Drug Combinatorial Therapies for the Treatment of KRAS Mutated Lung Cancers

Author(s): Hao He*, Chang Xu, Zhao Cheng, Xiaoying Qian, Lei Zheng*

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 23 , 2019

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


KRAS is the most common oncogene to be mutated in lung cancer, and therapeutics directly targeting KRAS have proven to be challenging. The mutations of KRAS are associated with poor prognosis, and resistance to both adjuvant therapy and targeted EGFR TKI. EGFR TKIs provide significant clinical benefit for patients whose tumors bear EGFR mutations. However, tumors with KRAS mutations rarely respond to the EGFR TKI therapy. Thus, combination therapy is essential for the treatment of lung cancers with KRAS mutations. EGFR TKI combined with inhibitors of MAPKs, PI3K/mTOR, HDAC, Wee1, PARP, CDK and Hsp90, even miRNAs and immunotherapy, were reviewed. Although the effects of the combination vary, the combined therapeutics are one of the best options at present to treat KRAS mutant lung cancer.

Keywords: KRAS, EGFR TKI, MAPK, Mutation, Combinatorial therapy, Lung cancer.

Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer, 2003, 3(1), 11-22.
[http://dx.doi.org/10.1038/nrc969] [PMID: 12509763]
Bos, J.L. ras oncogenes in human cancer: a review. Cancer Res., 1989, 49(17), 4682-4689.
[PMID: 2547513]
Campbell, S.L.; Khosravi-Far, R.; Rossman, K.L.; Clark, G.J.; Der, C.J. Increasing complexity of Ras signaling. Oncogene, 1998, 17(11 Reviews), 1395-413.
[http://dx.doi.org/ 10.1038/sj.onc.1202174]
Forbes, S.A.; Bindal, N.; Bamford, S.; Cole, C.; Kok, C.Y.; Beare, D.; Jia, M.; Shepherd, R.; Leung, K.; Menzies, A.; Teague, J.W.; Campbell, P.J.; Stratton, M.R.; Futreal, P.A. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res., 2011, 39(Database issue), D945-D950.
[http://dx.doi.org/10.1093/nar/gkq929] [PMID: 20952405]
Santos, E.; Nebreda, A.R. Structural and functional properties of ras proteins. FASEB J., 1989, 3(10), 2151-2163.
[http://dx.doi.org/10.1096/fasebj.3.10.2666231] [PMID: 2666231]
Comprehensive genomic characterization of squamous cell lung cancers. Nature, 2012, 489(7417), 519-525.
[http://dx.doi.org/10.1038/nature11404] [PMID: 22960745]
Cancer Genome Altas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature, 2014, 511(7511), 543-550.
[http://dx.doi.org/10.1038/nature13385] [PMID: 25079552]
Abacioglu, U.; Yumuk, P.F.; Caglar, H.; Sengoz, M.; Turhal, N.S. Concurrent chemoradiotherapy with low dose weekly gemcitabine in stage III non-small cell lung cancer. BMC Cancer, 2005, 5, 71.
[http://dx.doi.org/10.1186/1471-2407-5-71] [PMID: 16000167]
Kris, M. G.; Johnson, B. E.; Kwiatkowski, D. J.; Iafrate, A. J.; Bunn, P. A. Identification of driver mutations in tumor specimens from 1,000 patients with lung adenocarcinoma: The NCI’s Lung Cancer Mutation Consortium (LCMC). J. Clin. Oncol., 2011, 29(18_suppl), CRA7506-CRA7506.
Riely, G.J.; Kris, M.G.; Rosenbaum, D.; Marks, J.; Li, A.; Chitale, D.A.; Nafa, K.; Riedel, E.R.; Hsu, M.; Pao, W.; Miller, V.A.; Ladanyi, M. Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clin. Cancer Res., 2008, 14(18), 5731-5734.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0646] [PMID: 18794081]
de Castro Carpeño, J.; Belda-Iniesta, C. KRAS mutant NSCLC, a new opportunity for the synthetic lethality therapeutic approach. Transl. Lung Cancer Res., 2013, 2(2), 142-151.
[PMID: 25806225]
Guibert, N.; Ilie, M.; Long, E.; Hofman, V.; Bouhlel, L.; Brest, P.; Mograbi, B.; Marquette, C.H.; Didier, A.; Mazieres, J.; Hofman, P. KRAS mutations in lung adenocarcinoma: molecular and epidemiological characteristics, methods for detection, and therapeutic strategy perspectives. Curr. Mol. Med., 2015, 15(5), 418-432.
[http://dx.doi.org/10.2174/1566524015666150505161412] [PMID: 25941815]
Wu, C.C.; Hsu, H.Y.; Liu, H.P.; Chang, J.W.; Chen, Y.T.; Hsieh, W.Y.; Hsieh, J.J.; Hsieh, M.S.; Chen, Y.R.; Huang, S.F. Reversed mutation rates of KRAS and EGFR genes in adenocarcinoma of the lung in Taiwan and their implications. Cancer, 2008, 113(11), 3199-3208.
[http://dx.doi.org/10.1002/cncr.23925] [PMID: 18932251]
Dearden, S.; Stevens, J.; Wu, Y.L.; Blowers, D. Mutation incidence and coincidence in non small-cell lung cancer: meta-analyses by ethnicity and histology (mutMap). Ann. Oncol., 2013, 24(9), 2371-2376.
[http://dx.doi.org/10.1093/annonc/mdt205] [PMID: 23723294]
Tsao, M.S.; Aviel-Ronen, S.; Ding, K.; Lau, D.; Liu, N.; Sakurada, A.; Whitehead, M.; Zhu, C.Q.; Livingston, R.; Johnson, D.H.; Rigas, J.; Seymour, L.; Winton, T.; Shepherd, F.A. Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer. J. Clin. Oncol., 2007, 25(33), 5240-5247.
[http://dx.doi.org/10.1200/JCO.2007.12.6953] [PMID: 18024870]
Tsao, M.-S. Hainaut, Pierre, BOURREDJEM, Abderrahmane, LACE-Bio pooled analysis of the prognostic and predictive value of KRAS mutation in completely resected non-small cell lung cancer (NSCLC). Ann Oncol., 2010, 21(viii63)
Kadota, K.; Yeh, Y.C.; D’Angelo, S.P.; Moreira, A.L.; Kuk, D.; Sima, C.S.; Riely, G.J.; Arcila, M.E.; Kris, M.G.; Rusch, V.W.; Adusumilli, P.S.; Travis, W.D. Associations between mutations and histologic patterns of mucin in lung adenocarcinoma: invasive mucinous pattern and extracellular mucin are associated with KRAS mutation. Am. J. Surg. Pathol., 2014, 38(8), 1118-1127.
[http://dx.doi.org/10.1097/PAS.0000000000000246] [PMID: 25029118]
Guin, S.; Theodorescu, D. The RAS-RAL axis in cancer: evidence for mutation-specific selectivity in non-small cell lung cancer. Acta Pharmacol. Sin., 2015, 36(3), 291-297.
[http://dx.doi.org/10.1038/aps.2014.129] [PMID: 25557115]
Dogan, S.; Shen, R.; Ang, D.C.; Johnson, M.L.; D’Angelo, S.P.; Paik, P.K.; Brzostowski, E.B.; Riely, G.J.; Kris, M.G.; Zakowski, M.F.; Ladanyi, M. Molecular epidemiology of EGFR and KRAS mutations in 3,026 lung adenocarcinomas: higher susceptibility of women to smoking-related KRAS-mutant cancers. Clin. Cancer Res., 2012, 18(22), 6169-6177.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-3265] [PMID: 23014527]
Prior, I.A.; Lewis, P.D.; Mattos, C. A comprehensive survey of Ras mutations in cancer. Cancer Res., 2012, 72(10), 2457-2467.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2612] [PMID: 22589270]
Wood, K.; Hensing, T.; Malik, R.; Salgia, R. Prognostic and predictive value in KRAS in non-small-cell lung cancer: a review. JAMA Oncol., 2016, 2(6), 805-812.
[http://dx.doi.org/10.1001/jamaoncol.2016.0405] [PMID: 27100819]
Brose, M.S.; Volpe, P.; Feldman, M.; Kumar, M.; Rishi, I.; Gerrero, R.; Einhorn, E.; Herlyn, M.; Minna, J.; Nicholson, A.; Roth, J.A.; Albelda, S.M.; Davies, H.; Cox, C.; Brignell, G.; Stephens, P.; Futreal, P.A.; Wooster, R.; Stratton, M.R.; Weber, B.L. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res., 2002, 62(23), 6997-7000.
[PMID: 12460918]
Renaud, S.; Falcoz, P.E.; Schaëffer, M.; Guenot, D.; Romain, B.; Olland, A.; Reeb, J.; Santelmo, N.; Chenard, M.P.; Legrain, M.; Voegeli, A.C.; Beau-Faller, M.; Massard, G. Prognostic value of the KRAS G12V mutation in 841 surgically resected Caucasian lung adenocarcinoma cases. Br. J. Cancer, 2015, 113(8), 1206-1215.
[http://dx.doi.org/10.1038/bjc.2015.327] [PMID: 26372703]
Macerelli, M.; Caramella, C.; Faivre, L.; Besse, B.; Planchard, D.; Polo, V.; Ngo Camus, M.; Celebic, A.; Koubi-Pick, V.; Lacroix, L.; Pignon, J.P.; Soria, J.C. Does KRAS mutational status predict chemoresistance in advanced non-small cell lung cancer (NSCLC)? Lung Cancer, 2014, 83(3), 383-388.
