.; Irene Canto, M.; Brand, R.E.; Goggins, M. The effect of pancreatic juice collection time on the detection of KRAS mutations. Pancreas, 2018, 47(1), 35-39.
[PMID: 29200129]
[40]
Appels, N.M.G.M.; Beijnen, J.H.; Schellens, J.H.M. Development of farnesyl transferase inhibitors: a review. Oncologist, 2005, 10(8), 565-578.
[http://dx.doi.org/10.1634/theoncologist.10-8-565] [PMID: 16177281]
[41]
Furuse, J.; Kurata, T.; Okano, N.; Fujisaka, Y.; Naruge, D.; Shimizu, T.; Kitamura, H.; Iwasa, T.; Nagashima, F.; Nakagawa, K. An early clinical trial of Salirasib, an oral RAS inhibitor, in Japanese patients with relapsed/refractory solid tumors. Cancer Chemother. Pharmacol., 2018, 82(3), 511-519.
[http://dx.doi.org/10.1007/s00280-018-3618-4] [PMID: 29992354]
[42]
Badar, T.; Cortes, J.E.; Ravandi, F.; O’Brien, S.; Verstovsek, S.; Garcia-Manero, G.; Kantarjian, H.; Borthakur, G. Phase I study of S-trans, trans-farnesylthiosalicylic acid (salirasib), a novel oral RAS inhibitor in patients with refractory hematologic malignancies. Clin. Lymphoma Myeloma Leuk., 2015, 15(7), 433-438.
[http://dx.doi.org/10.1016/j.clml.2015.02.018] [PMID: 25795639]
[43]
Laheru, D.; Shah, P.; Rajeshkumar, N.V.; McAllister, F.; Taylor, G.; Goldsweig, H.; Le, D.T.; Donehower, R.; Jimeno, A.; Linden, S.; Zhao, M.; Song, D.; Rudek, M.A.; Hidalgo, M. Integrated preclinical and clinical development of S-trans, trans-Farnesylthiosalicylic Acid (FTS, Salirasib) in pancreatic cancer. Invest. New Drugs, 2012, 30(6), 2391-2399.
[http://dx.doi.org/10.1007/s10637-012-9818-6] [PMID: 22547163]
[44]
Riely, G.J.; Johnson, M.L.; Medina, C.; Rizvi, N.A.; Miller, V.A.; Kris, M.G.; Pietanza, M.C.; Azzoli, C.G.; Krug, L.M.; Pao, W.; Ginsberg, M.S. A phase II trial of Salirasib in patients with lung adenocarcinomas with KRAS mutations. J. Thorac. Oncol., 2011, 6(8), 1435-1437.
[http://dx.doi.org/10.1097/JTO.0b013e318223c099] [PMID: 21847063]
[45]
Wong, N.S.; Meadows, K.L.; Rosen, L.S.; Adjei, A.A.; Kaufmann, S.H.; Morse, M.A.; Petros, W.P.; Zhu, Y.; Statkevich, P.; Cutler, D.L.; Meyers, M.L.; Hurwitz, H.I. A phase I multicenter study of continuous oral administration of lonafarnib (SCH 66336) and intravenous gemcitabine in patients with advanced cancer. Cancer Invest., 2011, 29(9), 617-625.
[http://dx.doi.org/10.3109/07357907.2011.621912] [PMID: 22011284]
[46]
Papadimitrakopoulou, V.; Agelaki, S.; Tran, H.T.; Kies, M.; Gagel, R.; Zinner, R.; Kim, E.; Ayers, G.; Wright, J.; Khuri, F.; Phase, I. Phase I study of the farnesyltransferase inhibitor BMS-214662 given weekly in patients with solid tumors. Clin. Cancer Res., 2005, 11(11), 4151-4159.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1659] [PMID: 15930351]
[47]
Ryan, D.P.; Eder, J.P., Jr; Puchlaski, T.; Seiden, M.V.; Lynch, T.J.; Fuchs, C.S.; Amrein, P.C.; Sonnichsen, D.; Supko, J.G.; Clark, J.W.; Phase, I. Phase I clinical trial of the farnesyltransferase inhibitor BMS-214662 given as a 1-hour intravenous infusion in patients with advanced solid tumors. Clin. Cancer Res., 2004, 10(7), 2222-2230.
[http://dx.doi.org/10.1158/1078-0432.CCR-0980-3] [PMID: 15073096]
[48]
Zimmermann, G.; Papke, B.; Ismail, S.; Vartak, N.; Chandra, A.; Hoffmann, M.; Hahn, S.A.; Triola, G.; Wittinghofer, A.; Bastiaens, P.I.H.; Waldmann, H. Small molecule inhibition of the KRAS-PDEδ interaction impairs oncogenic KRAS signalling. Nature, 2013, 497(7451), 638-642.
[http://dx.doi.org/10.1038/nature12205] [PMID: 23698361]
[49]
Lièvre, A.; Bachet, J-B.; Boige, V.; Cayre, A.; Le Corre, D.; Buc, E.; Ychou, M.; Bouché, O.; Landi, B.; Louvet, C.; André, T.; Bibeau, F.; Diebold, M-D.; Rougier, P.; Ducreux, M.; Tomasic, G.; Emile, J-F.; Penault-Llorca, F.; Laurent-Puig, P. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J. Clin. Oncol., 2008, 26(3), 374-379.
[http://dx.doi.org/10.1200/JCO.2007.12.5906] [PMID: 18202412]
[50]
Lièvre, A.; Bachet, J-B.; Le Corre, D.; Boige, V.; Landi, B.; Emile, J-F.; Côté, J-F.; Tomasic, G.; Penna, C.; Ducreux, M.; Rougier, P.; Penault-Llorca, F.; Laurent-Puig, P. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res., 2006, 66(8), 3992-3995.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0191] [PMID: 16618717]
[51]
Bokemeyer, C.; Bondarenko, I.; Hartmann, J. T.; De Braud, F. G.; Volovat, C.; Nippgen, J.; Stroh, C.; Celik, I.; Koralewski, P. KRAS status and efficacy of first-line treatment of patients with metastatic colorectal cancer (mCRC) with FOLFOX with or without cetuximab: The OPUS experience J. Clin. Oncol., 2008, 26(15_suppl), 4000-4000.
[http://dx.doi.org/10.1200/jco.2008.26.15_suppl.4000] [PMID: 27949258]
[52]
Van Cutsem, E.; Lang, I.; D'Haens, G.; Moiseyenko, V.; Zaluski, J.; Folprecht, G.; Tejpar, S.; Kisker, O.; Stroh, C.; Rougier, P. KRAS status and efficacy in the first-line treatment of patients with metastatic colorectal cancer (mCRC) treated with FOLFIRI with or without cetuximab: The CRYSTAL experience. J. Clin. Oncol., 2008, 26(15_suppl), 2-2.
