Diabetes and Vascular Disease: Is It All About Glycemia?

Author(s): Alessandra Vecchié, Fabrizio Montecucco, Federico Carbone, Franco Dallegri, Aldo Bonaventura*

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 29 , 2019

Become EABM
Become Reviewer
Call for Editor


Background: Diabetes is increasing over time, mainly driven by obesity, aging, and urbanization. Classical macro- and microvascular complications represent the final result of a complex interplay involving atherosclerosis at all stages.

Methods: In this review, we aim at focusing on current updates in the pathophysiology of vascular disease in diabetes and discussing how new therapies might influence the management of these patients at high cardiovascular risk. Diabetes shows accelerated atherosclerosis with a larger inflammatory cell infiltrate, thus favoring the development of heart failure. ‘Diabetic cardiomyopathy’ perfectly describes a specific ischemia- and hypertension- independent entity due to diabetes-related metabolic alterations on myocardial function. Moreover, platelets from subjects with diabetes display a typical hyperreactivity explaining the stronger adhesion, activation, and aggregation. Additionally, diabetes provokes an exaggerated stimulation of the endothelium, with an increased release of reactive oxygen species and a reduced release of nitric oxide, both key elements of the endothelial dysfunction. Also, the coagulation cascade and leukocytes activate contributing to this pro-thrombotic environment. Neutrophils have been recently recognized to play a pivotal role by releasing neutrophil extracellular traps. Finally, microparticles from platelets, neutrophils or monocytes are detrimental effectors on the vessel wall and are involved both in vascular dysfunction and in thrombotic complications.

Conclusion: In light of these findings, the therapeutic management of diabetes needs to be mostly focused on limiting the progression of complications by targeting precise pathophysiological mechanisms rather than the mere glycemic control, which failed to markedly reduce the risk for macrovascular complications and mortality.

Keywords: Diabetes, atherosclerosis, endothelial dysfunction, NETs, platelets, oxidative stress.

Zimmet PZ, Magliano DJ, Herman WH, Shaw JE. Diabetes: a 21st century challenge. Lancet Diabetes Endocrinol 2014; 2(1): 56-64.
[http://dx.doi.org/10.1016/S2213-8587(13)70112-8] [PMID: 24622669]
Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J 2013; 34(31): 2436-43.
[http://dx.doi.org/10.1093/eurheartj/eht149] [PMID: 23641007]
Farhan S, Redfors B, Maehara A, et al. Impact of pre-diabetes on coronary plaque composition and clinical outcome in patients with acute coronary syndromes: an analysis from the PROSPECT Study. JACC Cardiovasc Imaging 2019; 12(4): 733-41.
[PMID: 29055637]
Shah MS, Brownlee M. Molecular and cellular mechanisms of cardiovascular disorders in diabetes. Circ Res 2016; 118(11): 1808-29.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.306923] [PMID: 27230643]
Seferovic PM, Paulus WJ. Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes. Eur Heart J 2015; 36: 1718-27.
Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res 2018; 122(4): 624-38.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311586] [PMID: 29449364]
Vinik AI, Casellini C, Parson HK, Colberg SR, Nevoret ML. Cardiac autonomic neuropathy in diabetes: a predictor of cardiometabolic events. Front Neurosci 2018; 12: 591.
[http://dx.doi.org/10.3389/fnins.2018.00591] [PMID: 30210276]
Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 2003; 108(14): 1664-72.
[http://dx.doi.org/10.1161/01.CIR.0000087480.94275.97] [PMID: 14530185]
Morel O, Jesel L, Abbas M, Morel N. Prothrombotic changes in diabetes mellitus. Semin Thromb Hemost 2013; 39(5): 477-88.
[http://dx.doi.org/10.1055/s-0033-1343888] [PMID: 23629823]
Creager MA, Lüscher TF, Cosentino F, Beckman JA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation 2003; 108(12): 1527-32.
[http://dx.doi.org/10.1161/01.CIR.0000091257.27563.32] [PMID: 14504252]
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010; 107(9): 1058-70.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223545] [PMID: 21030723]
Odegaard AO, Jacobs DR Jr, Sanchez OA, Goff DC Jr, Reiner AP, Gross MD. Oxidative stress, inflammation, endothelial dysfunction and incidence of type 2 diabetes. Cardiovasc Diabetol 2016; 15: 51.
[http://dx.doi.org/10.1186/s12933-016-0369-6] [PMID: 27013319]
Félétou M, Huang Y, Vanhoutte PM. Endothelium-mediated control of vascular tone: COX-1 and COX-2 products. Br J Pharmacol 2011; 164(3): 894-912.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01276.x] [PMID: 21323907]
Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res 2010; 106(8): 1319-31.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.217117] [PMID: 20431074]
Goldberg H, Whiteside C, Fantus IG. O-linked β-N-acetylglucosamine supports p38 MAPK activation by high glucose in glomerular mesangial cells. Am J Physiol Endocrinol Metab 2011; 301(4): E713-26.
[http://dx.doi.org/10.1152/ajpendo.00108.2011] [PMID: 21712532]
Cosentino F, Francia P, Camici GG, Pelicci PG, Lüscher TF, Volpe M. Final common molecular pathways of aging and cardiovascular disease: role of the p66Shc protein. Arterioscler Thromb Vasc Biol 2008; 28(4): 622-8.
[http://dx.doi.org/10.1161/ATVBAHA.107.156059] [PMID: 18162611]
Camici GG, Schiavoni M, Francia P, et al. Genetic deletion of p66(Shc) adaptor protein prevents hyperglycemia-induced endothelial dysfunction and oxidative stress. Proc Natl Acad Sci USA 2007; 104(12): 5217-22.
[http://dx.doi.org/10.1073/pnas.0609656104] [PMID: 17360381]
Chiu J, Xu BY, Chen S, Feng B, Chakrabarti S. Oxidative stress-induced, poly(ADP-ribose) polymerase-dependent upregulation of ET-1 expression in chronic diabetic complications. Can J Physiol Pharmacol 2008; 86(6): 365-72.
[http://dx.doi.org/10.1139/Y08-033] [PMID: 18516100]
Nigro C, Leone A, Raciti GA, et al. Methylglyoxal-glyoxalase 1 balance: the root of vascular damage. Int J Mol Sci 2017; 18(1): 18.
[http://dx.doi.org/10.3390/ijms18010188] [PMID: 28106778]
Brouwers O, Niessen PM, Haenen G, et al. Hyperglycaemia-induced impairment of endothelium-dependent vasorelaxation in rat mesenteric arteries is mediated by intracellular methylglyoxal levels in a pathway dependent on oxidative stress. Diabetologia 2010; 53(5): 989-1000.
[http://dx.doi.org/10.1007/s00125-010-1677-0] [PMID: 20186387]
Hanssen NM, Wouters K, Huijberts MS, et al. Higher levels of advanced glycation endproducts in human carotid atherosclerotic plaques are associated with a rupture-prone phenotype. Eur Heart J 2014; 35(17): 1137-46.