[http://dx.doi.org/10.1016/j.lungcan.2013.12.013] [PMID: 24439569]
De Grève, J.; Teugels, E.; Geers, C.; Decoster, L.; Galdermans, D.; De Mey, J.; Everaert, H.; Umelo, I.; In’t Veld, P.; Schallier, D. Clinical activity of afatinib (BIBW 2992) in patients with lung adenocarcinoma with mutations in the kinase domain of HER2/neu. Lung Cancer, 2012, 76(1), 123-127.
[http://dx.doi.org/10.1016/j.lungcan.2012.01.008] [PMID: 22325357]
Yasuda, H.; Sng, N.J.; Yeo, W.L.; Figueiredopontes, L.L.; Kobayashi, S.; Costa, D.B. sensitivity of EGFR exon 20 insertion mutations to EGFR inhibitors is determined by their location within the tyrosine kinase domain of EGFR. Cancer Res, 2012, 72(8) (Suppl.), 23.
Linardou, H.; Dahabreh, I.J.; Kanaloupiti, D.; Siannis, F.; Bafaloukos, D.; Kosmidis, P.; Papadimitriou, C.A.; Murray, S. Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol., 2008, 9(10), 962-972.
[http://dx.doi.org/10.1016/S1470-2045(08)70206-7] [PMID: 18804418]
Mao, C.; Qiu, L.X.; Liao, R.Y.; Du, F.B.; Ding, H.; Yang, W.C.; Li, J.; Chen, Q. KRAS mutations and resistance to EGFR-TKIs treatment in patients with non-small cell lung cancer: a meta-analysis of 22 studies. Lung Cancer, 2010, 69(3), 272-278.
[http://dx.doi.org/10.1016/j.lungcan.2009.11.020] [PMID: 20022659]
Ludovini, V.; Bianconi, F.; Pistola, L.; Chiari, R.; Minotti, V.; Colella, R.; Giuffrida, D.; Tofanetti, F.R.; Siggillino, A.; Flacco, A.; Baldelli, E.; Iacono, D.; Mameli, M.G.; Cavaliere, A.; Crinò, L. Phosphoinositide-3-kinase catalytic alpha and KRAS mutations are important predictors of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in patients with advanced non-small cell lung cancer. J. Thorac. Oncol., 2011, 6(4), 707-715.
[http://dx.doi.org/10.1097/JTO.0b013e31820a3a6b] [PMID: 21258250]
Metro, G.; Chiari, R.; Duranti, S.; Siggillino, A.; Fischer, M.J.; Giannarelli, D.; Ludovini, V.; Bennati, C.; Marcomigni, L.; Baldi, A.; Giansanti, M.; Minotti, V.; Crinò, L. Impact of specific mutant KRAS on clinical outcome of EGFR-TKI-treated advanced non-small cell lung cancer patients with an EGFR wild type genotype. Lung Cancer, 2012, 78(1), 81-86.
[http://dx.doi.org/10.1016/j.lungcan.2012.06.005] [PMID: 22770374]
Garassino, M.C.; Martelli, O.; Broggini, M.; Farina, G.; Veronese, S.; Rulli, E.; Bianchi, F.; Bettini, A.; Longo, F.; Moscetti, L.; Tomirotti, M.; Marabese, M.; Ganzinelli, M.; Lauricella, C.; Labianca, R.; Floriani, I.; Giaccone, G.; Torri, V.; Scanni, A.; Marsoni, S. Erlotinib versus docetaxel as second-line treatment of patients with advanced non-small-cell lung cancer and wild-type EGFR tumours (TAILOR): a randomised controlled trial. Lancet Oncol., 2013, 14(10), 981-988.
[http://dx.doi.org/10.1016/S1470-2045(13)70310-3] [PMID: 23883922]
Barbie, D.A.; Tamayo, P.; Boehm, J.S.; Kim, S.Y.; Moody, S.E.; Dunn, I.F.; Schinzel, A.C.; Sandy, P.; Meylan, E.; Scholl, C.; Fröhling, S.; Chan, E.M.; Sos, M.L.; Michel, K.; Mermel, C.; Silver, S.J.; Weir, B.A.; Reiling, J.H.; Sheng, Q.; Gupta, P.B.; Wadlow, R.C.; Le, H.; Hoersch, S.; Wittner, B.S.; Ramaswamy, S.; Livingston, D.M.; Sabatini, D.M.; Meyerson, M.; Thomas, R.K.; Lander, E.S.; Mesirov, J.P.; Root, D.E.; Gilliland, D.G.; Jacks, T.; Hahn, W.C. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 2009, 462(7269), 108-112.
[http://dx.doi.org/10.1038/nature08460] [PMID: 19847166]
Ostrem, J.M.; Peters, U.; Sos, M.L.; Wells, J.A.; Shokat, K.M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature, 2013, 503(7477), 548-551.
[http://dx.doi.org/10.1038/nature12796] [PMID: 24256730]
Cox, A.D.; Fesik, S.W.; Kimmelman, A.C.; Luo, J.; Der, C.J. Drugging the undruggable RAS: Mission possible? Nat. Rev. Drug Discov., 2014, 13(11), 828-851.
[http://dx.doi.org/10.1038/nrd4389] [PMID: 25323927]
Stephen, A.G.; Esposito, D.; Bagni, R.K.; McCormick, F. Dragging ras back in the ring. Cancer Cell, 2014, 25(3), 272-281.
[http://dx.doi.org/10.1016/j.ccr.2014.02.017] [PMID: 24651010]
Lorusso, P.M.; Adjei, A.A.; Varterasian, M.; Gadgeel, S.; Reid, J.; Mitchell, D.Y.; Hanson, L.; DeLuca, P.; Bruzek, L.; Piens, J.; Asbury, P.; Van Becelaere, K.; Herrera, R.; Sebolt-Leopold, J.; Meyer, M.B. Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. J. Clin. Oncol., 2005, 23(23), 5281-5293.
[http://dx.doi.org/10.1200/JCO.2005.14.415] [PMID: 16009947]
Liu, L.; Hong, S.; Zhang, V.; Gilmer, T. Identification of molecular determinants of response to gsk1120212b, a potent and selective mek inhibitor, as a single agent and in combination in ras/raf mutant non-small cell lung carcinoma cells. Cancer Res., 2011, 71(8) (Suppl.), 4394.
Denton, C.L.; Gustafson, D.L. Pharmacokinetics and pharmacodynamics of AZD6244 (ARRY-142886) in tumor-bearing nude mice. Cancer Chemother. Pharmacol., 2011, 67(2), 349-360.
[http://dx.doi.org/10.1007/s00280-010-1323-z] [PMID: 20407895]
Jänne, P.A.; Shaw, A.T.; Pereira, J.R.; Jeannin, G.; Vansteenkiste, J.; Barrios, C.; Franke, F.A.; Grinsted, L.; Zazulina, V.; Smith, P.; Smith, I.; Crinò, L. Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol., 2013, 14(1), 38-47.
[http://dx.doi.org/10.1016/S1470-2045(12)70489-8] [PMID: 23200175]
Jänne, P.A.; van den Heuvel, M.M.; Barlesi, F.; Cobo, M.; Mazieres, J.; Crinò, L.; Orlov, S.; Blackhall, F.; Wolf, J.; Garrido, P.; Poltoratskiy, A.; Mariani, G.; Ghiorghiu, D.; Kilgour, E.; Smith, P.; Kohlmann, A.; Carlile, D.J.; Lawrence, D.; Bowen, K.; Vansteenkiste, J. Selumetinib plus docetaxel compared with docetaxel alone and progression-free survival in patients with KRAS-mutant advanced non-small cell lung cancer: The SELECT-1 Randomized Clinical Trial. JAMA, 2017, 317(18), 1844-1853.
[http://dx.doi.org/10.1001/jama.2017.3438] [PMID: 28492898]
Shepherd, F.A.; Rodrigues Pereira, J.; Ciuleanu, T.; Tan, E.H.; Hirsh, V.; Thongprasert, S.; Campos, D.; Maoleekoonpiroj, S.; Smylie, M.; Martins, R.; van Kooten, M.; Dediu, M.; Findlay, B.; Tu, D.; Johnston, D.; Bezjak, A.; Clark, G.; Santabárbara, P.; Seymour, L. Erlotinib in previously treated non-small-cell lung cancer. N. Engl. J. Med., 2005, 353(2), 123-132.
[http://dx.doi.org/10.1056/NEJMoa050753] [PMID: 16014882]
Hainsworth, J.D.; Cebotaru, C.L.; Kanarev, V.; Ciuleanu, T.E.; Damyanov, D.; Stella, P.; Ganchev, H.; Pover, G.; Morris, C.; Tzekova, V. A phase II, open-label, randomized study to assess the efficacy and safety of AZD6244 (ARRY-142886) versus pemetrexed in patients with non-small cell lung cancer who have failed one or two prior chemotherapeutic regimens. J. Thorac. Oncol., 2010, 5(10), 1630-1636.
[http://dx.doi.org/10.1097/JTO.0b013e3181e8b3a3] [PMID: 20802351]
Yeh, T.C.; Marsh, V.; Bernat, B.A.; Ballard, J.; Colwell, H.; Evans, R.J.; Parry, J.; Smith, D.; Brandhuber, B.J.; Gross, S.; Marlow, A.; Hurley, B.; Lyssikatos, J.; Lee, P.A.; Winkler, J.D.; Koch, K.; Wallace, E. Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin. Cancer Res., 2007, 13(5), 1576-1583.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1150] [PMID: 17332304]
Carter, C.A.; Rajan, A.; Keen, C.; Szabo, E.; Khozin, S.; Thomas, A.; Brzezniak, C.; Guha, U.; Doyle, L.A.; Steinberg, S.M.; Xi, L.; Raffeld, M.; Tomita, Y.; Lee, M.J.; Lee, S.; Trepel, J.B.; Reckamp, K.L.; Koehler, S.; Gitlitz, B.; Salgia, R.; Gandara, D.; Vokes, E.; Giaccone, G. Selumetinib with and without erlotinib in KRAS mutant and KRAS wild-type advanced nonsmall-cell lung cancer. Ann. Oncol., 2016, 27(4), 693-699.