[http://dx.doi.org/ 10.1200/jco.2008.26.15_suppl.2] [PMID: 27948495]
[53]
Dingemans, A-M.C.; Mellema, W.W.; Groen, H.J.M.; van Wijk, A.; Burgers, S.A.; Kunst, P.W.A.; Thunnissen, E.; Heideman, D.A.M.; Smit, E.F. A phase II study of sorafenib in patients with platinum-pretreated, advanced (Stage IIIb or IV) non-small cell lung cancer with a KRAS mutation. Clin. Cancer Res., 2013, 19(3), 743-751.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1779] [PMID: 23224737]
[54]
Konstantinidou, G.; Ramadori, G.; Torti, F.; Kangasniemi, K.; Ramirez, R.E.; Cai, Y.; Behrens, C.; Dellinger, M.T.; Brekken, R.A.; Wistuba, I.I.; Heguy, A.; Teruya-Feldstein, J.; Scaglioni, P.P. RHOA-FAK is a required signaling axis for the maintenance of KRAS-driven lung adenocarcinomas. Cancer Discov., 2013, 3(4), 444-457.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0388] [PMID: 23358651]
[55]
Patgiri, A.; Yadav, K.K.; Arora, P.S.; Bar-Sagi, D. An orthosteric inhibitor of the Ras-Sos interaction. Nat. Chem. Biol., 2011, 7(9), 585-587.
[http://dx.doi.org/10.1038/nchembio.612] [PMID: 21765406]
[56]
Vivanco, I.; Sawyers, C.L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer, 2002, 2(7), 489-501.
[http://dx.doi.org/10.1038/nrc839] [PMID: 12094235]
[57]
Hainsworth, J.D.; Cebotaru, C.L.; Kanarev, V.; Ciuleanu, T.E.; Damyanov, D.; Stella, P.; Ganchev, H.; Pover, G.; Morris, C.; Tzekova, V. A phase II, open-label, randomized study to assess the efficacy and safety of AZD6244 (ARRY-142886) versus pemetrexed in patients with non-small cell lung cancer who have failed one or two prior chemotherapeutic regimens. J. Thorac. Oncol., 2010, 5(10), 1630-1636.
[http://dx.doi.org/10.1097/JTO.0b013e3181e8b3a3] [PMID: 20802351]
[58]
Yeh, T.C.; Marsh, V.; Bernat, B.A.; Ballard, J.; Colwell, H.; Evans, R.J.; Parry, J.; Smith, D.; Brandhuber, B.J.; Gross, S.; Marlow, A.; Hurley, B.; Lyssikatos, J.; Lee, P.A.; Winkler, J.D.; Koch, K.; Wallace, E. Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin. Cancer Res., 2007, 13(5), 1576-1583.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1150] [PMID: 17332304]
[59]
Jänne, P.A.; Shaw, A.T.; Pereira, J.R.; Jeannin, G.; Vansteenkiste, J.; Barrios, C.; Franke, F.A.; Grinsted, L.; Zazulina, V.; Smith, P.; Smith, I.; Crinò, L. Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol., 2013, 14(1), 38-47.
[http://dx.doi.org/10.1016/S1470-2045(12)70489-8] [PMID: 23200175]
[60]
Carter, C.A.; Rajan, A.; Keen, C.; Szabo, E.; Khozin, S.; Thomas, A.; Brzezniak, C.; Guha, U.; Doyle, L.A.; Steinberg, S.M.; Xi, L.; Raffeld, M.; Tomita, Y.; Lee, M.J.; Lee, S.; Trepel, J.B.; Reckamp, K.L.; Koehler, S.; Gitlitz, B.; Salgia, R.; Gandara, D.; Vokes, E.; Giaccone, G. Selumetinib with and without erlotinib in KRAS mutant and KRAS wild-type advanced nonsmall-cell lung cancer. Ann. Oncol., 2016, 27(4), 693-699.
[http://dx.doi.org/10.1093/annonc/mdw008] [PMID: 26802155]
[61]
Tan, N.; Wong, M.; Nannini, M.A.; Hong, R.; Lee, L.B.; Price, S.; Williams, K.; Savy, P.P.; Yue, P.; Sampath, D.; Settleman, J.; Fairbrother, W.J.; Belmont, L.D. Bcl-2/Bcl-xL inhibition increases the efficacy of MEK inhibition alone and in combination with PI3 kinase inhibition in lung and pancreatic tumor models. Mol. Cancer Ther., 2013, 12(6), 853-864.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0949] [PMID: 23475955]
[62]
Sarker, D.; Ang, J.E.; Baird, R.; Kristeleit, R.; Shah, K.; Moreno, V.; Clarke, P.A.; Raynaud, F.I.; Levy, G.; Ware, J.A.; Mazina, K.; Lin, R.; Wu, J.; Fredrickson, J.; Spoerke, J.M.; Lackner, M.R.; Yan, Y.; Friedman, L.S.; Kaye, S.B.; Derynck, M.K.; Workman, P.; de Bono, J.S. First-in-human phase I study of pictilisib (GDC-0941), a potent pan-class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in patients with advanced solid tumors. Clin. Cancer Res., 2015, 21(1), 77-86.
[63]
Blumenschein, G.R., Jr; Smit, E.F.; Planchard, D.; Kim, D.W.; Cadranel, J.; De Pas, T.; Dunphy, F.; Udud, K.; Ahn, M.J.; Hanna, N.H.; Kim, J.H.; Mazieres, J.; Kim, S.W.; Baas, P.; Rappold, E.; Redhu, S.; Puski, A.; Wu, F.S.; Jänne, P.A. A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC). Ann. Oncol., 2015, 26(5), 894-901.
[http://dx.doi.org/10.1093/annonc/mdv072] [PMID: 25722381]
[64]
Martinez-Garcia, M.; Banerji, U.; Albanell, J.; Bahleda, R.; Dolly, S.; Kraeber-Bodéré, F.; Rojo, F.; Routier, E.; Guarin, E.; Xu, Z-X.; Rueger, R.; Tessier, J.J.L.; Shochat, E.; Blotner, S.; Naegelen, V.M.; Soria, J-C. First-in-human, phase I dose-escalation study of the safety, pharmacokinetics, and pharmacodynamics of RO5126766, a first-in-class dual MEK/RAF inhibitor in patients with solid tumors. Clin. Cancer Res., 2012, 18(17), 4806-4819.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0742] [PMID: 22761467]
[65]
Sequist, L.V.; von Pawel, J.; Garmey, E.G.; Akerley, W.L.; Brugger, W.; Ferrari, D.; Chen, Y.; Costa, D.B.; Gerber, D.E.; Orlov, S.; Ramlau, R.; Arthur, S.; Gorbachevsky, I.; Schwartz, B.; Schiller, J.H. Randomized phase II study of erlotinib plus tivantinib versus erlotinib plus placebo in previously treated non-small-cell lung cancer. J. Clin. Oncol., 2011, 29(24), 3307-3315.