[http://dx.doi.org/10.1093/eurheartj/eht402] [PMID: 24126878]
Dorenkamp M, Müller JP, Shanmuganathan KS, et al. Hyperglycaemia-induced methylglyoxal accumulation potentiates VEGF resistance of diabetic monocytes through the aberrant activation of tyrosine phosphatase SHP-2/SRC kinase signalling axis. Sci Rep 2018; 8(1): 14684.
[http://dx.doi.org/10.1038/s41598-018-33014-9] [PMID: 30279491]
Faria A, Persaud SJ. Cardiac oxidative stress in diabetes: Mechanisms and therapeutic potential. Pharmacol Ther 2017; 172: 50-62.
[http://dx.doi.org/10.1016/j.pharmthera.2016.11.013] [PMID: 27916650]
Fülöp N, Marchase RB, Chatham JC. Role of protein O-linked N-acetyl-glucosamine in mediating cell function and survival in the cardiovascular system. Cardiovasc Res 2007; 73(2): 288-97.
[http://dx.doi.org/10.1016/j.cardiores.2006.07.018] [PMID: 16970929]
Otsuka A, Azuma K, Iesaki T, et al. Temporary hyperglycaemia provokes monocyte adhesion to endothelial cells in rat thoracic aorta. Diabetologia 2005; 48(12): 2667-74.
[http://dx.doi.org/10.1007/s00125-005-0005-6] [PMID: 16283236]
Chawla D, Bansal S, Banerjee BD, Madhu SV, Kalra OP, Tripathi AK. Role of advanced glycation end product (AGE)-induced receptor (RAGE) expression in diabetic vascular complications. Microvasc Res 2014; 95: 1-6.
[http://dx.doi.org/10.1016/j.mvr.2014.06.010] [PMID: 24984291]
Kaur R, Kaur M, Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol 2018; 17(1): 121.
[http://dx.doi.org/10.1186/s12933-018-0763-3] [PMID: 30170601]
Westergren HU, Svedlund S, Momo RA, et al. Insulin resistance, endothelial function, angiogenic factors and clinical outcome in non-diabetic patients with chest pain without myocardial perfusion defects. Cardiovasc Diabetol 2016; 15: 36.
[http://dx.doi.org/10.1186/s12933-016-0353-1] [PMID: 26892461]
Wang F, Chen FF, Shang YY, et al. Insulin resistance adipocyte-derived exosomes aggravate atherosclerosis by increasing vasa vasorum angiogenesis in diabetic ApoE-/- mice. Int J Cardiol 2018; 265: 181-7.
[http://dx.doi.org/10.1016/j.ijcard.2018.04.028] [PMID: 29685689]
Bonaventura A, Liberale L, Montecucco F. Aspirin in primary prevention for patients with diabetes: Still a matter of debate. Eur J Clin Invest 2018; 48(10)e13001
[http://dx.doi.org/10.1111/eci.13001] [PMID: 30011059]
Maiocchi S, Alwis I, Wu MCL, Yuan Y, Jackson SP. Thromboinflammatory functions of platelets in ischemia-reperfusion injury and its dysregulation in diabetes. Semin Thromb Hemost 2018; 44(2): 102-13.
[http://dx.doi.org/10.1055/s-0037-1613694] [PMID: 29294493]
Bonaventura A, Liberale L, Carbone F, et al. The pathophysiological role of neutrophil extracellular traps in inflammatory diseases. Thromb Haemost 2018; 118(1): 6-27.
[http://dx.doi.org/10.1160/TH17-09-0630] [PMID: 29304522]
Santilli F, Marchisio M, Lanuti P, Boccatonda A, Miscia S, Davì G. Microparticles as new markers of cardiovascular risk in diabetes and beyond. Thromb Haemost 2016; 116(2): 220-34.
[http://dx.doi.org/10.1160/TH08-12-0796] [PMID: 27173919]
Tschoepe D, Roesen P, Kaufmann L, et al. Evidence for abnormal platelet glycoprotein expression in diabetes mellitus. Eur J Clin Invest 1990; 20(2): 166-70.
[http://dx.doi.org/10.1111/j.1365-2362.1990.tb02264.x] [PMID: 2112481]
Roffi M, Chew DP, Mukherjee D, et al. Platelet glycoprotein IIb/IIIa inhibitors reduce mortality in diabetic patients with non-ST-segment-elevation acute coronary syndromes. Circulation 2001; 104(23): 2767-71.
[http://dx.doi.org/10.1161/hc4801.100029] [PMID: 11733392]
Ferreiro JL, Angiolillo DJ. Challenges and perspectives of antiplatelet therapy in patients with diabetes mellitus and coronary artery disease. Curr Pharm Des 2012; 18(33): 5273-93.
[http://dx.doi.org/10.2174/138161212803251916] [PMID: 22724415]
Ibebuogu UN, Bolorunduro O, Giri S, et al. Bivalirudin versus heparin plus glycoprotein IIb/IIIa inhibitors in patients with diabetes mellitus undergoing percutaneous coronary intervention: a meta-analysis of randomized controlled trials. Am J Cardiovasc Drugs 2015; 15(4): 275-85.
[http://dx.doi.org/10.1007/s40256-015-0113-8] [PMID: 25782437]
Marx N, Imhof A, Froehlich J, et al. Effect of rosiglitazone treatment on soluble CD40L in patients with type 2 diabetes and coronary artery disease. Circulation 2003; 107(15): 1954-7.
[http://dx.doi.org/10.1161/01.CIR.0000069272.06194.91] [PMID: 12695287]
Akbiyik F, Ray DM, Gettings KF, Blumberg N, Francis CW, Phipps RP. Human bone marrow megakaryocytes and platelets express PPARgamma, and PPARgamma agonists blunt platelet release of CD40 ligand and thromboxanes. Blood 2004; 104(5): 1361-8.
[http://dx.doi.org/10.1182/blood-2004-03-0926] [PMID: 15130939]
Vogel S, Bodenstein R, Chen Q, et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J Clin Invest 2015; 125(12): 4638-54.
[http://dx.doi.org/10.1172/JCI81660] [PMID: 26551681]
Stark K, Philippi V, Stockhausen S, et al. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood 2016; 128(20): 2435-49.
[http://dx.doi.org/10.1182/blood-2016-04-710632] [PMID: 27574188]
Ishida M, Ishida T, Ono N, et al. Effects of insulin on calcium metabolism and platelet aggregation. Hypertension 1996; 28(2): 209-12.
[http://dx.doi.org/10.1161/01.HYP.28.2.209] [PMID: 8707383]
Ferreira IA, Eybrechts KL, Mocking AI, Kroner C, Akkerman JW. IRS-1 mediates inhibition of Ca2+ mobilization by insulin via the inhibitory G-protein Gi. J Biol Chem 2004; 279(5): 3254-64.
[http://dx.doi.org/10.1074/jbc.M305474200] [PMID: 14602724]
Davì G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med 2007; 357(24): 2482-94.
[http://dx.doi.org/10.1056/NEJMra071014] [PMID: 18077812]
Sugiyama C, Ishizawa M, Kajita K, et al. Platelet aggregation in obese and diabetic subjects: association with leptin level. Platelets 2007; 18(2): 128-34.
[http://dx.doi.org/10.1080/09537100600819115] [PMID: 17365861]
Vazzana N, Ranalli P, Cuccurullo C, Davì G. Diabetes mellitus and thrombosis. Thromb Res 2012; 129(3): 371-7.