[http://dx.doi.org/10.1093/annonc/mdw008] [PMID: 26802155]
Gilmartin, A.G.; Bleam, M.R.; Groy, A.; Moss, K.G.; Minthorn, E.A.; Kulkarni, S.G.; Rominger, C.M.; Erskine, S.; Fisher, K.E.; Yang, J.; Zappacosta, F.; Annan, R.; Sutton, D.; Laquerre, S.G. GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin. Cancer Res., 2011, 17(5), 989-1000.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2200] [PMID: 21245089]
Blumenschein, G.R., Jr; Smit, E.F.; Planchard, D.; Kim, D.W.; Cadranel, J.; De Pas, T.; Dunphy, F.; Udud, K.; Ahn, M.J.; Hanna, N.H.; Kim, J.H.; Mazieres, J.; Kim, S.W.; Baas, P.; Rappold, E.; Redhu, S.; Puski, A.; Wu, F.S.; Jänne, P.A. A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC). Ann. Oncol., 2015, 26(5), 894-901.
[http://dx.doi.org/10.1093/annonc/mdv072] [PMID: 25722381]
Gioeli, D.; Wunderlich, W.; Sebolt-Leopold, J.; Bekiranov, S.; Wulfkuhle, J.D.; Petricoin, E.F., III; Conaway, M.; Weber, M.J. Compensatory pathways induced by MEK inhibition are effective drug targets for combination therapy against castration-resistant prostate cancer. Mol. Cancer Ther., 2011, 10(9), 1581-1590.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-1033] [PMID: 21712477]
Dy, G.K.; Hillman, S.L.; Rowland, K.M., Jr; Molina, J.R.; Steen, P.D.; Wender, D.B.; Nair, S.; Mandrekar, S.; Schild, S.E.; Adjei, A.A. A front-line window of opportunity phase 2 study of sorafenib in patients with advanced nonsmall cell lung cancer: North Central Cancer Treatment Group Study N0326. Cancer, 2010, 116(24), 5686-5693.
[http://dx.doi.org/10.1002/cncr.25448] [PMID: 21218460]
Taguchi, F.; Solomon, B.; Gregorc, V.; Roder, H.; Gray, R.; Kasahara, K.; Nishio, M.; Brahmer, J.; Spreafico, A.; Ludovini, V.; Massion, P.P.; Dziadziuszko, R.; Schiller, J.; Grigorieva, J.; Tsypin, M.; Hunsucker, S.W.; Caprioli, R.; Duncan, M.W.; Hirsch, F.R.; Bunn, P.A., Jr; Carbone, D.P. Mass spectrometry to classify non-small-cell lung cancer patients for clinical outcome after treatment with epidermal growth factor receptor tyrosine kinase inhibitors: a multicohort cross-institutional study. J. Natl. Cancer Inst., 2007, 99(11), 838-846.
[http://dx.doi.org/10.1093/jnci/djk195] [PMID: 17551144]
Dingemans, A.M.; Mellema, W.W.; Groen, H.J.; van Wijk, A.; Burgers, S.A.; Kunst, P.W.; Thunnissen, E.; Heideman, D.A.; Smit, E.F. A phase II study of sorafenib in patients with platinum-pretreated, advanced (Stage IIIb or IV) non-small cell lung cancer with a KRAS mutation. Clin. Cancer Res., 2013, 19(3), 743-751.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1779] [PMID: 23224737]
Manchado, E.; Weissmueller, S.; Morris, J.P., IV; Chen, C.C.; Wullenkord, R.; Lujambio, A.; de Stanchina, E.; Poirier, J.T.; Gainor, J.F.; Corcoran, R.B.; Engelman, J.A.; Rudin, C.M.; Rosen, N.; Lowe, S.W. A combinatorial strategy for treating KRAS-mutant lung cancer. Nature, 2016, 534(7609), 647-651.
[http://dx.doi.org/10.1038/nature18600] [PMID: 27338794]
Shimizu, T.; Tolcher, A.W.; Papadopoulos, K.P.; Beeram, M.; Rasco, D.W.; Smith, L.S.; Gunn, S.; Smetzer, L.; Mays, T.A.; Kaiser, B.; Wick, M.J.; Alvarez, C.; Cavazos, A.; Mangold, G.L.; Patnaik, A. The clinical effect of the dual-targeting strategy involving PI3K/AKT/mTOR and RAS/MEK/ERK pathways in patients with advanced cancer. Clin. Cancer Res., 2012, 18(8), 2316-2325.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2381] [PMID: 22261800]
Corcoran, R.B.; Settleman, J.; Engelman, J.A. Potential therapeutic strategies to overcome acquired resistance to BRAF or MEK inhibitors in BRAF mutant cancers. Oncotarget, 2011, 2(4), 336-346.
[http://dx.doi.org/10.18632/oncotarget.262] [PMID: 21505228]
Kinross, K.M.; Brown, D.V.; Kleinschmidt, M.; Jackson, S.; Christensen, J.; Cullinane, C.; Hicks, R.J.; Johnstone, R.W.; McArthur, G.A. In vivo activity of combined PI3K/mTOR and MEK inhibition in a Kras(G12D); Pten deletion mouse model of ovarian cancer. Mol. Cancer Ther., 2011, 10(8), 1440-1449.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0240] [PMID: 21632463]
De Luca, A.; Maiello, M.R.; D’Alessio, A.; Pergameno, M.; Normanno, N. The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin. Ther. Targets, 2012, 16(Suppl. 2), S17-S27.
[http://dx.doi.org/10.1517/14728222.2011.639361] [PMID: 22443084]
Greger, J.G.; Eastman, S.D.; Zhang, V.; Bleam, M.R.; Hughes, A.M.; Smitheman, K.N.; Dickerson, S.H.; Laquerre, S.G.; Liu, L.; Gilmer, T.M. Combinations of BRAF, MEK, and PI3K/mTOR inhibitors overcome acquired resistance to the BRAF inhibitor GSK2118436 dabrafenib, mediated by NRAS or MEK mutations. Mol. Cancer Ther., 2012, 11(4), 909-920.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0989] [PMID: 22389471]
Hoeflich, K.P.; Merchant, M.; Orr, C.; Chan, J.; Den Otter, D.; Berry, L.; Kasman, I.; Koeppen, H.; Rice, K.; Yang, N.Y.; Engst, S.; Johnston, S.; Friedman, L.S.; Belvin, M. Intermittent administration of MEK inhibitor GDC-0973 plus PI3K inhibitor GDC-0941 triggers robust apoptosis and tumor growth inhibition. Cancer Res., 2012, 72(1), 210-219.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1515] [PMID: 22084396]
Petty, W.J.; Dragnev, K.H.; Memoli, V.A.; Ma, Y.; Desai, N.B.; Biddle, A.; Davis, T.H.; Nugent, W.C.; Memoli, N.; Hamilton, M.; Iwata, K.K.; Rigas, J.R.; Dmitrovsky, E. Epidermal growth factor receptor tyrosine kinase inhibition represses cyclin D1 in aerodigestive tract cancers. Clin. Cancer Res., 2004, 10(22), 7547-7554.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1169] [PMID: 15569985]
Dragnev, K.H.; Petty, W.J.; Shah, S.; Biddle, A.; Desai, N.B.; Memoli, V.; Rigas, J.R.; Dmitrovsky, E. Bexarotene and erlotinib for aerodigestive tract cancer. J. Clin. Oncol., 2005, 23(34), 8757-8764.
[http://dx.doi.org/10.1200/JCO.2005.01.9521] [PMID: 16314636]
Dragnev, K.H.; Petty, W.J.; Shah, S.J.; Lewis, L.D.; Black, C.C.; Memoli, V.; Nugent, W.C.; Hermann, T.; Negro-Vilar, A.; Rigas, J.R.; Dmitrovsky, E. A proof-of-principle clinical trial of bexarotene in patients with non-small cell lung cancer. Clin. Cancer Res., 2007, 13(6), 1794-1800.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1836] [PMID: 17363535]
Dragnev, K.H.; Ma, T.; Cyrus, J.; Galimberti, F.; Memoli, V.; Busch, A.M.; Tsongalis, G.J.; Seltzer, M.; Johnstone, D.; Erkmen, C.P.; Nugent, W.; Rigas, J.R.; Liu, X.; Freemantle, S.J.; Kurie, J.M.; Waxman, S.; Dmitrovsky, E. Bexarotene plus erlotinib suppress lung carcinogenesis independent of KRAS mutations in two clinical trials and transgenic models. Cancer Prev. Res. (Phila.), 2011, 4(6), 818-828.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0376] [PMID: 21636548]
Khuri, F.R.; Rigas, J.R.; Figlin, R.A.; Gralla, R.J.; Shin, D.M.; Munden, R.; Fox, N.; Huyghe, M.R.; Kean, Y.; Reich, S.D.; Hong, W.K. Multi-institutional phase I/II trial of oral bexarotene in combination with cisplatin and vinorelbine in previously untreated patients with advanced non-small-cell lung cancer. J. Clin. Oncol., 2001, 19(10), 2626-2637.
[http://dx.doi.org/10.1200/JCO.2001.19.10.2626] [PMID: 11352954]
Blumenschein, G.R., Jr; Khuri, F.R.; von Pawel, J.; Gatzemeier, U.; Miller, W.H., Jr; Jotte, R.M.; Le Treut, J.; Sun, S.L.; Zhang, J.K.; Dziewanowska, Z.E.; Negro-Vilar, A. Phase III trial comparing carboplatin, paclitaxel, and bexarotene with carboplatin and paclitaxel in chemotherapy-naive patients with advanced or metastatic non-small-cell lung cancer: SPIRIT II. J. Clin. Oncol., 2008, 26(11), 1879-1885.