[http://dx.doi.org/10.1200/JCO.2010.34.0570] [PMID: 21768463]
[66]
Abdel Karim, N.; Eldessouki, I.; Taftaf, A.; Ayham, D.; Gaber, O.; Makramalla, A.; Correa, Z.M. GNQ-209P Mutation in metastatic uveal melanoma and treatment outcome. Case Rep. Oncol. Med., 2018, 20184256365
[http://dx.doi.org/10.1155/2018/4256365] [PMID: 29850322]
[67]
Ihle, N.T.; Lemos, R., Jr; Wipf, P.; Yacoub, A.; Mitchell, C.; Siwak, D.; Mills, G.B.; Dent, P.; Kirkpatrick, D.L.; Powis, G. Mutations in the phosphatidylinositol-3-kinase pathway predict for antitumor activity of the inhibitor PX-866 whereas oncogenic Ras is a dominant predictor for resistance. Cancer Res., 2009, 69(1), 143-150.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6656] [PMID: 19117997]
[68]
Wallin, J.J.; Edgar, K.A.; Guan, J.; Berry, M.; Prior, W.W.; Lee, L.; Lesnick, J.D.; Lewis, C.; Nonomiya, J.; Pang, J.; Salphati, L.; Olivero, A.G.; Sutherlin, D.P.; O’Brien, C.; Spoerke, J.M.; Patel, S.; Lensun, L.; Kassees, R.; Ross, L.; Lackner, M.R.; Sampath, D.; Belvin, M.; Friedman, L.S. GDC-0980 is a novel class I PI3K/mTOR kinase inhibitor with robust activity in cancer models driven by the PI3K pathway. Mol. Cancer Ther., 2011, 10(12), 2426-2436.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0446] [PMID: 21998291]
[69]
Riely, G. J.; Brahmer, J. R.; Planchard, D.; Crinò, L.; Doebele, R. C.; Mas Lopez, L. A.; Gettinger, S. N.; Schumann, C.; Li, X.; Atkins, B. M.; Ebbinghaus, S.; Rosell, R. A randomized discontinuation phase II trial of ridaforolimus in non-small cell lung cancer (NSCLC) patients with KRAS mutations J. Clin. Oncol., 2012, 30(15_suppl), 7531.
[70]
Engelman, J.A. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat. Rev. Cancer, 2009, 9(8), 550-562.
[http://dx.doi.org/10.1038/nrc2664] [PMID: 19629070]
[71]
Hofmann, I.; Weiss, A.; Elain, G.; Schwaederle, M.; Sterker, D.; Romanet, V.; Schmelzle, T.; Lai, A.; Brachmann, S.M.; Bentires-Alj, M.; Roberts, T.M.; Sellers, W.R.; Hofmann, F.; Maira, S-M. K-RAS mutant pancreatic tumors show higher sensitivity to MEK than to PI3K inhibition in vivo. PLoS One, 2012, 7(8)e44146
[http://dx.doi.org/10.1371/journal.pone.0044146] [PMID: 22952903]
[72]
Vigil, D.; Cherfils, J.; Rossman, K.L.; Der, C.J. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat. Rev. Cancer, 2010, 10(12), 842-857.
[http://dx.doi.org/10.1038/nrc2960] [PMID: 21102635]
[73]
Heist, R.S.; Gandhi, L.; Shapiro, G.; Rizvi, N.A.; Burris, H.A.; Bendell, J.C.; Baselga, J.; Yerganian, S.B.; Hsu, K.; Ogden, J.; Vincent, L.; Richter, O.V.; Locatelli, G.; Asatiani, E.; Infante, J.R. Combination of a MEK inhibitor, pimasertib (MSC1936369B), and a PI3K/mTOR inhibitor, SAR245409, in patients with advanced solid tumors: Results of a phase Ib dose-escalation trial J. Clin. Oncol., 2013, 31(15_suppl), 2530.
[http://dx.doi.org/10.1200/jco.2013.31.15_suppl.2530]]
[74]
Ramanathan, R. K.; Von Hoff, D. D.; Eskens, F.; Blumenschein, G. R.; Richards, D. A.; Renshaw, F. G.; Rajagopalan, P.; Kelly, A.; Pena, C. E.; Mross, K.B. A phase 1b trial of PI3K inhibitor copanlisib (BAY 80-6946) combined with the allosteric-MEK inhibitor refametinib (BAY 86-9766) in patients with advanced cancer. J. Clin. Oncol., 2014, 32(15_suppl), 2588-2588.
[http://dx.doi.org/10.1200/jco.2014.32.15_suppl.2588]
[75]
Wilson, C.Y.; Tolias, P. Recent advances in cancer drug discovery targeting RAS. Drug Discov. Today, 2016, 21(12), 1915-1919.
[http://dx.doi.org/10.1016/j.drudis.2016.08.002] [PMID: 27506872]
[76]
Kaelin, W.G. Jr Synthetic lethality: a framework for the development of wiser cancer therapeutics. Genome Med., 2009, 1(10), 99.
[http://dx.doi.org/10.1186/gm99] [PMID: 19863774]
[77]
Chan, D.A.; Giaccia, A.J. Harnessing synthetic lethal interactions in anticancer drug discovery. Nat. Rev. Drug Discov., 2011, 10(5), 351-364.
[http://dx.doi.org/10.1038/nrd3374] [PMID: 21532565]
[78]
Lim, S.M.; Westover, K.D.; Ficarro, S.B.; Harrison, R.A.; Choi, H.G.; Pacold, M.E.; Carrasco, M.; Hunter, J.; Kim, N.D.; Xie, T.; Sim, T.; Jänne, P.A.; Meyerson, M.; Marto, J.A.; Engen, J.R.; Gray, N.S. Therapeutic targeting of oncogenic K-Ras by a covalent catalytic site inhibitor. Angew. Chem. Int. Ed. Engl., 2014, 53(1), 199-204.
[http://dx.doi.org/10.1002/anie.201307387] [PMID: 24259466]
[79]
Hunter, J.C.; Gurbani, D.; Ficarro, S.B.; Carrasco, M.A.; Lim, S.M.; Choi, H.G.; Xie, T.; Marto, J.A.; Chen, Z.; Gray, N.S.; Westover, K.D. In situ selectivity profiling and crystal structure of SML-8-73-1, an active site inhibitor of oncogenic K-Ras G12C. Proc. Natl. Acad. Sci. USA, 2014, 111(24), 8895-8900.