[http://dx.doi.org/10.1016/j.thromres.2011.11.052] [PMID: 22197180]
Osende JI, Badimon JJ, Fuster V, et al. Blood thrombogenicity in type 2 diabetes mellitus patients is associated with glycemic control. J Am Coll Cardiol 2001; 38(5): 1307-12.
[http://dx.doi.org/10.1016/S0735-1097(01)01555-8] [PMID: 11691500]
Cavender MA, Scirica BM, Bonaca MP, et al. Vorapaxar in patients with diabetes mellitus and previous myocardial infarction: findings from the thrombin receptor antagonist in secondary prevention of atherothrombotic ischemic events-TIMI 50 trial. Circulation 2015; 131(12): 1047-53.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.013774] [PMID: 25681464]
Isermann B, Vinnikov IA, Madhusudhan T, et al. Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nat Med 2007; 13(11): 1349-58.
[http://dx.doi.org/10.1038/nm1667] [PMID: 17982464]
Hernestål-Boman J, Norberg M, Jansson JH, et al. Signs of dysregulated fibrinolysis precede the development of type 2 diabetes mellitus in a population-based study. Cardiovasc Diabetol 2012; 11: 152.
[http://dx.doi.org/10.1186/1475-2840-11-152] [PMID: 23249721]
Patti G, Cavallari I, Andreotti F, et al. Prevention of atherothrombotic events in patients with diabetes mellitus: from antithrombotic therapies to new-generation glucose-lowering drugs. Nat Rev Cardiol 2019; 16(2): 113-30.
Andreotti F, Coluzzi G, Pafundi T, et al. Anemia contributes to cardiovascular disease through reductions in nitric oxide. J Appl Physiol 2017; 122(2): 414-7.
[http://dx.doi.org/10.1152/japplphysiol.00995.2015] [PMID: 27687564]
Vaidyula VR, Boden G, Rao AK. Platelet and monocyte activation by hyperglycemia and hyperinsulinemia in healthy subjects. Platelets 2006; 17(8): 577-85.
[http://dx.doi.org/10.1080/09537100600760814] [PMID: 17127486]
Dasu MR, Devaraj S, Jialal I. High glucose induces IL-1beta expression in human monocytes: mechanistic insights. Am J Physiol Endocrinol Metab 2007; 293(1): E337-46.
[http://dx.doi.org/10.1152/ajpendo.00718.2006] [PMID: 17426109]
Peiró C, Lorenzo Ó, Carraro R, Sánchez-Ferrer CF. IL-1β Inhibition in cardiovascular complications associated to diabetes mellitus. Front Pharmacol 2017; 8: 363.
[http://dx.doi.org/10.3389/fphar.2017.00363] [PMID: 28659798]
Gawlowski T, Stratmann B, Stirban AO, Negrean M, Tschoepe D. AGEs and methylglyoxal induce apoptosis and expression of Mac-1 on neutrophils resulting in platelet-neutrophil aggregation. Thromb Res 2007; 121(1): 117-26.
[http://dx.doi.org/10.1016/j.thromres.2007.03.002] [PMID: 17445870]
Menegazzo L, Ciciliot S, Poncina N, et al. NETosis is induced by high glucose and associated with type 2 diabetes. Acta Diabetol 2015; 52(3): 497-503.
[http://dx.doi.org/10.1007/s00592-014-0676-x] [PMID: 25387570]
Joshi MB, Lad A, Bharath Prasad AS, Balakrishnan A, Ramachandra L, Satyamoorthy K. High glucose modulates IL-6 mediated immune homeostasis through impeding neutrophil extracellular trap formation. FEBS Lett 2013; 587(14): 2241-6.
[http://dx.doi.org/10.1016/j.febslet.2013.05.053] [PMID: 23735697]
Wong SL, Demers M, Martinod K, et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med 2015; 21(7): 815-9.
[http://dx.doi.org/10.1038/nm.3887] [PMID: 26076037]
Fadini GP, Menegazzo L, Rigato M, et al. NETosis delays diabetic wound healing in mice and humans. Diabetes 2016; 65(4): 1061-71.
[http://dx.doi.org/10.2337/db15-0863] [PMID: 26740598]
Rodríguez-Espinosa O, Rojas-Espinosa O, Moreno-Altamirano MM, López-Villegas EO, Sánchez-García FJ. Metabolic requirements for neutrophil extracellular traps formation. Immunology 2015; 145(2): 213-24.
[http://dx.doi.org/10.1111/imm.12437] [PMID: 25545227]
Gould TJ, Vu TT, Swystun LL, et al. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arterioscler Thromb Vasc Biol 2014; 34(9): 1977-84.
[http://dx.doi.org/10.1161/ATVBAHA.114.304114] [PMID: 25012129]
Quillard T, Araújo HA, Franck G, Shvartz E, Sukhova G, Libby P. TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. Eur Heart J 2015; 36(22): 1394-404.
[http://dx.doi.org/10.1093/eurheartj/ehv044] [PMID: 25755115]
Chen J, Chen S, Chen Y, et al. Circulating endothelial progenitor cells and cellular membrane microparticles in db/db diabetic mouse: possible implications in cerebral ischemic damage. Am J Physiol Endocrinol Metab 2011; 301(1): E62-71.
[http://dx.doi.org/10.1152/ajpendo.00026.2011] [PMID: 21505143]
Curtis AM, Zhang L, Medenilla E, et al. Relationship of microparticles to progenitor cells as a measure of vascular health in a diabetic population. Cytometry B Clin Cytom 2010; 78(5): 329-37.
[http://dx.doi.org/10.1002/cyto.b.20528] [PMID: 20544836]
Chen Y, Feng B, Li X, Ni Y, Luo Y. Plasma endothelial microparticles and their correlation with the presence of hypertension and arterial stiffness in patients with type 2 diabetes. J Clin Hypertens (Greenwich) 2012; 14(7): 455-60.
[http://dx.doi.org/10.1111/j.1751-7176.2012.00631.x] [PMID: 22747618]
Feng B, Chen Y, Luo Y, Chen M, Li X, Ni Y. Circulating level of microparticles and their correlation with arterial elasticity and endothelium-dependent dilation in patients with type 2 diabetes mellitus. Atherosclerosis 2010; 208(1): 264-9.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.06.037] [PMID: 19674745]
Pirro M, Schillaci G, Bagaglia F, et al. Microparticles derived from endothelial progenitor cells in patients at different cardiovascular risk. Atherosclerosis 2008; 197(2): 757-67.
[http://dx.doi.org/10.1016/j.atherosclerosis.2007.07.012] [PMID: 17720166]
Koga H, Sugiyama S, Kugiyama K, et al. Elevated levels of VE-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease. J Am Coll Cardiol 2005; 45(10): 1622-30.
[http://dx.doi.org/10.1016/j.jacc.2005.02.047] [PMID: 15893178]
Christersson C, Thulin Å, Siegbahn A. Microparticles during long-term follow-up after acute myocardial infarction. Association to atherosclerotic burden and risk of cardiovascular events. Thromb Haemost 2017; 117(8): 1571-81.