[http://dx.doi.org/10.1200/JCO.2007.12.2689] [PMID: 18398153]
Kim, E.S.; Herbst, R.S.; Wistuba, I.I.; Lee, J.J.; Blumenschein, G.R., Jr; Tsao, A.; Stewart, D.J.; Hicks, M.E.; Erasmus, J., Jr; Gupta, S.; Alden, C.M.; Liu, S.; Tang, X.; Khuri, F.R.; Tran, H.T.; Johnson, B.E.; Heymach, J.V.; Mao, L.; Fossella, F.; Kies, M.S.; Papadimitrakopoulou, V.; Davis, S.E.; Lippman, S.M.; Hong, W.K. The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov., 2011, 1(1), 44-53.
[http://dx.doi.org/10.1158/2159-8274.CD-10-0010] [PMID: 22586319]
Sun, C.; Hobor, S.; Bertotti, A.; Zecchin, D.; Huang, S.; Galimi, F.; Cottino, F.; Prahallad, A.; Grernrum, W.; Tzani, A.; Schlicker, A.; Wessels, L.F.; Smit, E.F.; Thunnissen, E.; Halonen, P.; Lieftink, C.; Beijersbergen, R.L.; Di Nicolantonio, F.; Bardelli, A.; Trusolino, L.; Bernards, R. Intrinsic resistance to MEK inhibition in KRAS mutant lung and colon cancer through transcriptional induction of ERBB3. Cell Rep., 2014, 7(1), 86-93.
[http://dx.doi.org/10.1016/j.celrep.2014.02.045] [PMID: 24685132]
Kitai, H.; Ebi, H. Key roles of EMT for adaptive resistance to MEK inhibitor in KRAS mutant lung cancer. Small GTPases, 2017, 8(3), 172-176.
[http://dx.doi.org/10.1080/21541248.2016.1210369] [PMID: 27392325]
Datta, S.R.; Dudek, H.; Tao, X.; Masters, S.; Fu, H.; Gotoh, Y.; Greenberg, M.E. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell, 1997, 91(2), 231-241.
[http://dx.doi.org/10.1016/S0092-8674(00)80405-5] [PMID: 9346240]
Zha, J.; Harada, H.; Yang, E.; Jockel, J.; Korsmeyer, S.J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell, 1996, 87(4), 619-628.
[http://dx.doi.org/10.1016/S0092-8674(00)81382-3] [PMID: 8929531]
Harada, H.; Quearry, B.; Ruiz-Vela, A.; Korsmeyer, S.J. Survival factor-induced extracellular signal-regulated kinase phosphorylates BIM, inhibiting its association with BAX and proapoptotic activity. Proc. Natl. Acad. Sci. USA, 2004, 101(43), 15313-15317.
[http://dx.doi.org/10.1073/pnas.0406837101] [PMID: 15486085]
Pao, W.; Wang, T.Y.; Riely, G.J.; Miller, V.A.; Pan, Q.; Ladanyi, M.; Zakowski, M.F.; Heelan, R.T.; Kris, M.G.; Varmus, H.E. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med., 2005, 2(1)e17
[http://dx.doi.org/10.1371/journal.pmed.0020017] [PMID: 15696205]
Sos, M.L.; Fischer, S.; Ullrich, R.; Peifer, M.; Heuckmann, J.M.; Koker, M.; Heynck, S.; Stückrath, I.; Weiss, J.; Fischer, F.; Michel, K.; Goel, A.; Regales, L.; Politi, K.A.; Perera, S.; Getlik, M.; Heukamp, L.C.; Ansén, S.; Zander, T.; Beroukhim, R.; Kashkar, H.; Shokat, K.M.; Sellers, W.R.; Rauh, D.; Orr, C.; Hoeflich, K.P.; Friedman, L.; Wong, K.K.; Pao, W.; Thomas, R.K. Identifying genotype-dependent efficacy of single and combined PI3K- and MAPK-pathway inhibition in cancer. Proc. Natl. Acad. Sci. USA, 2009, 106(43), 18351-18356.
[http://dx.doi.org/10.1073/pnas.0907325106] [PMID: 19805051]
Balmanno, K.; Chell, S.D.; Gillings, A.S.; Hayat, S.; Cook, S.J. Intrinsic resistance to the MEK1/2 inhibitor AZD6244 (ARRY-142886) is associated with weak ERK1/2 signalling and/or strong PI3K signalling in colorectal cancer cell lines. Int. J. Cancer, 2009, 125(10), 2332-2341.
[http://dx.doi.org/10.1002/ijc.24604] [PMID: 19637312]
Wee, S.; Jagani, Z.; Xiang, K.X.; Loo, A.; Dorsch, M.; Yao, Y.M.; Sellers, W.R.; Lengauer, C.; Stegmeier, F. PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res., 2009, 69(10), 4286-4293.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4765] [PMID: 19401449]
Engelman, J.A.; Chen, L.; Tan, X.; Crosby, K.; Guimaraes, A.R.; Upadhyay, R.; Maira, M.; McNamara, K.; Perera, S.A.; Song, Y.; Chirieac, L.R.; Kaur, R.; Lightbown, A.; Simendinger, J.; Li, T.; Padera, R.F.; García-Echeverría, C.; Weissleder, R.; Mahmood, U.; Cantley, L.C.; Wong, K.K. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat. Med., 2008, 14(12), 1351-1356.
[http://dx.doi.org/10.1038/nm.1890] [PMID: 19029981]
Hoeflich, K.P.; O’Brien, C.; Boyd, Z.; Cavet, G.; Guerrero, S.; Jung, K.; Januario, T.; Savage, H.; Punnoose, E.; Truong, T.; Zhou, W.; Berry, L.; Murray, L.; Amler, L.; Belvin, M.; Friedman, L.S.; Lackner, M.R. In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models. Clin. Cancer Res., 2009, 15(14), 4649-4664.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0317] [PMID: 19567590]
Liu, P.; Cheng, H.; Roberts, T.M.; Zhao, J.J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov., 2009, 8(8), 627-644.
[http://dx.doi.org/10.1038/nrd2926] [PMID: 19644473]
Qu, Y.; Wu, X.; Yin, Y.; Yang, Y.; Ma, D.; Li, H. Antitumor activity of selective MEK1/2 inhibitor AZD6244 in combination with PI3K/mTOR inhibitor BEZ235 in gefitinib-resistant NSCLC xenograft models. J. Exp. Clin. Cancer Res., 2014, 33, 52.
[http://dx.doi.org/10.1186/1756-9966-33-52] [PMID: 24939055]
Fritsch, C.; Huang, A.; Chatenay-Rivauday, C.; Schnell, C.; Reddy, A.; Liu, M.; Kauffmann, A.; Guthy, D.; Erdmann, D.; De Pover, A.; Furet, P.; Gao, H.; Ferretti, S.; Wang, Y.; Trappe, J.; Brachmann, S.M.; Maira, S.M.; Wilson, C.; Boehm, M.; Garcia-Echeverria, C.; Chene, P.; Wiesmann, M.; Cozens, R.; Lehar, J.; Schlegel, R.; Caravatti, G.; Hofmann, F.; Sellers, W.R. Characterization of the novel and specific PI3Kα inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials. Mol. Cancer Ther., 2014, 13(5), 1117-1129.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0865] [PMID: 24608574]
Furet, P.; Guagnano, V.; Fairhurst, R.A.; Imbach-Weese, P.; Bruce, I.; Knapp, M.; Fritsch, C.; Blasco, F.; Blanz, J.; Aichholz, R.; Hamon, J.; Fabbro, D.; Caravatti, G. Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. Bioorg. Med. Chem. Lett., 2013, 23(13), 3741-3748.
[http://dx.doi.org/10.1016/j.bmcl.2013.05.007] [PMID: 23726034]
Cragg, M.S.; Jansen, E.S.; Cook, M.; Harris, C.; Strasser, A.; Scott, C.L. Treatment of B-RAF mutant human tumor cells with a MEK inhibitor requires Bim and is enhanced by a BH3 mimetic. J. Clin. Invest., 2008, 118(11), 3651-3659.
[http://dx.doi.org/10.1172/JCI35437] [PMID: 18949058]
Ku, B.M.; Jho, E.H.; Bae, Y.H.; Sun, J.M.; Ahn, J.S.; Park, K.; Ahn, M.J. BYL719, a selective inhibitor of phosphoinositide 3-Kinase α, enhances the effect of selumetinib (AZD6244, ARRY-142886) in KRAS-mutant non-small cell lung cancer. Invest. New Drugs, 2015, 33(1), 12-21.
[http://dx.doi.org/10.1007/s10637-014-0163-9] [PMID: 25342139]
She, Q.B.; Halilovic, E.; Ye, Q.; Zhen, W.; Shirasawa, S.; Sasazuki, T.; Solit, D.B.; Rosen, N. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell, 2010, 18(1), 39-51.
[http://dx.doi.org/10.1016/j.ccr.2010.05.023] [PMID: 20609351]
She, Q.B.; Solit, D.B.; Ye, Q.; O’Reilly, K.E.; Lobo, J.; Rosen, N. The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer Cell, 2005, 8(4), 287-297.
[http://dx.doi.org/10.1016/j.ccr.2005.09.006] [PMID: 16226704]
Li, J.; Kim, S.G.; Blenis, J. Rapamycin: one drug, many effects. Cell Metab., 2014, 19(3), 373-379.