[http://dx.doi.org/10.1073/pnas.1404639111] [PMID: 24889603]
[80]
Maurer, T.; Garrenton, L.S.; Oh, A.; Pitts, K.; Anderson, D.J.; Skelton, N.J.; Fauber, B.P.; Pan, B.; Malek, S.; Stokoe, D.; Ludlam, M.J.C.; Bowman, K.K.; Wu, J.; Giannetti, A.M.; Starovasnik, M.A.; Mellman, I.; Jackson, P.K.; Rudolph, J.; Wang, W.; Fang, G. Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc. Natl. Acad. Sci. USA, 2012, 109(14), 5299-5304.
[http://dx.doi.org/10.1073/pnas.1116510109] [PMID: 22431598]
[81]
Sun, Q.; Burke, J.P.; Phan, J.; Burns, M.C.; Olejniczak, E.T.; Waterson, A.G.; Lee, T.; Rossanese, O.W.; Fesik, S.W. Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation. Angew. Chem. Int. Ed. Engl., 2012, 51(25), 6140-6143.
[http://dx.doi.org/10.1002/anie.201201358] [PMID: 22566140]
[82]
Shima, F.; Yoshikawa, Y.; Ye, M.; Araki, M.; Matsumoto, S.; Liao, J.; Hu, L.; Sugimoto, T.; Ijiri, Y.; Takeda, A.; Nishiyama, Y.; Sato, C.; Muraoka, S.; Tamura, A.; Osoda, T.; Tsuda, K.; Miyakawa, T.; Fukunishi, H.; Shimada, J.; Kumasaka, T.; Yamamoto, M.; Kataoka, T. In silico discovery of small-molecule Ras inhibitors that display antitumor activity by blocking the Ras-effector interaction. Proc. Natl. Acad. Sci. USA, 2013, 110(20), 8182-8187.
[http://dx.doi.org/10.1073/pnas.1217730110] [PMID: 23630290]
[83]
Luo, J.; Emanuele, M.J.; Li, D.; Creighton, C.J.; Schlabach, M.R.; Westbrook, T.F.; Wong, K-K.; Elledge, S.J. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell, 2009, 137(5), 835-848.
[http://dx.doi.org/10.1016/j.cell.2009.05.006] [PMID: 19490893]
[84]
Scholl, C.; Fröhling, S.; Dunn, I.F.; Schinzel, A.C.; Barbie, D.A.; Kim, S.Y.; Silver, S.J.; Tamayo, P.; Wadlow, R.C.; Ramaswamy, S.; Döhner, K.; Bullinger, L.; Sandy, P.; Boehm, J.S.; Root, D.E.; Jacks, T.; Hahn, W.C.; Gilliland, D.G. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell, 2009, 137(5), 821-834.
[http://dx.doi.org/10.1016/j.cell.2009.03.017] [PMID: 19490892]
[85]
Hu, Y.; Gong, X.; Zhang, J.; Chen, F.; Fu, C.; Li, P.; Zou, L.; Zhao, G. Activated charge-reversal polymeric nano-system: the promising strategy in drug delivery for cancer Therapy. Polymers (Basel), 2016, 8(4), 99.
[http://dx.doi.org/10.3390/polym8040099] [PMID: 30979214]
[86]
Chen, F.; Zhang, J.; Wang, L.; Wang, Y.; Chen, M. Tumor pH(e)-triggered charge-reversal and redox-responsive nanoparticles for docetaxel delivery in hepatocellular carcinoma treatment. Nanoscale, 2015, 7(38), 15763-15779.
[http://dx.doi.org/10.1039/C5NR04612B] [PMID: 26355843]
[87]
Chen, F.; Zhang, J.; He, Y.; Fang, X.; Wang, Y.; Chen, M. Glycyrrhetinic acid-decorated and reduction-sensitive micelles to enhance the bioavailability and anti-hepatocellular carcinoma efficacy of tanshinone IIA. Biomater. Sci., 2016, 4(1), 167-182.
[http://dx.doi.org/10.1039/C5BM00224A] [PMID: 26484363]
[88]
Zou, L.; Chen, F.; Bao, J.; Wang, S.; Wang, L.; Chen, M.; He, C.; Wang, Y. Preparation, characterization, and anticancer efficacy of evodiamine-loaded PLGA nanoparticles. Drug Deliv., 2016, 23(3), 908-916.
[http://dx.doi.org/10.3109/10717544.2014.920936] [PMID: 24904975]
[89]
Zhang, J.; Chen, R.; Fang, X.; Chen, F.; Wang, Y.; Chen, M. Nucleolin targeting AS1411 aptamer modified pH-sensitive micelles for enhanced delivery and antitumor efficacy of paclitaxel. Nano Res., 2015, 8(1), 201-218.
[http://dx.doi.org/10.1007/s12274-014-0619-4]
[90]
Liu, Q.; Zhu, H.; Tiruthani, K.; Shen, L.; Chen, F.; Gao, K.; Zhang, X.; Hou, L.; Wang, D.; Liu, R.; Huang, L. Nanoparticle-mediated trapping of Wnt family member 5A in tumor microenvironments enhances immunotherapy for B-Raf proto-oncogene mutant melanoma. ACS Nano, 2018, 12(2), 1250-1261.
[http://dx.doi.org/10.1021/acsnano.7b07384] [PMID: 29370526]
[91]
Miao, L.; Liu, Q.; Lin, C.M.; Luo, C.; Wang, Y.; Liu, L.; Yin, W.; Hu, S.; Kim, W.Y.; Huang, L. Targeting tumor-associated fibroblasts for therapeutic delivery in desmoplastic tumors. Cancer Res., 2017, 77(3), 719-731.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0866] [PMID: 27864344]
[92]
Chen, X.J.; Zhang, X.Q.; Liu, Q.; Zhang, J.; Zhou, G. Nanotechnology: a promising method for oral cancer detection and diagnosis. J. Nanobiotechnology, 2018, 16(1), 52.
[http://dx.doi.org/10.1186/s12951-018-0378-6] [PMID: 29890977]
[93]
Ye, Y.; Wang, C.; Zhang, X.; Hu, Q.; Zhang, Y.; Liu, Q.; Wen, D.; Milligan, J.; Bellotti, A.; Huang, L.; Dotti, G.; Gu, Z. A melanin-mediated cancer immunotherapy patch. Sci. Immunol., 2017, 2(17)eaan5692
[http://dx.doi.org/10.1126/sciimmunol.aan5692] [PMID: 29127106]
[94]
Hou, L.; Zheng, Y.; Wang, Y.; Hu, Y.; Shi, J.; Liu, Q.; Zhang, H.; Zhang, Z. Self-regulated carboxyphenylboronic acid-modified mesoporous silica nanoparticles with “Touch Switch” releasing property for insulin delivery. ACS Appl. Mater. Interfaces, 2018, 10(26), 21927-21938.