[http://dx.doi.org/10.1160/TH16-11-0837] [PMID: 28424820]
Wang Y, Liu J, Chen X, et al. Dysfunctional endothelial-derived microparticles promote inflammatory macrophage formation via NF-small ka, CyrillicB and IL-1beta signal pathways. J Cell Mol Med 2019; 23(1): 476-86.
[PMID: 30334371]
Jansen F, Wang H, Przybilla D, et al. Vascular endothelial microparticles-incorporated microRNAs are altered in patients with diabetes mellitus. Cardiovasc Diabetol 2016; 15: 49.
[http://dx.doi.org/10.1186/s12933-016-0367-8] [PMID: 27005938]
Zhang Y, Ma KL, Gong YX, et al. Platelet microparticles mediate glomerular endothelial injury in early diabetic nephropathy. J Am Soc Nephrol 2018; 29(11): 2671-95.
[http://dx.doi.org/10.1681/ASN.2018040368] [PMID: 30341150]
Mavroudis CA, Eleftheriou D, Hong Y, et al. Microparticles in acute coronary syndrome. Thromb Res 2017; 156: 109-16.
[http://dx.doi.org/10.1016/j.thromres.2017.06.003] [PMID: 28624718]
Morel O, Pereira B, Averous G, et al. Increased levels of procoagulant tissue factor-bearing microparticles within the occluded coronary artery of patients with ST-segment elevation myocardial infarction: role of endothelial damage and leukocyte activation. Atherosclerosis 2009; 204(2): 636-41.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.10.039] [PMID: 19091315]
Hartopo AB, Puspitawati I, Gharini PP, Setianto BY. Platelet microparticle number is associated with the extent of myocardial damage in acute myocardial infarction. Arch Med Sci 2016; 12(3): 529-37.
[http://dx.doi.org/10.5114/aoms.2016.59926] [PMID: 27279844]
Sun C, Zhao WB, Chen Y, Hu HY. Higher plasma concentrations of platelet microparticles in patients with acute coronary syndrome: a systematic review and meta-analysis. Can J Cardiol 2016; 32(11): 1325.e1.e10. .
Martínez GJ, Barraclough JY, Nakhla S, et al. Neutrophil-derived microparticles are released into the coronary circulation following percutaneous coronary intervention in acute coronary syndrome patients. Biosci Rep 2017; 37(1): 37.
[http://dx.doi.org/10.1042/BSR20160430] [PMID: 27913753]
Lozito TP, Tuan RS. Endothelial cell microparticles act as centers of matrix metalloproteinsase-2 (MMP-2) activation and vascular matrix remodeling. J Cell Physiol 2012; 227(2): 534-49.
[http://dx.doi.org/10.1002/jcp.22744] [PMID: 21437907]
Martínez de Lizarrondo S, Roncal C, Calvayrac O, et al. Synergistic effect of thrombin and CD40 ligand on endothelial matrix metalloproteinase-10 expression and microparticle generation in vitro and in vivo. Arterioscler Thromb Vasc Biol 2012; 32(6): 1477-87.
[http://dx.doi.org/10.1161/ATVBAHA.112.248773] [PMID: 22492089]
Chahed S, Leroyer AS, Benzerroug M, et al. Increased vitreous shedding of microparticles in proliferative diabetic retinopathy stimulates endothelial proliferation. Diabetes 2010; 59(3): 694-701.
[http://dx.doi.org/10.2337/db08-1524] [PMID: 20009085]
Ceriello A. The emerging challenge in diabetes: the “metabolic memory”. Vascul Pharmacol 2012; 57(5-6): 133-8.
[http://dx.doi.org/10.1016/j.vph.2012.05.005] [PMID: 22609133]
Ceriello A, Monnier L, Owens D. Glycaemic variability in diabetes: clinical and therapeutic implications. Lancet Diabetes Endocrinol 2019; 7(3): 221-30.
[PMID: 30115599]
Ceriello A, Esposito K, Piconi L, et al. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes 2008; 57(5): 1349-54.
[http://dx.doi.org/10.2337/db08-0063] [PMID: 18299315]
Risso A, Mercuri F, Quagliaro L, Damante G, Ceriello A. Intermittent high glucose enhances apoptosis in human umbilical vein endothelial cells in culture. Am J Physiol Endocrinol Metab 2001; 281(5): E924-30.
[http://dx.doi.org/10.1152/ajpendo.2001.281.5.E924] [PMID: 11595647]
Jones SC, Saunders HJ, Qi W, Pollock CA. Intermittent high glucose enhances cell growth and collagen synthesis in cultured human tubulointerstitial cells. Diabetologia 1999; 42(9): 1113-9.
[http://dx.doi.org/10.1007/s001250051279] [PMID: 10447524]
Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414(6865): 813-20.
[http://dx.doi.org/10.1038/414813a] [PMID: 11742414]
Quagliaro L, Piconi L, Assaloni R, et al. Intermittent high glucose enhances ICAM-1, VCAM-1 and E-selectin expression in human umbilical vein endothelial cells in culture: the distinct role of protein kinase C and mitochondrial superoxide production. Atherosclerosis 2005; 183(2): 259-67.
[http://dx.doi.org/10.1016/j.atherosclerosis.2005.03.015] [PMID: 16285992]
Maeda M, Hayashi T, Mizuno N, Hattori Y, Kuzuya M. Intermittent high glucose implements stress-induced senescence in human vascular endothelial cells: role of superoxide production by NADPH oxidase. PLoS One 2015; 10(4)e0123169
[http://dx.doi.org/10.1371/journal.pone.0123169] [PMID: 25879533]
Quagliaro L, Piconi L, Assaloni R, Martinelli L, Motz E, Ceriello A. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes 2003; 52(11): 2795-804.
[http://dx.doi.org/10.2337/diabetes.52.11.2795] [PMID: 14578299]
Ying C, Liu T, Ling H, et al. Glucose variability aggravates cardiac fibrosis by altering AKT signalling path. Diab Vasc Dis Res 2017; 14(4): 327-35.
[http://dx.doi.org/10.1177/1479164117698917] [PMID: 28301953]
Ying C, Zhou X, Chang Z, Ling H, Cheng X, Li W. Blood glucose fluctuation accelerates renal injury involved to inhibit the AKT signaling pathway in diabetic rats. Endocrine 2016; 53(1): 81-96.
[http://dx.doi.org/10.1007/s12020-016-0867-z] [PMID: 26860515]
Costantino S, Paneni F, Battista R, et al. Impact of glycemic variability on chromatin remodeling, oxidative stress, and endothelial dysfunction in patients with type 2 diabetes and with target Hba1c levels. Diabetes 2017; 66(9): 2472-82.
[http://dx.doi.org/10.2337/db17-0294] [PMID: 28634176]
Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2000; 321(7258): 405-12.
[http://dx.doi.org/10.1136/bmj.321.7258.405] [PMID: 10938048]
Monnier L, Mas E, Ginet C, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 2006; 295(14): 1681-7.
[http://dx.doi.org/10.1001/jama.295.14.1681] [PMID: 16609090]
Nosso G, Lupoli R, Saldalamacchia G, et al. Diabetes remission after bariatric surgery is characterized by high glycemic variability and high oxidative stress. Nutr Metab Cardiovasc Dis 2017; 27(11): 949-55.