[http://dx.doi.org/10.1016/j.cmet.2014.01.001] [PMID: 24508508]
Pirazzoli, V.; Nebhan, C.; Song, X.; Wurtz, A.; Walther, Z.; Cai, G.; Zhao, Z.; Jia, P.; de Stanchina, E.; Shapiro, E.M.; Gale, M.; Yin, R.; Horn, L.; Carbone, D.P.; Stephens, P.J.; Miller, V.; Gettinger, S.; Pao, W.; Politi, K. Acquired resistance of EGFR-mutant lung adenocarcinomas to afatinib plus cetuximab is associated with activation of mTORC1. Cell Rep., 2014, 7(4), 999-1008.
[http://dx.doi.org/10.1016/j.celrep.2014.04.014] [PMID: 24813888]
Kawabata, S.; Mercado-Matos, J.R.; Hollander, M.C.; Donahue, D.; Wilson, W., III; Regales, L.; Butaney, M.; Pao, W.; Wong, K.K.; Jänne, P.A.; Dennis, P.A. Rapamycin prevents the development and progression of mutant epidermal growth factor receptor lung tumors with the acquired resistance mutation T790M. Cell Rep., 2014, 7(6), 1824-1832.
[http://dx.doi.org/10.1016/j.celrep.2014.05.039] [PMID: 24931608]
Liu, L.Z.; Zhou, X.D.; Qian, G.; Shi, X.; Fang, J.; Jiang, B.H. AKT1 amplification regulates cisplatin resistance in human lung cancer cells through the mammalian target of rapamycin/p70S6K1 pathway. Cancer Res., 2007, 67(13), 6325-6332.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4261] [PMID: 17616691]
Kawabata, S.; Chiang, C.T.; Tsurutani, J.; Shiga, H.; Arwood, M.L.; Komiya, T.; Gills, J.J.; Memmott, R.M.; Dennis, P.A. Rapamycin downregulates thymidylate synthase and potentiates the activity of pemetrexed in non-small cell lung cancer. Oncotarget, 2014, 5(4), 1062-1070.
[http://dx.doi.org/10.18632/oncotarget.1760] [PMID: 24658085]
Liang, S.Q.; Bührer, E.D.; Berezowska, S.; Marti, T.M.; Xu, D.; Froment, L.; Yang, H.; Hall, S.R.R.; Vassella, E.; Yang, Z.; Kocher, G.J.; Amrein, M.A.; Riether, C.; Ochsenbein, A.F.; Schmid, R.A.; Peng, R.W. mTOR mediates a mechanism of resistance to chemotherapy and defines a rational combination strategy to treat KRAS-mutant lung cancer. Oncogene, 2019, 38(5), 622-636.
[http://dx.doi.org/10.1038/s41388-018-0479-6] [PMID: 30171261]
Price, K.A.; Azzoli, C.G.; Krug, L.M.; Pietanza, M.C.; Rizvi, N.A.; Pao, W.; Kris, M.G.; Riely, G.J.; Heelan, R.T.; Arcila, M.E.; Miller, V.A. Phase II trial of gefitinib and everolimus in advanced non-small cell lung cancer. J. Thorac. Oncol., 2010, 5(10), 1623-1629.
[http://dx.doi.org/10.1097/JTO.0b013e3181ec1531] [PMID: 20871262]
Herbst, R.S.; Heymach, J.V.; Lippman, S.M. Lung cancer. N. Engl. J. Med., 2008, 359(13), 1367-1380.
[http://dx.doi.org/10.1056/NEJMra0802714] [PMID: 18815398]
Mok, T.S.; Wu, Y.L.; Thongprasert, S.; Yang, C.H.; Chu, D.T.; Saijo, N.; Sunpaweravong, P.; Han, B.; Margono, B.; Ichinose, Y.; Nishiwaki, Y.; Ohe, Y.; Yang, J.J.; Chewaskulyong, B.; Jiang, H.; Duffield, E.L.; Watkins, C.L.; Armour, A.A.; Fukuoka, M. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med., 2009, 361(10), 947-957.
[http://dx.doi.org/10.1056/NEJMoa0810699] [PMID: 19692680]
Ciardiello, F.; Tortora, G. EGFR antagonists in cancer treatment. N. Engl. J. Med., 2008, 358(11), 1160-1174.
[http://dx.doi.org/10.1056/NEJMra0707704] [PMID: 18337605]
Lane, A.A.; Chabner, B.A. Histone deacetylase inhibitors in cancer therapy. J. Clin. Oncol., 2009, 27(32), 5459-5468.
[http://dx.doi.org/10.1200/JCO.2009.22.1291] [PMID: 19826124]
Richon, V.M.; Garcia-Vargas, J.; Hardwick, J.S. Development of vorinostat: current applications and future perspectives for cancer therapy. Cancer Lett., 2009, 280(2), 201-210.
[http://dx.doi.org/10.1016/j.canlet.2009.01.002] [PMID: 19181442]
Nolan, L.; Johnson, P.W.; Ganesan, A.; Packham, G.; Crabb, S.J. Will histone deacetylase inhibitors require combination with other agents to fulfil their therapeutic potential? Br. J. Cancer, 2008, 99(5), 689-694.
[http://dx.doi.org/10.1038/sj.bjc.6604557] [PMID: 18728657]
Edwards, A.; Li, J.; Atadja, P.; Bhalla, K.; Haura, E.B. Effect of the histone deacetylase inhibitor LBH589 against epidermal growth factor receptor-dependent human lung cancer cells. Mol. Cancer Ther., 2007, 6(9), 2515-2524.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0761] [PMID: 17876048]
Zhang, W.; Peyton, M.; Xie, Y.; Soh, J.; Minna, J.D.; Gazdar, A.F.; Frenkel, E.P. Histone deacetylase inhibitor romidepsin enhances anti-tumor effect of erlotinib in non-small cell lung cancer (NSCLC) cell lines. J. Thorac. Oncol., 2009, 4(2), 161-166.
[http://dx.doi.org/10.1097/JTO.0b013e318194fae7] [PMID: 19179890]
Gerber, D.E.; Boothman, D.A.; Fattah, F.J.; Dong, Y.; Zhu, H.; Skelton, R.A.; Priddy, L.L.; Vo, P.; Dowell, J.E.; Sarode, V.; Leff, R.; Meek, C.; Xie, Y.; Schiller, J.H. Phase 1 study of romidepsin plus erlotinib in advanced non-small cell lung cancer. Lung Cancer, 2015, 90(3), 534-541.
[http://dx.doi.org/10.1016/j.lungcan.2015.10.008] [PMID: 26474959]
Witta, S.E.; Dziadziuszko, R.; Yoshida, K.; Hedman, K.; Varella-Garcia, M.; Bunn, P.A., Jr; Hirsch, F.R. ErbB-3 expression is associated with E-cadherin and their coexpression restores response to gefitinib in non-small-cell lung cancer (NSCLC). Ann. Oncol., 2009, 20(4), 689-695.
[http://dx.doi.org/10.1093/annonc/mdn703] [PMID: 19150934]
Witta, S.E.; Gemmill, R.M.; Hirsch, F.R.; Coldren, C.D.; Hedman, K.; Ravdel, L.; Helfrich, B.; Dziadziuszko, R.; Chan, D.C.; Sugita, M.; Chan, Z.; Baron, A.; Franklin, W.; Drabkin, H.A.; Girard, L.; Gazdar, A.F.; Minna, J.D.; Bunn, P.A. Jr Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res., 2006, 66(2), 944-950.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1988] [PMID: 16424029]
Hata, A.N.; Rowley, S.; Archibald, H.L.; Gomez-Caraballo, M.; Siddiqui, F.M.; Ji, F.; Jung, J.; Light, M.; Lee, J.S.; Debussche, L.; Sidhu, S.; Sadreyev, R.I.; Watters, J.; Engelman, J.A. Synergistic activity and heterogeneous acquired resistance of combined MDM2 and MEK inhibition in KRAS mutant cancers. Oncogene, 2017, 36(47), 6581-6591.
[http://dx.doi.org/10.1038/onc.2017.258] [PMID: 28783173]
Lee, W.Y.; Chen, P.C.; Wu, W.S.; Wu, H.C.; Lan, C.H.; Huang, Y.H.; Cheng, C.H.; Chen, K.C.; Lin, C.W. Panobinostat sensitizes KRAS-mutant non-small-cell lung cancer to gefitinib by targeting TAZ. Int. J. Cancer, 2017, 141(9), 1921-1931.
[http://dx.doi.org/10.1002/ijc.30888] [PMID: 28710768]
Kurtze, I.; Sonnemann, J.; Beck, J.F. KRAS-mutated non-small cell lung cancer cells are responsive to either co-treatment with erlotinib or gefitinib and histone deacetylase inhibitors or single treatment with lapatinib. Oncol. Rep., 2011, 25(4), 1021-1029.
[PMID: 21271222]
Wilhelm, S.M.; Adnane, L.; Newell, P.; Villanueva, A.; Llovet, J.M.; Lynch, M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol. Cancer Ther., 2008, 7(10), 3129-3140.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0013] [PMID: 18852116]
Wakelee, H.A.; Lee, J.W.; Hanna, N.H.; Traynor, A.M.; Carbone, D.P.; Schiller, J.H. A double-blind randomized discontinuation phase-II study of sorafenib (BAY 43-9006) in previously treated non-small-cell lung cancer patients: eastern cooperative oncology group study E2501. J. Thorac. Oncol., 2012, 7(10), 1574-1582.
[http://dx.doi.org/10.1097/JTO.0b013e31826149ba] [PMID: 22982658]
Paz-Ares, L.G.; Biesma, B.; Heigener, D.; von Pawel, J.; Eisen, T.; Bennouna, J.; Zhang, L.; Liao, M.; Sun, Y.; Gans, S.; Syrigos, K.; Le Marie, E.; Gottfried, M.; Vansteenkiste, J.; Alberola, V.; Strauss, U.P.; Montegriffo, E.; Ong, T.J.; Santoro, A.; Group, N.R.E.U.S.I.S. Phase III, randomized, double-blind, placebo-controlled trial of gemcitabine/cisplatin alone or with sorafenib for the first-line treatment of advanced, nonsquamous non-small-cell lung cancer. J. Clin. Oncol., 2012, 30(25), 3084-3092.