[http://dx.doi.org/10.1021/acsami.8b06998] [PMID: 29932320]
[95]
Cheng, N.; Watkins-Schulz, R.; Junkins, R.D.; David, C.N.; Johnson, B.M.; Montgomery, S.A.; Peine, K.J.; Darr, D.B.; Yuan, H.; McKinnon, K.P.; Liu, Q.; Miao, L.; Huang, L.; Bachelder, E.M.; Ainslie, K.M.; Ting, J.P. A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer. JCI Insight, 2018, 3(22)120638
[http://dx.doi.org/10.1172/jci.insight.120638] [PMID: 30429378]
[96]
Liu, Q.; Chen, F.; Hou, L.; Shen, L.; Zhang, X.; Wang, D.; Huang, L. Nanocarrier-mediated chemo-immunotherapy arrested cancer progression and induced tumor dormancy in desmoplastic melanoma. ACS Nano, 2018, 12(8), 7812-7825.
[http://dx.doi.org/10.1021/acsnano.8b01890] [PMID: 30016071]
[97]
Hou, L.; Liu, Q.; Shen, L.; Liu, Y.; Zhang, X.; Chen, F.; Huang, L. Nano-delivery of fraxinellone remodels tumor microenvironment and facilitates therapeutic vaccination in desmoplastic melanoma. Theranostics, 2018, 8(14), 3781-3796.
[http://dx.doi.org/10.7150/thno.24821] [PMID: 30083259]
[98]
Miao, L.; Guo, S.; Lin, C.M.; Liu, Q.; Huang, L. Nanoformulations for combination or cascade anticancer therapy. Adv. Drug Deliv. Rev., 2017, 115, 3-22.
[http://dx.doi.org/10.1016/j.addr.2017.06.003] [PMID: 28624477]
[99]
Shen, L.; Li, J.; Liu, Q.; Song, W.; Zhang, X.; Tiruthani, K.; Hu, H.; Das, M.; Goodwin, T.J.; Liu, R.; Huang, L. Local blockade of interleukin 10 and C-X-C motif chemokine ligand 12 with nano-delivery promotes antitumor response in murine cancers. ACS Nano, 2018, 12(10), 9830-9841.
[http://dx.doi.org/10.1021/acsnano.8b00967] [PMID: 30253648]
[100]
Zhang, X.; Li, L.; Liu, Q.; Wang, Y.; Yang, J.; Qiu, T.; Zhou, G. Co-delivery of rose bengal and doxorubicin nanoparticles for combination photodynamic and chemotherapy. J. Biomed. Nanotechnol., 2019, 15(1), 184-195.
[http://dx.doi.org/10.1166/jbn.2019.2674] [PMID: 30480525]
[101]
Chen, F.Q.; Zhang, J.M.; Fang, X.F.; Yu, H.; Liu, Y.L.; Li, H.; Wang, Y.T.; Chen, M.W. Reversal of paclitaxel resistance in human ovarian cancer cells with redox-responsive micelles consisting of α-tocopheryl succinate-based polyphosphoester copolymers. Acta Pharmacol. Sin., 2017, 38(6), 859-873.
[http://dx.doi.org/10.1038/aps.2016.150] [PMID: 28260803]
[102]
Liu, Q.; Das, M.; Liu, Y.; Huang, L. Targeted drug delivery to melanoma. Adv. Drug Deliv. Rev., 2018, 127, 208-221.
[http://dx.doi.org/10.1016/j.addr.2017.09.016] [PMID: 28939379]
[103]
Gu, L.; Deng, Z.J.; Roy, S.; Hammond, P.T. A Combination RNAi-chemotherapy layer-by-layer nanoparticle for systemic targeting of KRAS/P53 with cisplatin to treat non-small cell lung cancer. Clin. Cancer Res., 2017, 23(23), 7312-7323.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2186]
[104]
Krasnick, B.; Strand, M. S.; Bi, Y.; Goedegebuure, P. S.; Fleming, T.; Wickline, S.A.; Pan, H.; Fields, R.C. Anti-KRAS siRNA nanoparticles for targeted colorectal cancer therapy J. Clin. Oncol., 2017, 35(4_suppl), 636.
[http://dx.doi.org/10.1200/JCO.2017.35.4_suppl.636]
[105]
Srikar, R.; Suresh, D.; Zambre, A.; Taylor, K.; Chapman, S.; Leevy, M.; Upendran, A.; Kannan, R. Targeted nanoconjugate co-delivering siRNA and tyrosine kinase inhibitor to KRAS mutant NSCLC dissociates GAB1-SHP2 post oncogene knockdown. Sci. Rep., 2016, 6, 30245.
[http://dx.doi.org/10.1038/srep30245] [PMID: 27530552]
[106]
Bryant, K.L.; Mancias, J.D.; Kimmelman, A.C.; Der, C.J. KRAS: feeding pancreatic cancer proliferation. Trends Biochem. Sci., 2014, 39(2), 91-100.
[http://dx.doi.org/10.1016/j.tibs.2013.12.004] [PMID: 24388967]
[107]
Pylayeva-Gupta, Y.; Grabocka, E.; Bar-Sagi, D. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer, 2011, 11(11), 761-774.
[http://dx.doi.org/10.1038/nrc3106] [PMID: 21993244]
[108]
Ying, H.; Kimmelman, A.C.; Lyssiotis, C.A.; Hua, S.; Chu, G.C.; Fletcher-Sananikone, E.; Locasale, J.W.; Son, J.; Zhang, H.; Coloff, J.L.; Yan, H.; Wang, W.; Chen, S.; Viale, A.; Zheng, H.; Paik, J.H.; Lim, C.; Guimaraes, A.R.; Martin, E.S.; Chang, J.; Hezel, A.F.; Perry, S.R.; Hu, J.; Gan, B.; Xiao, Y.; Asara, J.M.; Weissleder, R.; Wang, Y.A.; Chin, L.; Cantley, L.C.; DePinho, R.A. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell, 2012, 149(3), 656-670.
[http://dx.doi.org/10.1016/j.cell.2012.01.058] [PMID: 22541435]
[109]
Chen, R.; Sweet-Cordero, E.A. Two is better than one: combining IGF1R and MEK blockade as a promising novel treatment strategy against KRAS-mutant lung cancer. Cancer Discov., 2013, 3(5), 491-493.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0128] [PMID: 23658296]
[110]
Schneiderhan, W.; Scheler, M.; Holzmann, K-H.; Marx, M.; Gschwend, J.E.; Bucholz, M.; Gress, T.M.; Seufferlein, T.; Adler, G.; Oswald, F. CD147 silencing inhibits lactate transport and reduces malignant potential of pancreatic cancer cells in in vivo and in vitro models. Gut, 2009, 58(10), 1391-1398.