[http://dx.doi.org/10.1016/j.numecd.2017.07.004] [PMID: 28969883]
Kilpatrick ES, Rigby AS, Atkin SL. The effect of glucose variability on the risk of microvascular complications in type 1 diabetes. Diabetes Care 2006; 29(7): 1486-90.
[http://dx.doi.org/10.2337/dc06-0293] [PMID: 16801566]
Lachin JM, Genuth S, Nathan DM, Zinman B, Rutledge BN. Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial-revisited. Diabetes 2008; 57(4): 995-1001.
[http://dx.doi.org/10.2337/db07-1618] [PMID: 18223010]
Raz I, Wilson PW, Strojek K, et al. Effects of prandial versus fasting glycemia on cardiovascular outcomes in type 2 diabetes: the HEART2D trial. Diabetes Care 2009; 32(3): 381-6.
[http://dx.doi.org/10.2337/dc08-1671] [PMID: 19246588]
Gorst C, Kwok CS, Aslam S, et al. Long-term glycemic variability and risk of adverse outcomes: a systematic review and meta-analysis. Diabetes Care 2015; 38(12): 2354-69.
[http://dx.doi.org/10.2337/dc15-1188] [PMID: 26604281]
Okada K, Hibi K, Gohbara M, et al. Association between blood glucose variability and coronary plaque instability in patients with acute coronary syndromes. Cardiovasc Diabetol 2015; 14: 111.
[http://dx.doi.org/10.1186/s12933-015-0275-3] [PMID: 26289581]
Monnier L, Colette C, Mas E, et al. Regulation of oxidative stress by glycaemic control: evidence for an independent inhibitory effect of insulin therapy. Diabetologia 2010; 53(3): 562-71.
[http://dx.doi.org/10.1007/s00125-009-1574-6] [PMID: 19890623]
Action to Control Cardiovascular Risk in Diabetes Study G, Gerstein HC, Miller ME, et al.. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008; 358: 2545-59.
Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008; 358(24): 2560-72.
[http://dx.doi.org/10.1056/NEJMoa0802987] [PMID: 18539916]
Ceriello A, Novials A, Ortega E, et al. Evidence that hyperglycemia after recovery from hypoglycemia worsens endothelial function and increases oxidative stress and inflammation in healthy control subjects and subjects with type 1 diabetes. Diabetes 2012; 61(11): 2993-7.
[http://dx.doi.org/10.2337/db12-0224] [PMID: 22891214]
Rawshani A, Rawshani A, Franzén S, et al. Mortality and cardiovascular disease in Type 1 and Type 2 diabetes. N Engl J Med 2017; 376(15): 1407-18.
[http://dx.doi.org/10.1056/NEJMoa1608664] [PMID: 28402770]
Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 2018; 39(33): 3021-104.
[http://dx.doi.org/10.1093/eurheartj/ehy339] [PMID: 30165516]
Cushman WC, Evans GW, Byington RP, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med 2010; 362(17): 1575-85.
[http://dx.doi.org/10.1056/NEJMoa1001286] [PMID: 20228401]
Hansson L, Zanchetti A, Carruthers SG, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. Lancet 1998; 351(9118): 1755-62.
[http://dx.doi.org/10.1016/S0140-6736(98)04311-6] [PMID: 9635947]
Thomopoulos C, Parati G, Zanchetti A. Effects of blood-pressure-lowering treatment on outcome incidence in hypertension: 10 - Should blood pressure management differ in hypertensive patients with and without diabetes mellitus? Overview and meta-analyses of randomized trials. J Hypertens 2017; 35(5): 922-44.
[http://dx.doi.org/10.1097/HJH.0000000000001276] [PMID: 28141660]
Brunström M, Carlberg B. Effect of antihypertensive treatment at different blood pressure levels in patients with diabetes mellitus: systematic review and meta-analyses. BMJ 2016; 352: i717.
[http://dx.doi.org/10.1136/bmj.i717] [PMID: 26920333]
Barzilay JI, Davis BR, Bettencourt J, et al. Cardiovascular outcomes using doxazosin vs. chlorthalidone for the treatment of hypertension in older adults with and without glucose disorders: a report from the ALLHAT study. J Clin Hypertens (Greenwich) 2004; 6(3): 116-25.
[http://dx.doi.org/10.1111/j.1524-6175.2004.03216.x] [PMID: 15010644]
Catalá-López F, Macías Saint-Gerons D, González-Bermejo D, et al. Cardiovascular and renal outcomes of renin-angiotensin system blockade in adult patients with diabetes mellitus: a systematic review with network meta-analyses. PLoS Med 2016; 13(3)e1001971
[http://dx.doi.org/10.1371/journal.pmed.1001971] [PMID: 26954482]
Weber MA, Bakris GL, Jamerson K, et al. Cardiovascular events during differing hypertension therapies in patients with diabetes. J Am Coll Cardiol 2010; 56(1): 77-85.
[http://dx.doi.org/10.1016/j.jacc.2010.02.046] [PMID: 20620720]
Filippatos G, Anker SD, Böhm M, et al. A randomized controlled study of finerenone vs. eplerenone in patients with worsening chronic heart failure and diabetes mellitus and/or chronic kidney disease. Eur Heart J 2016; 37(27): 2105-14.
[http://dx.doi.org/10.1093/eurheartj/ehw132] [PMID: 27130705]
Feingold KR, Grunfeld C. Diabetes and Dyslipidemia. De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F, Vinik A 2000 Endotext [Internet] South Dartmouth (MA): MDText.com, Inc.;. 2000.
Colhoun HM, Betteridge DJ, Durrington PN, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet 2004; 364(9435): 685-96.
[http://dx.doi.org/10.1016/S0140-6736(04)16895-5] [PMID: 15325833]
Shepherd J, Barter P, Carmena R, et al. Effect of lowering LDL cholesterol substantially below currently recommended levels in patients with coronary heart disease and diabetes: the Treating to New Targets (TNT) study. Diabetes Care 2006; 29(6): 1220-6.
[http://dx.doi.org/10.2337/dc05-2465] [PMID: 16731999]
Cholesterol Treatment Trialists C. Kearney PM, Blackwell L, Collins R, et al.. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet 2008; 371: 117-25.
Cannon CP, Blazing MA, Giugliano RP, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med 2015; 372(25): 2387-97.
[http://dx.doi.org/10.1056/NEJMoa1410489] [PMID: 26039521]
Giugliano RP, Cannon CP, Blazing MA, et al. Benefit of adding ezetimibe to statin therapy on cardiovascular outcomes and safety in patients with versus without diabetes mellitus: results from IMPROVE-IT (Improved Reduction of Outcomes: vytorin efficacy International Trial). Circulation 2018; 137(15): 1571-82.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.030950] [PMID: 29263150]
Hong N, Lee YH, Tsujita K, et al. Comparison of the effects of ezetimibe-statin combination therapy on major adverse cardiovascular events in patients with and without diabetes: a meta-analysis. Endocrinol Metab (Seoul) 2018; 33(2): 219-27.