[http://dx.doi.org/10.1200/JCO.2011.39.7646] [PMID: 22851564]
Kim, E.K.; Choi, E.J. Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta, 2010, 1802(4), 396-405.
[http://dx.doi.org/10.1016/j.bbadis.2009.12.009] [PMID: 20079433]
Roberts, P.J.; Der, C.J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene, 2007, 26(22), 3291-3310.
[http://dx.doi.org/10.1038/sj.onc.1210422] [PMID: 17496923]
Kelly, R.J.; Rajan, A.; Force, J.; Lopez-Chavez, A.; Keen, C.; Cao, L.; Yu, Y.; Choyke, P.; Turkbey, B.; Raffeld, M.; Xi, L.; Steinberg, S.M.; Wright, J.J.; Kummar, S.; Gutierrez, M.; Giaccone, G. Evaluation of KRAS mutations, angiogenic biomarkers, and DCE-MRI in patients with advanced non-small-cell lung cancer receiving sorafenib. Clin. Cancer Res., 2011, 17(5), 1190-1199.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2331] [PMID: 21224376]
Paz-Ares, L.; Hirsh, V.; Zhang, L.; de Marinis, F.; Yang, J.C.; Wakelee, H.A.; Seto, T.; Wu, Y.L.; Novello, S.; Juhász, E.; Arén, O.; Sun, Y.; Schmelter, T.; Ong, T.J.; Peña, C.; Smit, E.F.; Mok, T.S. Monotherapy administration of sorafenib in patients with non-small cell lung cancer (MISSION) trial: a phase III, multicenter, placebo-controlled trial of sorafenib in patients with relapsed or refractory predominantly nonsquamous non-small-cell lung cancer after 2 or 3 previous treatment regimens. J. Thorac. Oncol., 2015, 10(12), 1745-1753.
[http://dx.doi.org/10.1097/JTO.0000000000000693] [PMID: 26743856]
Ihle, N.T.; Byers, L.A.; Kim, E.S.; Saintigny, P.; Lee, J.J.; Blumenschein, G.R.; Tsao, A.; Liu, S.; Larsen, J.E.; Wang, J.; Diao, L.; Coombes, K.R.; Chen, L.; Zhang, S.; Abdelmelek, M.F.; Tang, X.; Papadimitrakopoulou, V.; Minna, J.D.; Lippman, S.M.; Hong, W.K.; Herbst, R.S.; Wistuba, I.I.; Heymach, J.V.; Powis, G. Effect of KRAS oncogene substitutions on protein behavior: implications for signaling and clinical outcome. J. Natl. Cancer Inst., 2012, 104(3), 228-239.
[http://dx.doi.org/10.1093/jnci/djr523] [PMID: 22247021]
Caiola, E.; Frapolli, R.; Tomanelli, M.; Valerio, R.; Iezzi, A.; Garassino, M.C.; Broggini, M.; Marabese, M. Wee1 inhibitor MK1775 sensitizes KRAS mutated NSCLC cells to sorafenib. Sci. Rep., 2018, 8(1), 948.
[http://dx.doi.org/10.1038/s41598-017-18900-y] [PMID: 29343688]
Gilad, O.; Nabet, B.Y.; Ragland, R.L.; Schoppy, D.W.; Smith, K.D.; Durham, A.C.; Brown, E.J. Combining ATR suppression with oncogenic Ras synergistically increases genomic instability, causing synthetic lethality or tumorigenesis in a dosage-dependent manner. Cancer Res., 2010, 70(23), 9693-9702.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2286] [PMID: 21098704]
Halazonetis, T.D.; Gorgoulis, V.G.; Bartek, J. An oncogene-induced DNA damage model for cancer development. Science, 2008, 319(5868), 1352-1355.
[http://dx.doi.org/10.1126/science.1140735] [PMID: 18323444]
Grabocka, E.; Pylayeva-Gupta, Y.; Jones, M.J.; Lubkov, V.; Yemanaberhan, E.; Taylor, L.; Jeng, H.H.; Bar-Sagi, D. Wild-type H- and N-Ras promote mutant K-Ras-driven tumorigenesis by modulating the DNA damage response. Cancer Cell, 2014, 25(2), 243-256.
[http://dx.doi.org/10.1016/j.ccr.2014.01.005] [PMID: 24525237]
Krajewska, M.; Heijink, A.M.; Bisselink, Y.J.; Seinstra, R.I.; Silljé, H.H.; de Vries, E.G.; van Vugt, M.A. Forced activation of Cdk1 via wee1 inhibition impairs homologous recombination. Oncogene, 2013, 32(24), 3001-3008.
[http://dx.doi.org/10.1038/onc.2012.296] [PMID: 22797065]
Beck, H.; Nähse-Kumpf, V.; Larsen, M.S.; O’Hanlon, K.A.; Patzke, S.; Holmberg, C.; Mejlvang, J.; Groth, A.; Nielsen, O.; Syljuåsen, R.G.; Sørensen, C.S. Cyclin-dependent kinase suppression by WEE1 kinase protects the genome through control of replication initiation and nucleotide consumption. Mol. Cell. Biol., 2012, 32(20), 4226-4236.
[http://dx.doi.org/10.1128/MCB.00412-12] [PMID: 22907750]
Audebert, M.; Salles, B.; Calsou, P. Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J. Biol. Chem., 2004, 279(53), 55117-55126.
[http://dx.doi.org/10.1074/jbc.M404524200] [PMID: 15498778]
Ying, S.; Hamdy, F.C.; Helleday, T. Mre11-dependent degradation of stalled DNA replication forks is prevented by BRCA2 and PARP1. Cancer Res., 2012, 72(11), 2814-2821.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3417] [PMID: 22447567]
Rouleau, M.; Patel, A.; Hendzel, M.J.; Kaufmann, S.H.; Poirier, G.G. PARP inhibition: PARP1 and beyond. Nat. Rev. Cancer, 2010, 10(4), 293-301.
[http://dx.doi.org/10.1038/nrc2812] [PMID: 20200537]
Parsels, L.A.; Karnak, D.; Parsels, J.D.; Zhang, Q.; Vélez-Padilla, J.; Reichert, Z.R.; Wahl, D.R.; Maybaum, J.; O’Connor, M.J.; Lawrence, T.S.; Morgan, M.A. PARP1 trapping and DNA replication stress enhance radiosensitization with combined WEE1 and PARP inhibitors. Mol. Cancer Res., 2018, 16(2), 222-232.
[http://dx.doi.org/10.1158/1541-7786.MCR-17-0455] [PMID: 29133592]
Sanchez, R.I.; Mesia-Vela, S.; Kauffman, F.C. Challenges of cancer drug design: a drug metabolism perspective. Curr. Cancer Drug Targets, 2001, 1(1), 1-32.
[http://dx.doi.org/10.2174/1568009013334296] [PMID: 12188889]
Zhang, X.H.; Cheng, Y.; Shin, J.Y.; Kim, J.O.; Oh, J.E.; Kang, J.H.A. CDK4/6 inhibitor enhances cytotoxicity of paclitaxel in lung adenocarcinoma cells harboring mutant KRAS as well as wild-type KRAS. Cancer Biol. Ther., 2013, 14(7), 597-605.
[http://dx.doi.org/10.4161/cbt.24592] [PMID: 23792647]
Musgrove, E.A.; Caldon, C.E.; Barraclough, J.; Stone, A.; Sutherland, R.L. Cyclin D as a therapeutic target in cancer. Nat. Rev. Cancer, 2011, 11(8), 558-572.
[http://dx.doi.org/10.1038/nrc3090] [PMID: 21734724]
Michaud, K.; Solomon, D.A.; Oermann, E.; Kim, J.S.; Zhong, W.Z.; Prados, M.D.; Ozawa, T.; James, C.D.; Waldman, T. Pharmacologic inhibition of cyclin-dependent kinases 4 and 6 arrests the growth of glioblastoma multiforme intracranial xenografts. Cancer Res., 2010, 70(8), 3228-3238.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-4559] [PMID: 20354191]
Fry, D.W.; Harvey, P.J.; Keller, P.R.; Elliott, W.L.; Meade, M.; Trachet, E.; Albassam, M.; Zheng, X.; Leopold, W.R.; Pryer, N.K.; Toogood, P.L. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol. Cancer Ther., 2004, 3(11), 1427-1438.
[PMID: 15542782]
Lin, S.H.; Zhang, J.; Giri, U.; Stephan, C.; Sobieski, M.; Zhong, L.; Mason, K.A.; Molkentine, J.; Thames, H.D.; Yoo, S.S.; Heymach, J.V. A high content clonogenic survival drug screen identifies mek inhibitors as potent radiation sensitizers for KRAS mutant non-small-cell lung cancer. J. Thorac. Oncol., 2014, 9(7), 965-973.