[http://dx.doi.org/10.1136/gut.2009.181412] [PMID: 19505879]
[111]
Adjei, A.A. Blocking oncogenic RAS signaling for cancer therapy. J. Natl. Cancer Inst., 2001, 93(14), 1062-1074.
[http://dx.doi.org/10.1093/jnci/93.14.1062] [PMID: 11459867]
[112]
Takashima, A.; Faller, D.V. Targeting the RAS oncogene. Expert Opin. Ther. Targets, 2013, 17(5), 507-531.
[http://dx.doi.org/10.1517/14728222.2013.764990] [PMID: 23360111]
[113]
Dong, Z-Y.; Zhong, W-Z.; Zhang, X-C.; Su, J.; Xie, Z.; Liu, S-Y.; Tu, H-Y.; Chen, H-J.; Sun, Y-L.; Zhou, Q.; Yang, J-J.; Yang, X-N.; Lin, J-X.; Yan, H-H.; Zhai, H-R.; Yan, L-X.; Liao, R-Q.; Wu, S-P.; Wu, Y-L. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma. Clin. Cancer Res., 2017, 23(12), 3012-3024.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2554] [PMID: 28039262]
[114]
Shackelford, D.B.; Abt, E.; Gerken, L.; Vasquez, D.S.; Seki, A.; Leblanc, M.; Wei, L.; Fishbein, M.C.; Czernin, J.; Mischel, P.S.; Shaw, R.J. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell, 2013, 23(2), 143-158.
[http://dx.doi.org/10.1016/j.ccr.2012.12.008] [PMID: 23352126]
[115]
Oza, A.M.; Pignata, S.; Poveda, A.; McCormack, M.; Clamp, A.; Schwartz, B.; Cheng, J.; Li, X.; Campbell, K.; Dodion, P.; Haluska, F.G. Randomized Phase II Trial of Ridaforolimus in Advanced Endometrial Carcinoma. J. Clin. Oncol., 2015, 33(31), 3576-3582.
[http://dx.doi.org/10.1200/JCO.2014.58.8871] [PMID: 26077241]
[116]
Acquaviva, J.; Smith, D.L.; Sang, J.; Friedland, J.C.; He, S.; Sequeira, M.; Zhang, C.; Wada, Y.; Proia, D.A. Targeting KRAS-mutant non-small cell lung cancer with the Hsp90 inhibitor ganetespib. Mol. Cancer Ther., 2012, 11(12), 2633-2643.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0615] [PMID: 23012248]
[117]
Engelman, J.A.; Chen, L.; Tan, X.; Crosby, K.; Guimaraes, A.R.; Upadhyay, R.; Maira, M.; McNamara, K.; Perera, S.A.; Song, Y.; Chirieac, L.R.; Kaur, R.; Lightbown, A.; Simendinger, J.; Li, T.; Padera, R.F.; García-Echeverría, C.; Weissleder, R.; Mahmood, U.; Cantley, L.C.; Wong, K-K. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat. Med., 2008, 14(12), 1351-1356.
[http://dx.doi.org/10.1038/nm.1890] [PMID: 19029981]
[118]
Corcoran, R.B.; Cheng, K.A.; Hata, A.N.; Faber, A.C.; Ebi, H.; Coffee, E.M.; Greninger, P.; Brown, R.D.; Godfrey, J.T.; Cohoon, T.J.; Song, Y.; Lifshits, E.; Hung, K.E.; Shioda, T.; Dias-Santagata, D.; Singh, A.; Settleman, J.; Benes, C.H.; Mino-Kenudson, M.; Wong, K.K.; Engelman, J.A. Synthetic lethal interaction of combined BCL-XL and MEK inhibition promotes tumor regressions in KRAS mutant cancer models. Cancer Cell, 2013, 23(1), 121-128.
[http://dx.doi.org/10.1016/j.ccr.2012.11.007] [PMID: 23245996]
[119]
Rao, D.D.; Luo, X.; Wang, Z.; Jay, C.M.; Brunicardi, F.C.; Maltese, W.; Manning, L.; Senzer, N.; Nemunaitis, J. KRAS mutant allele-specific expression knockdown in pancreatic cancer model with systemically delivered bi-shRNA KRAS lipoplex. PLoS One, 2018, 13(5)e0193644
[http://dx.doi.org/10.1371/journal.pone.0193644] [PMID: 29851957]
[120]
Smit, E.F.; Dingemans, A-M.C.; Thunnissen, F.B.; Hochstenbach, M.M.; van Suylen, R-J.; Postmus, P.E. Sorafenib in patients with advanced non-small cell lung cancer that harbor K-ras mutations: a brief report. J. Thorac. Oncol., 2010, 5(5), 719-720.
[http://dx.doi.org/10.1097/JTO.0b013e3181d86ebf] [PMID: 20421765]
[121]
Kelly, R.J.; Rajan, A.; Force, J.; Lopez-Chavez, A.; Keen, C.; Cao, L.; Yu, Y.; Choyke, P.; Turkbey, B.; Raffeld, M.; Xi, L.; Steinberg, S.M.; Wright, J.J.; Kummar, S.; Gutierrez, M.; Giaccone, G. Evaluation of KRAS mutations, angiogenic biomarkers, and DCE-MRI in patients with advanced non-small-cell lung cancer receiving sorafenib. Clin. Cancer Res., 2011, 17(5), 1190-1199.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2331]
[122]
Herbst, R.S., Jr G.R.B.; Kim, E.S.; Lee, J.; Tsao, A.S.; Alden, C.M.; Liu, S.; Stewart, D.J.; Wistuba, I.I.; Hong, W.K., Sorafenib treatment efficacy and KRAS biomarker status in the biomarkerintegrated approaches of targeted therapy for lung cancer elimination (BATTLE) trial J. Clin. Oncol., 2010, 28(15_suppl), 7609-7609.
[123]
Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; Barlesi, F.; Kohlhäufl, M.; Arrieta, O.; Burgio, M.A.; Fayette, J.; Lena, H.; Poddubskaya, E.; Gerber, D.E.; Gettinger, S.N.; Rudin, C.M.; Rizvi, N.; Crinò, L.; Blumenschein, G.R., Jr; Antonia, S.J.; Dorange, C.; Harbison, C.T.; Graf Finckenstein, F.; Brahmer, J.R. Nivolumab versus Docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med., 2015, 373(17), 1627-1639.