[http://dx.doi.org/10.3803/EnM.2018.33.2.219] [PMID: 29766679]
Zhang XL, Zhu QQ, Zhu L, et al. Safety and efficacy of anti-PCSK9 antibodies: a meta-analysis of 25 randomized, controlled trials. BMC Med 2015; 13: 123.
[http://dx.doi.org/10.1186/s12916-015-0358-8] [PMID: 26099511]
Ganda OP, Plutzky J, Sanganalmath SK, et al. Efficacy and safety of alirocumab among individuals with diabetes mellitus and atherosclerotic cardiovascular disease in the ODYSSEY phase 3 trials. Diabetes Obes Metab 2018; 20(10): 2389-98.
[http://dx.doi.org/10.1111/dom.13384] [PMID: 29802688]
Stroes E, Robinson JG, Raal FJ, et al. Consistent LDL-C response with evolocumab among patient subgroups in PROFICIO: A pooled analysis of 3146 patients from phase 3 studies. Clin Cardiol 2018; 41(10): 1328-35.
[http://dx.doi.org/10.1002/clc.23049] [PMID: 30120772]
Sabatine MS, Leiter LA, Wiviott SD, et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol 2017; 5(12): 941-50.
[http://dx.doi.org/10.1016/S2213-8587(17)30313-3] [PMID: 28927706]
Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med 2007; 357(21): 2109-22.
[http://dx.doi.org/10.1056/NEJMoa0706628] [PMID: 17984165]
Schwartz GG, Olsson AG, Abt M, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med 2012; 367(22): 2089-99.
[http://dx.doi.org/10.1056/NEJMoa1206797] [PMID: 23126252]
Lincoff AM, Nicholls SJ, Riesmeyer JS, et al. Evacetrapib and cardiovascular outcomes in high-risk vascular disease. N Engl J Med 2017; 376(20): 1933-42.
[http://dx.doi.org/10.1056/NEJMoa1609581] [PMID: 28514624]
Bowman L, Hopewell JC, Chen F, et al. Effects of anacetrapib in patients with atherosclerotic vascular disease. N Engl J Med 2017; 377(13): 1217-27.
[http://dx.doi.org/10.1056/NEJMoa1706444] [PMID: 28847206]
Cefalu WT, Kaul S, Gerstein HC, et al. Cardiovascular outcomes trials in type 2 diabetes: where do we go from here? reflections from a diabetes care editors’ expert forum. Diabetes Care 2018; 41(1): 14-31.
[http://dx.doi.org/10.2337/dci17-0057] [PMID: 29263194]
Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 2013; 369(14): 1317-26.
[http://dx.doi.org/10.1056/NEJMoa1307684] [PMID: 23992601]
White WB, Cannon CP, Heller SR, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 2013; 369(14): 1327-35.
[http://dx.doi.org/10.1056/NEJMoa1305889] [PMID: 23992602]
Green JB, Bethel MA, Armstrong PW, et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med 2015; 373(3): 232-42.
[http://dx.doi.org/10.1056/NEJMoa1501352] [PMID: 26052984]
Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016; 375(4): 311-22.
[http://dx.doi.org/10.1056/NEJMoa1603827] [PMID: 27295427]
Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2016; 375(19): 1834-44.
[http://dx.doi.org/10.1056/NEJMoa1607141] [PMID: 27633186]
Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373(22): 2117-28.
[http://dx.doi.org/10.1056/NEJMoa1504720] [PMID: 26378978]
Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017; 377(7): 644-57.
[http://dx.doi.org/10.1056/NEJMoa1611925] [PMID: 28605608]
Pfeffer MA, Claggett B, Diaz R, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 2015; 373(23): 2247-57.
[http://dx.doi.org/10.1056/NEJMoa1509225] [PMID: 26630143]
Holman RR, Bethel MA, Mentz RJ, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med 2017; 377(13): 1228-39.
[http://dx.doi.org/10.1056/NEJMoa1612917] [PMID: 28910237]
Antithrombotic Trialists C, Baigent C, Blackwell L, et al.. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet 2009; 373: 1849-60.
Belch J, MacCuish A, Campbell I, et al. The prevention of progression of arterial disease and diabetes (POPADAD) trial: factorial randomised placebo controlled trial of aspirin and antioxidants in patients with diabetes and asymptomatic peripheral arterial disease. BMJ 2008; 337: a1840.
[http://dx.doi.org/10.1136/bmj.a1840] [PMID: 18927173]
Ogawa H, Nakayama M, Morimoto T, et al. Low-dose aspirin for primary prevention of atherosclerotic events in patients with type 2 diabetes: a randomized controlled trial. JAMA 2008; 300(18): 2134-41.
[http://dx.doi.org/10.1001/jama.2008.623] [PMID: 18997198]
Sacco M, Pellegrini F, Roncaglioni MC, et al. Primary prevention of cardiovascular events with low-dose aspirin and vitamin E in type 2 diabetic patients: results of the Primary Prevention Project (PPP) trial. Diabetes Care 2003; 26(12): 3264-72.
[http://dx.doi.org/10.2337/diacare.26.12.3264] [PMID: 14633812]
Saito Y, Okada S, Ogawa H, et al. Low-dose aspirin for primary prevention of cardiovascular events in patients with type 2 diabetes mellitus: 10-year follow-up of a randomized controlled trial. Circulation 2017; 135(7): 659-70.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.025760] [PMID: 27881565]
Bowman L, Mafham M, Wallendszus K, et al. Effects of aspirin for primary prevention in persons with diabetes mellitus. N Engl J Med 2018; 379(16): 1529-39.
[http://dx.doi.org/10.1056/NEJMoa1804988] [PMID: 30146931]
Bowman L, Mafham M, Wallendszus K, et al. Effects of aspirin for primary prevention in persons with diabetes mellitus. N Engl J Med 2018; 379(16): 1529-39.
[http://dx.doi.org/10.1056/NEJMoa1804988] [PMID: 30146931]
Capodanno D, Patel A, Dharmashankar K, et al. Pharmacodynamic effects of different aspirin dosing regimens in type 2 diabetes mellitus patients with coronary artery disease. Circ Cardiovasc Interv 2011; 4(2): 180-7.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.110.960187] [PMID: 21386092]
Bethel MA, Harrison P, Sourij H, et al. Randomized controlled trial comparing impact on platelet reactivity of twice-daily with once-daily aspirin in people with Type 2 diabetes. Diabet Med 2016; 33(2): 224-30.
[http://dx.doi.org/10.1111/dme.12828] [PMID: 26043186]
Friend M, Vucenik I, Miller M. research pointers: platelet responsiveness to aspirin in patients with hyperlipidaemia. BMJ 2003; 326(7380): 82-3.
[http://dx.doi.org/10.1136/bmj.326.7380.82] [PMID: 12521973]
Liao JK. Beyond lipid lowering: the role of statins in vascular protection. Int J Cardiol 2002; 86(1): 5-18.
[http://dx.doi.org/10.1016/S0167-5273(02)00195-X] [PMID: 12243846]
De Berardis G, Sacco M, Evangelista V, et al. Aspirin and Simvastatin Combination for Cardiovascular Events Prevention Trial in Diabetes (ACCEPT-D): design of a randomized study of the efficacy of low-dose aspirin in the prevention of cardiovascular events in subjects with diabetes mellitus treated with statins. Trials 2007; 8: 21.