[http://dx.doi.org/10.1097/JTO.0000000000000199] [PMID: 24922006]
Knudsen, E.S.; Wang, J.Y. Targeting the RB-pathway in cancer therapy. Clin. Cancer Res., 2010, 16(4), 1094-1099.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0787] [PMID: 20145169]
Tao, Z.; Le Blanc, J.M.; Wang, C.; Zhan, T.; Zhuang, H.; Wang, P.; Yuan, Z.; Lu, B. Coadministration of trametinib and palbociclib radiosensitizes KRAS-mutant non-small cell lung cancers in vitro and in vivo. Clin. Cancer Res., 2016, 22(1), 122-133.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0589] [PMID: 26728409]
Parry, D.; Guzi, T.; Shanahan, F.; Davis, N.; Prabhavalkar, D.; Wiswell, D.; Seghezzi, W.; Paruch, K.; Dwyer, M.P.; Doll, R.; Nomeir, A.; Windsor, W.; Fischmann, T.; Wang, Y.; Oft, M.; Chen, T.; Kirschmeier, P.; Lees, E.M. Dinaciclib (SCH 727965), a novel and potent cyclin-dependent kinase inhibitor. Mol. Cancer Ther., 2010, 9(8), 2344-2353.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0324] [PMID: 20663931]
Danilov, A.V.; Hu, S.; Orr, B.; Godek, K.; Mustachio, L.M.; Sekula, D.; Liu, X.; Kawakami, M.; Johnson, F.M.; Compton, D.A.; Freemantle, S.J.; Dmitrovsky, E. Dinaciclib induces anaphase catastrophe in lung cancer cells via inhibition of cyclin-dependent kinases 1 and 2. Mol. Cancer Ther., 2016, 15(11), 2758-2766.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0127] [PMID: 27550941]
He, L.; He, X.; Lim, L.P.; de Stanchina, E.; Xuan, Z.; Liang, Y.; Xue, W.; Zender, L.; Magnus, J.; Ridzon, D.; Jackson, A.L.; Linsley, P.S.; Chen, C.; Lowe, S.W.; Cleary, M.A.; Hannon, G.J. A microRNA component of the p53 tumour suppressor network. Nature, 2007, 447(7148), 1130-1134.
[http://dx.doi.org/10.1038/nature05939] [PMID: 17554337]
Johnson, S.M.; Grosshans, H.; Shingara, J.; Byrom, M.; Jarvis, R.; Cheng, A.; Labourier, E.; Reinert, K.L.; Brown, D.; Slack, F.J. RAS is regulated by the let-7 microRNA family. Cell, 2005, 120(5), 635-647.
[http://dx.doi.org/10.1016/j.cell.2005.01.014] [PMID: 15766527]
Adams, B.D.; Kasinski, A.L.; Slack, F.J. Aberrant regulation and function of microRNAs in cancer. Curr. Biol., 2014, 24(16), R762-R776.
[http://dx.doi.org/10.1016/j.cub.2014.06.043] [PMID: 25137592]
Kasinski, A.L.; Slack, F.J. miRNA-34 prevents cancer initiation and progression in a therapeutically resistant K-ras and p53-induced mouse model of lung adenocarcinoma. Cancer Res., 2012, 72(21), 5576-5587.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2001] [PMID: 22964582]
Kasinski, A.L.; Kelnar, K.; Stahlhut, C.; Orellana, E.; Zhao, J.; Shimer, E.; Dysart, S.; Chen, X.; Bader, A.G.; Slack, F.J. A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer. Oncogene, 2015, 34(27), 3547-3555.
[http://dx.doi.org/10.1038/onc.2014.282] [PMID: 25174400]
Trang, P.; Medina, P.P.; Wiggins, J.F.; Ruffino, L.; Kelnar, K.; Omotola, M.; Homer, R.; Brown, D.; Bader, A.G.; Weidhaas, J.B.; Slack, F.J. Regression of murine lung tumors by the let-7 microRNA. Oncogene, 2010, 29(11), 1580-1587.
[http://dx.doi.org/10.1038/onc.2009.445] [PMID: 19966857]
Stahlhut, C.; Slack, F.J. Combinatorial action of MicroRNAs let-7 and miR-34 effectively synergizes with erlotinib to suppress non-small cell lung cancer cell proliferation. Cell Cycle, 2015, 14(13), 2171-2180.
[http://dx.doi.org/10.1080/15384101.2014.1003008] [PMID: 25714397]
Suda, K.; Tomizawa, K.; Mitsudomi, T. Biological and clinical significance of KRAS mutations in lung cancer: an oncogenic driver that contrasts with EGFR mutation. Cancer Metastasis Rev., 2010, 29(1), 49-60.
[http://dx.doi.org/10.1007/s10555-010-9209-4] [PMID: 20108024]
Xu, L.; Kikuchi, E.; Xu, C.; Ebi, H.; Ercan, D.; Cheng, K.A.; Padera, R.; Engelman, J.A.; Jänne, P.A.; Shapiro, G.I.; Shimamura, T.; Wong, K.K. Combined EGFR/MET or EGFR/HSP90 inhibition is effective in the treatment of lung cancers codriven by mutant EGFR containing T790M and MET. Cancer Res., 2012, 72(13), 3302-3311.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3720] [PMID: 22552292]
Chatterjee, S.; Bhattacharya, S.; Socinski, M.A.; Burns, T.F. HSP90 inhibitors in lung cancer: promise still unfulfilled. Clin. Adv. Hematol. Oncol., 2016, 14(5), 346-356.
[PMID: 27379696]
Acquaviva, J.; Smith, D.L.; Sang, J.; Friedland, J.C.; He, S.; Sequeira, M.; Zhang, C.; Wada, Y.; Proia, D.A. Targeting KRAS-mutant non-small cell lung cancer with the Hsp90 inhibitor ganetespib. Mol. Cancer Ther., 2012, 11(12), 2633-2643.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0615] [PMID: 23012248]
Sequist, L.V.; Gettinger, S.; Senzer, N.N.; Martins, R.G.; Jänne, P.A.; Lilenbaum, R.; Gray, J.E.; Iafrate, A.J.; Katayama, R.; Hafeez, N.; Sweeney, J.; Walker, J.R.; Fritz, C.; Ross, R.W.; Grayzel, D.; Engelman, J.A.; Borger, D.R.; Paez, G.; Natale, R. Activity of IPI-504, a novel heat-shock protein 90 inhibitor, in patients with molecularly defined non-small-cell lung cancer. J. Clin. Oncol., 2010, 28(33), 4953-4960.
[http://dx.doi.org/10.1200/JCO.2010.30.8338] [PMID: 20940188]
Socinski, M.A.; Goldman, J.; El-Hariry, I.; Koczywas, M.; Vukovic, V.; Horn, L.; Paschold, E.; Salgia, R.; West, H.; Sequist, L.V.; Bonomi, P.; Brahmer, J.; Chen, L.C.; Sandler, A.; Belani, C.P.; Webb, T.; Harper, H.; Huberman, M.; Ramalingam, S.; Wong, K.K.; Teofilovici, F.; Guo, W.; Shapiro, G.I. A multicenter phase II study of ganetespib monotherapy in patients with genotypically defined advanced non-small cell lung cancer. Clin. Cancer Res., 2013, 19(11), 3068-3077.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3381] [PMID: 23553849]
Chatterjee, S.; Huang, E.H.; Christie, I.; Kurland, B.F.; Burns, T.F. Acquired resistance to the Hsp90 inhibitor, ganetespib, in KRAS-mutant NSCLC is mediated via reactivation of the ERK-p90RSK-mTOR signaling network. Mol. Cancer Ther., 2017, 16(5), 793-804.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0677] [PMID: 28167505]
Garcia-Carbonero, R.; Carnero, A.; Paz-Ares, L. Inhibition of HSP90 molecular chaperones: moving into the clinic. Lancet Oncol., 2013, 14(9), e358-e369.
[http://dx.doi.org/10.1016/S1470-2045(13)70169-4] [PMID: 23896275]
Seggewiss-Bernhardt, R.; Bargou, R.C.; Goh, Y.T.; Stewart, A.K.; Spencer, A.; Alegre, A.; Bladé, J.; Ottmann, O.G.; Fernandez-Ibarra, C.; Lu, H.; Pain, S.; Akimov, M.; Iyer, S.P. Phase 1/1B trial of the heat shock protein 90 inhibitor NVP-AUY922 as monotherapy or in combination with bortezomib in patients with relapsed or refractory multiple myeloma. Cancer, 2015, 121(13), 2185-2192.
[http://dx.doi.org/10.1002/cncr.29339] [PMID: 25809731]
Park, K.S.; Oh, B.; Lee, M.H.; Nam, K.Y.; Jin, H.R.; Yang, H.; Choi, J.; Kim, S.W.; Lee, D.H. The HSP90 inhibitor, NVP-AUY922, sensitizes KRAS-mutant non-small cell lung cancer with intrinsic resistance to MEK inhibitor, trametinib. Cancer Lett., 2016, 372(1), 75-81.
[http://dx.doi.org/10.1016/j.canlet.2015.12.015] [PMID: 26723875]
Park, K.S.; Yang, H.; Choi, J.; Seo, S.; Kim, D.; Lee, C.H.; Jeon, H.; Kim, S.W.; Lee, D.H. The HSP90 inhibitor, NVP-AUY922, attenuates intrinsic PI3K inhibitor resistance in KRAS-mutant non-small cell lung cancer. Cancer Lett., 2017, 406, 47-53.
[http://dx.doi.org/10.1016/j.canlet.2017.07.028] [PMID: 28797845]
Aupérin, A.; Le Péchoux, C.; Rolland, E.; Curran, W.J.; Furuse, K.; Fournel, P.; Belderbos, J.; Clamon, G.; Ulutin, H.C.; Paulus, R.; Yamanaka, T.; Bozonnat, M.C.; Uitterhoeve, A.; Wang, X.; Stewart, L.; Arriagada, R.; Burdett, S.; Pignon, J.P. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J. Clin. Oncol., 2010, 28(13), 2181-2190.
[http://dx.doi.org/10.1200/JCO.2009.26.2543] [PMID: 20351327]
Barcellos-Hoff, M.H.; Park, C.; Wright, E.G. Radiation and the microenvironment - tumorigenesis and therapy. Nat. Rev. Cancer, 2005, 5(11), 867-875.