[http://dx.doi.org/10.1056/NEJMoa1507643] [PMID: 26412456]
[124]
Gettinger, S.; Rizvi, N.A.; Chow, L.Q.; Borghaei, H.; Brahmer, J.; Ready, N.; Gerber, D.E.; Shepherd, F.A.; Antonia, S.; Goldman, J.W.; Juergens, R.A.; Laurie, S.A.; Nathan, F.E.; Shen, Y.; Harbison, C.T.; Hellmann, M.D. Nivolumab monotherapy for first-line treatment of advanced non-small-cell lung cancer. J. Clin. Oncol., 2016, 34(25), 2980-2987.
[http://dx.doi.org/10.1200/JCO.2016.66.9929] [PMID: 27354485]
[125]
Miura, Y.; Sunaga, N.; Kaira, K.; Tsukagoshi, Y.; Osaki, T.; Sakurai, R.; Hisada, T.; Girard, L.; Minna, J.D.; Yamada, M. Abstract 4028: Oncogenic KRAS mutations induce PD-L1 overexpression through MAPK pathway activation in non-small cell lung cancer cells. Cancer Res., 2016, 76(14)(Suppl.), 4028-4028.
[PMID: 27655809]
[126]
Sumimoto, H.; Takano, A.; Teramoto, K.; Daigo, Y. RAS-mitogen-activated protein kinase signal is required for enhanced PD-L1 expression in human lung cancers. PLoS One, 2016, 11(11)e0166626
[http://dx.doi.org/10.1371/journal.pone.0166626] [PMID: 27846317]
[127]
Yuan, T.L.; Fellmann, C.; Lee, C-S.; Ritchie, C.D.; Thapar, V.; Lee, L.C.; Hsu, D.J.; Grace, D.; Carver, J.O.; Zuber, J.; Luo, J.; McCormick, F.; Lowe, S.W. Development of siRNA payloads to target KRAS-mutant cancer. Cancer Discov., 2014, 4(10), 1182-1197.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0900] [PMID: 25100204]
[128]
Xue, W.; Dahlman, J.E.; Tammela, T.; Khan, O.F.; Sood, S.; Dave, A.; Cai, W.; Chirino, L.M.; Yang, G.R.; Bronson, R.; Crowley, D.G.; Sahay, G.; Schroeder, A.; Langer, R.; Anderson, D.G.; Jacks, T. Small RNA combination therapy for lung cancer. Proc. Natl. Acad. Sci. USA, 2014, 111(34), E3553-E3561.
[http://dx.doi.org/10.1073/pnas.1412686111] [PMID: 25114235]
[129]
Zorde Khvalevsky, E.; Gabai, R.; Rachmut, I.H.; Horwitz, E.; Brunschwig, Z.; Orbach, A.; Shemi, A.; Golan, T.; Domb, A.J.; Yavin, E.; Giladi, H.; Rivkin, L.; Simerzin, A.; Eliakim, R.; Khalaileh, A.; Hubert, A.; Lahav, M.; Kopelman, Y.; Goldin, E.; Dancour, A.; Hants, Y.; Arbel-Alon, S.; Abramovitch, R.; Shemi, A.; Galun, E. Mutant KRAS is a druggable target for pancreatic cancer. Proc. Natl. Acad. Sci. USA, 2013, 110(51), 20723-20728.
[http://dx.doi.org/10.1073/pnas.1314307110] [PMID: 24297898]
[130]
Eberhard, D.A.; Johnson, B.E.; Amler, L.C.; Goddard, A.D.; Heldens, S.L.; Herbst, R.S.; Ince, W.L.; Jänne, P.A.; Januario, T.; Johnson, D.H.; Klein, P.; Miller, V.A.; Ostland, M.A.; Ramies, D.A.; Sebisanovic, D.; Stinson, J.A.; Zhang, Y.R.; Seshagiri, S.; Hillan, K.J. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J. Clin. Oncol., 2005, 23(25), 5900-5909.
[http://dx.doi.org/10.1200/JCO.2005.02.857] [PMID: 16043828]
[131]
Lièvre, A.; Bachet, J-B.; Boige, V.; Cayre, A.; Le Corre, D.; Buc, E.; Ychou, M.; Bouché, O.; Landi, B.; Louvet, C.; André, T.; Bibeau, F.; Diebold, M-D.; Rougier, P.; Ducreux, M.; Tomasic, G.; Emile, J-F.; Penault-Llorca, F.; Laurent-Puig, P. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J. Clin. Oncol., 2008, 26(3), 374-379.
[http://dx.doi.org/10.1200/JCO.2007.12.5906] [PMID: 18202412]
[132]
Bokemeyer, C.; Bondarenko, I.; Hartmann, J.T.; Braud, F.G.D.; Volovat, C.; Nippgen, J.; Stroh, C.; Celik, I.; Koralewski, P. KRAS status and efficacy of first-line treatment of patients with metastatic colorectal cancer (mCRC) with FOLFOX with or without cetuximab: The OPUS experience. J. Clin. Oncol., 2008, 26(15_suppl), 4000.
[133]
Cutsem, E.V.; Lang, I.; D'haens, G.; Moiseyenko, V.; Zaluski, J.; Folprecht, G.; Tejpar, S.; Kisker, O.; Stroh, C.; Rougier, P. KRAS status and efficacy in the first-line treatment of patients with metastatic colorectal cancer (mCRC) treated with FOLFIRI with or without cetuximab: The CRYSTAL experience. J. Clin. Oncol., 2008, 26(15_suppl), 2.
[134]
Bokemeyer, C.; Bondarenko, I.; Hartmann, J.T.; de Braud, F.; Schuch, G.; Zubel, A.; Celik, I.; Schlichting, M.; Koralewski, P. Efficacy according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for metastatic colorectal cancer: the OPUS study. Ann. Oncol., 2011, 22(7), 1535-1546.
[http://dx.doi.org/10.1093/annonc/mdq632] [PMID: 21228335]
[135]
Ostrem, J.M.; Peters, U.; Sos, M.L.; Wells, J.A.; Shokat, K.M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature, 2013, 503(7477), 548-551.
[http://dx.doi.org/10.1038/nature12796] [PMID: 24256730]
[136]
Patricelli, M.P.; Janes, M.R.; Li, L-S.; Hansen, R.; Peters, U.; Kessler, L.V.; Chen, Y.; Kucharski, J.M.; Feng, J.; Ely, T.; Chen, J.H.; Firdaus, S.J.; Babbar, A.; Ren, P.; Liu, Y. Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state. Cancer Discov., 2016, 6(3), 316-329.