[http://dx.doi.org/10.1186/1745-6215-8-21] [PMID: 17725825]
Rothwell PM, Cook NR, Gaziano JM, et al. Effects of aspirin on risks of vascular events and cancer according to bodyweight and dose: analysis of individual patient data from randomised trials. Lancet 2018; 392(10145): 387-99.
[http://dx.doi.org/10.1016/S0140-6736(18)31133-4] [PMID: 30017552]
Ridker PM, Cook NR, Lee IM, et al. A randomized trial of low-dose aspirin in the primary prevention of cardiovascular disease in women. N Engl J Med 2005; 352(13): 1293-304.
[http://dx.doi.org/10.1056/NEJMoa050613] [PMID: 15753114]
Sundström J, Hedberg J, Thuresson M, Aarskog P, Johannesen KM, Oldgren J. Low-dose aspirin discontinuation and risk of cardiovascular events: A Swedish Nationwide, population-based cohort study. Circulation 2017; 136(13): 1183-92.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.028321] [PMID: 28947478]
Derry S, Loke YK. Risk of gastrointestinal haemorrhage with long term use of aspirin: meta-analysis. BMJ 2000; 321(7270): 1183-7.
[http://dx.doi.org/10.1136/bmj.321.7270.1183] [PMID: 11073508]
Scally B, Emberson JR, Spata E, et al. Effects of gastroprotectant drugs for the prevention and treatment of peptic ulcer disease and its complications: a meta-analysis of randomised trials. Lancet Gastroenterol Hepatol 2018; 3(4): 231-41.
[http://dx.doi.org/10.1016/S2468-1253(18)30037-2] [PMID: 29475806]
Bosch J, Eikelboom JW, Connolly SJ, et al. Rationale, design and baseline characteristics of participants in the cardiovascular outcomes for people using anticoagulation strategies (COMPASS) Trial. Can J Cardiol 2017; 33(8): 1027-35.
[http://dx.doi.org/10.1016/j.cjca.2017.06.001] [PMID: 28754388]
Cameron AR, Morrison VL, Levin D, et al. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ Res 2016; 119(5): 652-65.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308445] [PMID: 27418629]
Pitocco D, Zaccardi F, Tarzia P, et al. Metformin improves endothelial function in type 1 diabetic subjects: a pilot, placebo-controlled randomized study. Diabetes Obes Metab 2013; 15(5): 427-31.
[http://dx.doi.org/10.1111/dom.12041] [PMID: 23167274]
Menegazzo L, Scattolini V, Cappellari R, et al. The antidiabetic drug metformin blunts NETosis in vitro and reduces circulating NETosis biomarkers in vivo. Acta Diabetol 2018; 55(6): 593-601.
[http://dx.doi.org/10.1007/s00592-018-1129-8] [PMID: 29546579]
Younis A, Eskenazi D, Goldkorn R, et al. The addition of vildagliptin to metformin prevents the elevation of interleukin 1ß in patients with type 2 diabetes and coronary artery disease: a prospective, randomized, open-label study. Cardiovasc Diabetol 2017; 16(1): 69.
[http://dx.doi.org/10.1186/s12933-017-0551-5] [PMID: 28532406]
Aljada A, Dandona P. Effect of insulin on human aortic endothelial nitric oxide synthase. Metabolism 2000; 49(2): 147-50.
[http://dx.doi.org/10.1016/S0026-0495(00)91039-4] [PMID: 10690935]
Grover A, Padginton C, Wilson MF, Sung BH, Izzo JL Jr, Dandona P. Insulin attenuates norepinephrine-induced venoconstriction. An ultrasonographic study. Hypertension 1995; 25(4 Pt 2): 779-84.
[http://dx.doi.org/10.1161/01.HYP.25.4.779] [PMID: 7721432]
Trovati M, Anfossi G, Massucco P, et al. Insulin stimulates nitric oxide synthesis in human platelets and, through nitric oxide, increases platelet concentrations of both guanosine-3′, 5′-cyclic monophosphate and adenosine-3′, 5′-cyclic monophosphate. Diabetes 1997; 46(5): 742-9.
[http://dx.doi.org/10.2337/diab.46.5.742] [PMID: 9133539]
Ghanim H, Mohanty P, Deopurkar R, et al. Acute modulation of toll-like receptors by insulin. Diabetes Care 2008; 31(9): 1827-31.
[http://dx.doi.org/10.2337/dc08-0561] [PMID: 18556339]
Dandona P, Chaudhuri A, Ghanim H, Mohanty P. Insulin as an anti-inflammatory and antiatherogenic modulator. J Am Coll Cardiol 2009; 53(5)(Suppl.): S14-20.
[http://dx.doi.org/10.1016/j.jacc.2008.10.038] [PMID: 19179212]
Chaudhuri A, Janicke D, Wilson MF, et al. Anti-inflammatory and profibrinolytic effect of insulin in acute ST-segment-elevation myocardial infarction. Circulation 2004; 109(7): 849-54.
[http://dx.doi.org/10.1161/01.CIR.0000116762.77804.FC] [PMID: 14757687]
Visser L, Zuurbier CJ, Hoek FJ, et al. Glucose, insulin and potassium applied as perioperative hyperinsulinaemic normoglycaemic clamp: effects on inflammatory response during coronary artery surgery. Br J Anaesth 2005; 95(4): 448-57.
[http://dx.doi.org/10.1093/bja/aei220] [PMID: 16100235]
Koskenkari JK, Kaukoranta PK, Rimpiläinen J, et al. Anti-inflammatory effect of high-dose insulin treatment after urgent coronary revascularization surgery. Acta Anaesthesiol Scand 2006; 50(8): 962-9.
[http://dx.doi.org/10.1111/j.1399-6576.2006.01100.x] [PMID: 16923091]
Malmberg K, Rydén L, Hamsten A, Herlitz J, Waldenström A, Wedel H. Mortality prediction in diabetic patients with myocardial infarction: experiences from the DIGAMI study. Cardiovasc Res 1997; 34(1): 248-53.
[http://dx.doi.org/10.1016/S0008-6363(96)00263-5] [PMID: 9217897]
Díaz R, Paolasso EA, Piegas LS, et al. Metabolic modulation of acute myocardial infarction. Circulation 1998; 98(21): 2227-34.
[http://dx.doi.org/10.1161/01.CIR.98.21.2227] [PMID: 9867443]
Nilsson J. Atherosclerotic plaque vulnerability in the statin era. Eur Heart J 2017; 38(21): 1638-44.
[http://dx.doi.org/10.1093/eurheartj/ehx143] [PMID: 28387815]
Liberale L, Montecucco F, Camici GG, et al. Treatment with Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) inhibitors to reduce cardiovascular inflammation and outcomes. Curr Med Chem 2017; 24(14): 1403-16.
[http://dx.doi.org/10.2174/0929867324666170303123734] [PMID: 28260498]
Ding Z, Liu S, Wang X, et al. Hemodynamic shear stress via ROS modulates PCSK9 expression in human vascular endothelial and smooth muscle cells and along the mouse aorta. Antioxid Redox Signal 2015; 22(9): 760-71.