[http://dx.doi.org/10.1038/nrc1735] [PMID: 16327765]
Brahmer, J.R.; Drake, C.G.; Wollner, I.; Powderly, J.D.; Picus, J.; Sharfman, W.H.; Stankevich, E.; Pons, A.; Salay, T.M.; McMiller, T.L.; Gilson, M.M.; Wang, C.; Selby, M.; Taube, J.M.; Anders, R.; Chen, L.; Korman, A.J.; Pardoll, D.M.; Lowy, I.; Topalian, S.L. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol., 2010, 28(19), 3167-3175.
[http://dx.doi.org/10.1200/JCO.2009.26.7609] [PMID: 20516446]
Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; Leming, P.D.; Spigel, D.R.; Antonia, S.J.; Horn, L.; Drake, C.G.; Pardoll, D.M.; Chen, L.; Sharfman, W.H.; Anders, R.A.; Taube, J.M.; McMiller, T.L.; Xu, H.; Korman, A.J.; Jure-Kunkel, M.; Agrawal, S.; McDonald, D.; Kollia, G.D.; Gupta, A.; Wigginton, J.M.; Sznol, M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med., 2012, 366(26), 2443-2454.
[http://dx.doi.org/10.1056/NEJMoa1200690] [PMID: 22658127]
Herter-Sprie, G.S.; Koyama, S.; Korideck, H.; Hai, J.; Deng, J.; Li, Y.Y.; Buczkowski, K.A.; Grant, A.K.; Ullas, S.; Rhee, K.; Cavanaugh, J.D.; Neupane, N.P.; Christensen, C.L.; Herter, J.M.; Makrigiorgos, G.M.; Hodi, F.S.; Freeman, G.J.; Dranoff, G.; Hammerman, P.S.; Kimmelman, A.C.; Wong, K.K. Synergy of radiotherapy and PD-1 blockade in Kras-mutant lung cancer. JCI Insight, 2016, 1(9)e87415
[http://dx.doi.org/10.1172/jci.insight.87415] [PMID: 27699275]
Chakrabarty, R.; Tran, H.; Selvaggi, G.; Hagerman, A.; Thompson, B.; Coffey, M. The oncolytic virus, pelareorep, as a novel anticancer agent: a review. Invest. New Drugs, 2015, 33(3), 761-774.
[http://dx.doi.org/10.1007/s10637-015-0216-8] [PMID: 25693885]
Sei, S.; Mussio, J.K.; Yang, Q.E.; Nagashima, K.; Parchment, R.E.; Coffey, M.C.; Shoemaker, R.H.; Tomaszewski, J.E. Synergistic antitumor activity of oncolytic reovirus and chemotherapeutic agents in non-small cell lung cancer cells. Mol. Cancer, 2009, 8, 47.
[http://dx.doi.org/10.1186/1476-4598-8-47] [PMID: 19594950]
Lolkema, M.P.; Arkenau, H.T.; Harrington, K.; Roxburgh, P.; Morrison, R.; Roulstone, V.; Twigger, K.; Coffey, M.; Mettinger, K.; Gill, G.; Evans, T.R.; de Bono, J.S. A phase I study of the combination of intravenous reovirus type 3 Dearing and gemcitabine in patients with advanced cancer. Clin. Cancer Res., 2011, 17(3), 581-588.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2159] [PMID: 21106728]
Karapanagiotou, E.M.; Roulstone, V.; Twigger, K.; Ball, M.; Tanay, M.; Nutting, C.; Newbold, K.; Gore, M.E.; Larkin, J.; Syrigos, K.N.; Coffey, M.; Thompson, B.; Mettinger, K.; Vile, R.G.; Pandha, H.S.; Hall, G.D.; Melcher, A.A.; Chester, J.; Harrington, K.J. Phase I/II trial of carboplatin and paclitaxel chemotherapy in combination with intravenous oncolytic reovirus in patients with advanced malignancies. Clin. Cancer Res., 2012, 18(7), 2080-2089.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2181] [PMID: 22316603]
Comins, C.; Spicer, J.; Protheroe, A.; Roulstone, V.; Twigger, K.; White, C.M.; Vile, R.; Melcher, A.; Coffey, M.C.; Mettinger, K.L.; Nuovo, G.; Cohn, D.E.; Phelps, M.; Harrington, K.J.; Pandha, H.S. REO-10: a phase I study of intravenous reovirus and docetaxel in patients with advanced cancer. Clin. Cancer Res., 2010, 16(22), 5564-5572.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1233] [PMID: 20926400]
Villalona-Calero, M.A.; Lam, E.; Otterson, G.A.; Zhao, W.; Timmons, M.; Subramaniam, D.; Hade, E.M.; Gill, G.M.; Coffey, M.; Selvaggi, G.; Bertino, E.; Chao, B.; Knopp, M.V. Oncolytic reovirus in combination with chemotherapy in metastatic or recurrent non-small cell lung cancer patients with KRAS-activated tumors. Cancer, 2016, 122(6), 875-883.
[http://dx.doi.org/10.1002/cncr.29856] [PMID: 26709987]
Xu, Y.; Zong, S.; Gao, X.; Zhang, H.; Wang, B.; Li, P.; Liu, T.; Li, S. Combined treatment of ABT199 and irinotecan suppresses KRAS-mutant lung cancer cells. Gene, 2019, 688, 1-6.
[http://dx.doi.org/10.1016/j.gene.2018.11.018] [PMID: 30415007]
Gerber, D.E.; Socinski, M.A.; Neal, J.W.; Wakelee, H.A.; Shirai, K.; Sequist, L.V.; Rosovsky, R.P.; Lilenbaum, R.C.; Bastos, B.R.; Huang, C.; Johnson, M.L.; Hesketh, P.J.; Subramaniam, D.S.; Dietrich, M.F.; Chai, F.; Wang, Y.; Kazakin, J.; Schwartz, B.; Schiller, J.H.; Brahmer, J.R.; Kelly, R.J. Randomized phase 2 study of tivantinib plus erlotinib versus single-agent chemotherapy in previously treated KRAS mutant advanced non-small cell lung cancer. Lung Cancer, 2018, 117, 44-49.
[http://dx.doi.org/10.1016/j.lungcan.2018.01.010] [PMID: 29496255]
Lehrke, M.; Lazar, M.A. The many faces of PPARgamma. Cell, 2005, 123(6), 993-999.
[http://dx.doi.org/10.1016/j.cell.2005.11.026] [PMID: 16360030]
Girnun, G.D.; Smith, W.M.; Drori, S.; Sarraf, P.; Mueller, E.; Eng, C.; Nambiar, P.; Rosenberg, D.W.; Bronson, R.T.; Edelmann, W.; Kucherlapati, R.; Gonzalez, F.J.; Spiegelman, B.M. APC-dependent suppression of colon carcinogenesis by PPARgamma. Proc. Natl. Acad. Sci. USA, 2002, 99(21), 13771-13776.
[http://dx.doi.org/10.1073/pnas.162480299] [PMID: 12370429]
Koeffler, H.P. Peroxisome proliferator-activated receptor gamma and cancers. Clin. Cancer Res., 2003, 9(1), 1-9.
[PMID: 12538445]
Girnun, G.D.; Naseri, E.; Vafai, S.B.; Qu, L.; Szwaya, J.D.; Bronson, R.; Alberta, J.A.; Spiegelman, B.M. Synergy between PPARgamma ligands and platinum-based drugs in cancer. Cancer Cell, 2007, 11(5), 395-406.
[http://dx.doi.org/10.1016/j.ccr.2007.02.025] [PMID: 17482130]
Sharpless, N.E.; Depinho, R.A. The mighty mouse: genetically engineered mouse models in cancer drug development. Nat. Rev. Drug Discov., 2006, 5(9), 741-754.
[http://dx.doi.org/10.1038/nrd2110] [PMID: 16915232]
Girnun, G.D.; Chen, L.; Silvaggi, J.; Drapkin, R.; Chirieac, L.R.; Padera, R.F.; Upadhyay, R.; Vafai, S.B.; Weissleder, R.; Mahmood, U.; Naseri, E.; Buckley, S.; Li, D.; Force, J.; McNamara, K.; Demetri, G.; Spiegelman, B.M.; Wong, K.K. Regression of drug-resistant lung cancer by the combination of rosiglitazone and carboplatin. Clin. Cancer Res., 2008, 14(20), 6478-6486.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1128] [PMID: 18927287]
Eberhard, D.A.; Johnson, B.E.; Amler, L.C.; Goddard, A.D.; Heldens, S.L.; Herbst, R.S.; Ince, W.L.; Jänne, P.A.; Januario, T.; Johnson, D.H.; Klein, P.; Miller, V.A.; Ostland, M.A.; Ramies, D.A.; Sebisanovic, D.; Stinson, J.A.; Zhang, Y.R.; Seshagiri, S.; Hillan, K.J. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J. Clin. Oncol., 2005, 23(25), 5900-5909.
[http://dx.doi.org/10.1200/JCO.2005.02.857] [PMID: 16043828]
Winton, T.; Livingston, R.; Johnson, D.; Rigas, J.; Johnston, M.; Butts, C.; Cormier, Y.; Goss, G.; Inculet, R.; Vallieres, E.; Fry, W.; Bethune, D.; Ayoub, J.; Ding, K.; Seymour, L.; Graham, B.; Tsao, M.S.; Gandara, D.; Kesler, K.; Demmy, T.; Shepherd, F. Vinorelbine plus cisplatin vs. observation in resected non-small-cell lung cancer. N. Engl. J. Med., 2005, 352(25), 2589-2597.
[http://dx.doi.org/10.1056/NEJMoa043623] [PMID: 15972865]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 15 November, 2019
Page: [2128 - 2142]
Pages: 15
DOI: 10.2174/1568026619666190902150555
Price: $65

Article Metrics

PDF: 51