[http://dx.doi.org/10.1158/2159-8290.CD-15-1105] [PMID: 26739882]
[137]
Ross, S.J.; Revenko, A.S.; Hanson, L.L.; Ellston, R.; Staniszewska, A.; Whalley, N.; Pandey, S.K.; Revill, M.; Rooney, C.; Buckett, L.K.; Klein, S.K.; Hudson, K.; Monia, B.P.; Zinda, M.; Blakey, D.C.; Lyne, P.D.; Macleod, A.R. Targeting KRAS-dependent tumors with AZD4785, a high-affinity therapeutic antisense oligonucleotide inhibitor of KRAS. Sci. Transl. Med., 2017, 9(394)eaal5253
[http://dx.doi.org/10.1126/scitranslmed.aal5253] [PMID: 28615361]
[138]
Jones, D. The long march of antisense. Nat. Rev. Drug Discov., 2011, 10(6), 401-402.
[http://dx.doi.org/10.1038/nrd3474] [PMID: 21629279]
[139]
Berndt, N.; Hamilton, A.D.; Sebti, S.M. Targeting protein prenylation for cancer therapy. Nat. Rev. Cancer, 2011, 11(11), 775-791.
[http://dx.doi.org/10.1038/nrc3151] [PMID: 22020205]
[140]
Kim, E.S.; Kies, M.S.; Fossella, F.V.; Glisson, B.S.; Zaknoen, S.; Statkevich, P.; Munden, R.F.; Summey, C.; Pisters, K.M.W.; Papadimitrakopoulou, V.; Tighiouart, M.; Rogatko, A.; Khuri, F.R. Phase II study of the farnesyltransferase inhibitor lonafarnib with paclitaxel in patients with taxane-refractory/resistant nonsmall cell lung carcinoma. Cancer, 2005, 104(3), 561-569.
[http://dx.doi.org/10.1002/cncr.21188] [PMID: 16028213]
[141]
Das, M.; Shen, L.; Liu, Q.; Goodwin, T.J.; Huang, L. Nanoparticle delivery of RIG-I agonist enables effective and safe adjuvant therapy in pancreatic cancer. Mol. Ther., 2019, 27(3), 507-517.
[http://dx.doi.org/10.1016/j.ymthe.2018.11.012] [PMID: 30545600]
[142]
Hu, K.; Miao, L.; Goodwin, T.J.; Li, J.; Liu, Q.; Huang, L. Quercetin remodels the tumor microenvironment to improve the permeation, retention, and antitumor effects of nanoparticles. ACS Nano, 2017, 11(5), 4916-4925.
[http://dx.doi.org/10.1021/acsnano.7b01522] [PMID: 28414916]
[143]
Song, W.; Shen, L.; Wang, Y.; Liu, Q.; Goodwin, T.J.; Li, J.; Dorosheva, O.; Liu, T.; Liu, R.; Huang, L. Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap. Nat. Commun., 2018, 9(1), 2237.
[http://dx.doi.org/10.1038/s41467-018-04605-x] [PMID: 29884866]
[144]
Liu, L.; Wang, Y.; Miao, L.; Liu, Q.; Musetti, S.; Li, J.; Huang, L. Combination immunotherapy of MUC1 mRNA nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast cancer. Mol. Ther., 2018, 26(1), 45-55.
[http://dx.doi.org/10.1016/j.ymthe.2017.10.020] [PMID: 29258739]
[145]
Miao, L.; Li, J.; Liu, Q.; Feng, R.; Das, M.; Lin, C.M.; Goodwin, T.J.; Dorosheva, O.; Liu, R.; Huang, L. Transient and local expression of chemokine and immune checkpoint traps to treat pancreatic cancer. ACS Nano, 2017, 11(9), 8690-8706.
[http://dx.doi.org/10.1021/acsnano.7b01786] [PMID: 28809532]
[146]
Liu, Q.; Zhu, H.; Liu, Y.; Musetti, S.; Huang, L. BRAF peptide vaccine facilitates therapy of murine BRAF-mutant melanoma. Cancer Immunol. Immunother., 2018, 67(2), 299-310.
[http://dx.doi.org/10.1007/s00262-017-2079-7] [PMID: 29094184]
[147]
Qiu, N.; Gao, J.; Liu, Q.; Wang, J.; Shen, Y. Enzyme-responsive charge-reversal polymer-mediated effective gene therapy for intraperitoneal tumors. Biomacromolecules, 2018, 19(6), 2308-2319.
[http://dx.doi.org/10.1021/acs.biomac.8b00440] [PMID: 29738245]
[148]
Kim, J.; McMillan, E.; Kim, H.S.; Venkateswaran, N.; Makkar, G.; Rodriguez-Canales, J.; Villalobos, P.; Neggers, J.E.; Mendiratta, S.; Wei, S.; Landesman, Y.; Senapedis, W.; Baloglu, E.; Chow, C.B.; Frink, R.E.; Gao, B.; Roth, M.; Minna, J.D.; Daelemans, D.; Wistuba, I.I.; Posner, B.A.; Scaglioni, P.P.; White, M.A. XPO1-dependent nuclear export is a druggable vulnerability in KRAS-mutant lung cancer. Nature, 2016, 538(7623), 114-117.
[http://dx.doi.org/10.1038/nature19771] [PMID: 27680702]
[149]
Román, M.; Baraibar, I.; López, I.; Nadal, E.; Rolfo, C.; Vicent, S.; Gil-Bazo, I. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. Mol. Cancer, 2018, 17(1), 33.
[http://dx.doi.org/10.1186/s12943-018-0789-x] [PMID: 29455666]
[150]
Wang, Y.; Kaiser, C.E.; Frett, B.; Li, H-Y. Targeting mutant KRAS for anticancer therapeutics: a review of novel small molecule modulators. J. Med. Chem., 2013, 56(13), 5219-5230.
[http://dx.doi.org/10.1021/jm3017706] [PMID: 23566315]
[151]
Sirisena, N.D.; Deen, K.; Mandawala, D.E.N.; Herath, P.; Dissanayake, V.H.W. The pattern of KRAS mutations in metastatic colorectal cancer: a retrospective audit from Sri Lanka. BMC Res. Notes, 2017, 10(1), 392.
[http://dx.doi.org/10.1186/s13104-017-2731-5] [PMID: 28797274]
[152]
Porru, M.; Pompili, L.; Caruso, C.; Biroccio, A.; Leonetti, C. Targeting KRAS in metastatic colorectal cancer: current strategies and emerging opportunities. J. Exp. Clin. Cancer Res. CR (East Lansing Mich.), 2018, 37(1), 57-57.
[153]
Roberts, P.J.; Stinchcombe, T.E. KRAS mutation: should we test for it, and does it matter? J. Clin. Oncol., 2013, 31(8), 1112-1121.
[http://dx.doi.org/10.1200/JCO.2012.43.0454] [PMID: 23401440]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 23
Year: 2019
Page: [2098 - 2113]
Pages: 16
DOI: 10.2174/1568026619666190902151307
Price: $65

Article Metrics

PDF: 46
HTML: 2
EPUB: 1