[http://dx.doi.org/10.1089/ars.2014.6054] [PMID: 25490141]
Handelsman Y, Lepor NE. PCSK9 inhibitors in lipid management of patients with diabetes mellitus and high cardiovascular risk: a review. J Am Heart Assoc 2018; 7(13): 7.
[http://dx.doi.org/10.1161/JAHA.118.008953] [PMID: 29934421]
Maulucci G, Cipriani F, Russo D, et al. Improved endothelial function after short-term therapy with evolocumab. J Clin Lipidol 2018; 12(3): 669-73.
[http://dx.doi.org/10.1016/j.jacl.2018.02.004] [PMID: 29544724]
Gaspari T, Welungoda I, Widdop RE, Simpson RW, Dear AE. The GLP-1 receptor agonist liraglutide inhibits progression of vascular disease via effects on atherogenesis, plaque stability and endothelial function in an ApoE(-/-) mouse model. Diab Vasc Dis Res 2013; 10(4): 353-60.
[http://dx.doi.org/10.1177/1479164113481817] [PMID: 23673376]
Tashiro Y, Sato K, Watanabe T, et al. A glucagon-like peptide-1 analog liraglutide suppresses macrophage foam cell formation and atherosclerosis. Peptides 2014; 54: 19-26.
[http://dx.doi.org/10.1016/j.peptides.2013.12.015] [PMID: 24418070]
Rizzo M, Nikolic D, Patti AM, et al. GLP-1 receptor agonists and reduction of cardiometabolic risk: Potential underlying mechanisms. Biochim Biophys Acta Mol Basis Dis 2018; 1864(9 Pt B): 2814-21.
[http://dx.doi.org/10.1016/j.bbadis.2018.05.012] [PMID: 29778663]
Rizzo M, Abate N, Chandalia M, et al. Liraglutide reduces oxidative stress and restores heme oxygenase-1 and ghrelin levels in patients with type 2 diabetes: a prospective pilot study. J Clin Endocrinol Metab 2015; 100(2): 603-6.
[http://dx.doi.org/10.1210/jc.2014-2291] [PMID: 25393640]
Nasiri-Ansari N, Dimitriadis GK, Agrogiannis G, et al. Canagliflozin attenuates the progression of atherosclerosis and inflammation process in APOE knockout mice. Cardiovasc Diabetol 2018; 17(1): 106.
[http://dx.doi.org/10.1186/s12933-018-0749-1] [PMID: 30049285]
Al-Sharea A, Murphy AJ, Huggins LA, Hu Y, Goldberg IJ, Nagareddy PR. SGLT2 inhibition reduces atherosclerosis by enhancing lipoprotein clearance in Ldlr-/- type 1 diabetic mice. Atherosclerosis 2018; 271: 166-76.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.02.028] [PMID: 29518749]
Sato T, Aizawa Y, Yuasa S, et al. The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovasc Diabetol 2018; 17(1): 6.
[http://dx.doi.org/10.1186/s12933-017-0658-8] [PMID: 29301516]
Díaz-Rodríguez E, Agra RM, Fernández AL, et al. Effects of dapagliflozin on human epicardial adipose tissue: modulation of insulin resistance, inflammatory chemokine production, and differentiation ability. Cardiovasc Res 2018; 114(2): 336-46.
[http://dx.doi.org/10.1093/cvr/cvx186] [PMID: 29016744]
Armato JP, DeFronzo RA, Abdul-Ghani M, Ruby RJ. Successful treatment of prediabetes in clinical practice using physiological assessment (STOP DIABETES). Lancet Diabetes Endocrinol 2018; 6(10): 781-9.
[http://dx.doi.org/10.1016/S2213-8587(18)30234-1] [PMID: 30224284]
Bergman M, Manco M, Sesti G, et al. Petition to replace current OGTT criteria for diagnosing prediabetes with the 1-hour post-load plasma glucose≥155mg/dl (8.6mmol/L). Diabetes Res Clin Pract 2018; 146: 18-33.
[http://dx.doi.org/10.1016/j.diabres.2018.09.017] [PMID: 30273707]
Martinod K, Fuchs TA, Zitomersky NL, et al. PAD4-deficiency does not affect bacteremia in polymicrobial sepsis and ameliorates endotoxemic shock. Blood 2015; 125(12): 1948-56.
[http://dx.doi.org/10.1182/blood-2014-07-587709] [PMID: 25624317]
Nomura S, Inami N, Kimura Y, et al. Effect of nifedipine on adiponectin in hypertensive patients with type 2 diabetes mellitus. J Hum Hypertens 2007; 21(1): 38-44.
[http://dx.doi.org/10.1038/sj.jhh.1002100] [PMID: 17051237]
Nomura S, Shouzu A, Omoto S, Nishikawa M, Iwasaka T. Benidipine improves oxidized LDL-dependent monocyte and endothelial dysfunction in hypertensive patients with type 2 diabetes mellitus. J Hum Hypertens 2005; 19(7): 551-7.
[http://dx.doi.org/10.1038/sj.jhh.1001863] [PMID: 15829999]
Sommeijer DW, Joop K, Leyte A, Reitsma PH, ten Cate H. Pravastatin reduces fibrinogen receptor gpIIIa on platelet-derived microparticles in patients with type 2 diabetes. J Thromb Haemost 2005; 3(6): 1168-71.
[http://dx.doi.org/10.1111/j.1538-7836.2005.01403.x] [PMID: 15946206]
Tramontano AF, O’Leary J, Black AD, Muniyappa R, Cutaia MV, El-Sherif N. Statin decreases endothelial microparticle release from human coronary artery endothelial cells: implication for the Rho-kinase pathway. Biochem Biophys Res Commun 2004; 320(1): 34-8.
[http://dx.doi.org/10.1016/j.bbrc.2004.05.127] [PMID: 15207698]
Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377(12): 1119-31.
[http://dx.doi.org/10.1056/NEJMoa1707914] [PMID: 28845751]
Everett BM, Donath MY, Pradhan AD, et al. Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes. J Am Coll Cardiol 2018; 71(21): 2392-401.
[http://dx.doi.org/10.1016/j.jacc.2018.03.002] [PMID: 29544870]
Verma S, Mathew V, Farkouh ME. Targeting inflammation in the prevention and treatment of type 2 diabetes: insights from CANTOS. J Am Coll Cardiol 2018; 71(21): 2402-4.
[http://dx.doi.org/10.1016/j.jacc.2018.03.480] [PMID: 29793628]
American Diabetes Association. 9. Cardiovascular disease and risk management: standards of medical care in diabetes-2018. Diabetes Care 2018; 41(Suppl. 1): S86-S104.
[http://dx.doi.org/10.2337/dc18-S009] [PMID: 29222380]
Capodanno D, Mehran R, Valgimigli M, et al. Aspirin-free strategies in cardiovascular disease and cardioembolic stroke prevention. Nat Rev Cardiol 2018; 15(8): 480-96.
[http://dx.doi.org/10.1038/s41569-018-0049-1] [PMID: 29973709]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 30 August, 2019
Page: [3112 - 3127]
Pages: 16
DOI: 10.2174/1381612825666190830181944
Price: $65

Article Metrics

PDF: 62
HTML: 10