Chitosan and Quercetin: Potential Hand in Hand Encountering Tumors in Oral Delivery System

Author(s): Jalil Rashedi, Amir Ghorbanihaghjo*, Mohammad Asgharzadeh, Behzad Baradaran*

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 28 , 2019

Become EABM
Become Reviewer

Abstract:

Chitosan is a cationic polysaccharide and multi-potential polymer with the ability to interact with other natural and synthetic polyanionic/polymeric compounds, with or without a cross-linking agent. It has been able to composite nano-microparticles with a variety of features. This compound has the ability to carry quercetin, as an anti-tumor subject, through the various epithelial systems and release in the sustained and controlled state to the target site.

This paper reviews published studies on detailed physicochemical properties of chitosan and quercetin in the fight against the tumor. This also focused on how the chitosan polymer interacts with other polymeric and polyanion species in order to improve its efficiency to make a more suitable capsule or matrix for a variety of drugs, especially quercetin, in oral delivery systems.

Keywords: Chitosan, quercetin, drug delivery system, interaction, polymer, crosslinking, cancer therapy.

[1]
Li D, Han J, Ding J, Chen L, Chen X. Acid-sensitive dextran prodrug: A higher molecular weight makes a better efficacy. Carbohydr Polym 2017; 161: 33-41.
[http://dx.doi.org/10.1016/j.carbpol.2016.12.070] [PMID: 28189244]
[2]
Li D, Xu W, Li P, et al. Self-targeted polysaccharide prodrug suppresses orthotopic hepatoma. Mol Pharm 2016; 13(12): 4231-5.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00747] [PMID: 27784155]
[3]
Zhang Y, Wang F, Li M, et al. Self-Stabilized hyaluronate nanogel for intracellular codelivery of doxorubicin and cisplatin to osteosarcoma. Adv Sci (Weinh) 2018; 5(5)1700821
[http://dx.doi.org/10.1002/advs.201700821] [PMID: 29876208]
[4]
Zhang Y, Cai L, Li D, et al. Tumor microenvironment-responsive hyaluronate-calcium carbonate hybrid nanoparticle enables effective chemotherapy for primary and advanced osteosarcomas. Nano Res 2018; 11(9): 4806-22.
[http://dx.doi.org/10.1007/s12274-018-2066-0]
[5]
Li D, Feng X, Chen L, Ding J, Chen X. One-step synthesis of targeted acid-labile polysaccharide prodrug for efficiently intracellular drug delivery. ACS Biomater Sci Eng 2018; 4(2): 539-46.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00856]
[6]
Zhao K, Li D, Xu W, et al. Targeted hydroxyethyl starch prodrug for inhibiting the growth and metastasis of prostate cancer. Biomaterials 2017; 116: 82-94.
[http://dx.doi.org/10.1016/j.biomaterials.2016.11.030] [PMID: 27914269]
[7]
Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 2004; 100(1): 5-28.
[http://dx.doi.org/10.1016/j.jconrel.2004.08.010] [PMID: 15491807]
[8]
Li M, Ding J, Tao Y, Shi B, Chen J-H. Polysaccharides for biomedical applications. Int J Polymer Sci 2019; 7841836: 2.
[http://dx.doi.org/10.1155/2019/7841836]
[9]
Rodrigues S, Dionísio M, López CR, Grenha A. Biocompatibility of chitosan carriers with application in drug delivery. J Funct Biomater 2012; 3(3): 615-41.
[http://dx.doi.org/10.3390/jfb3030615] [PMID: 24955636]
[10]
Soofiyani SR, Hallaj-Nezhadi S, Lotfipour F, Hosseini AM, Baradaran B. Gene therapy based on interleukin-12 loaded chitosan nanoparticles in a mouse model of fibrosarcoma. Iran J Basic Med Sci 2016; 19(11): 1238-44.
[PMID: 27917281]
[11]
Alinejad V, Hossein Somi M, Baradaran B, et al. Co-delivery of IL17RB siRNA and doxorubicin by chitosan-based nanoparticles for enhanced anticancer efficacy in breast cancer cells. Biomed Pharmacother 2016; 83: 229-40.
[http://dx.doi.org/10.1016/j.biopha.2016.06.037] [PMID: 27372407]
[12]
Li D, Ding J, Zhuang X, Chen L, Chen X. Drug binding rate regulates the properties of polysaccharide prodrugs. J Mater Chem B Mater Biol Med 2016; 4(30): 5167-77.
[http://dx.doi.org/10.1039/C6TB00991C]
[13]
Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur Polym J 2013; 49(4): 780-92.
[http://dx.doi.org/10.1016/j.eurpolymj.2012.12.009]
[14]
Kumari A, Yadav SK, Pakade YB, Singh B, Yadav SC. Development of biodegradable nanoparticles for delivery of quercetin. Colloids Surf B Biointerfaces 2010; 80(2): 184-92.
[http://dx.doi.org/10.1016/j.colsurfb.2010.06.002] [PMID: 20598513]
[15]
Boots AW, Haenen GR, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 2008; 585(2-3): 325-37.
[http://dx.doi.org/10.1016/j.ejphar.2008.03.008] [PMID: 18417116]
[16]
Wang W, Sun C, Mao L, et al. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci Technol 2016; 56: 21-38.
[http://dx.doi.org/10.1016/j.tifs.2016.07.004]
[17]
Islam S, Bhuiyan MR, Islam M. Chitin and chitosan: structure, properties and applications in biomedical engineering. J Polym Environ 2017; 25(3): 854-66.
[http://dx.doi.org/10.1007/s10924-016-0865-5]
[18]
Kumirska J, Weinhold MX, Thöming J, Stepnowski P. Biomedical activity of chitin/chitosan based materials-influence of physicochemical properties apart from molecular weight and degree of N-acetylation. Polymers (Basel) 2011; 3(4): 1875-901.
[http://dx.doi.org/10.3390/polym3041875]
[19]
Hu Q, Luo Y. Polyphenol-chitosan conjugates: Synthesis, characterization, and applications. Carbohydr Polym 2016; 151: 624-39.
[http://dx.doi.org/10.1016/j.carbpol.2016.05.109] [PMID: 27474608]
[20]
Pillai C, Paul W, Sharma CP. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog Polym Sci 2009; 34(7): 641-78.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.04.001]
[21]
Roberts GA. Chitin chemistry: Macmillan International Higher Education 1992
[22]
Caddeo C, Nácher A, Díez-Sales O, Merino-Sanjuán M, Fadda AM, Manconi M. Chitosan-xanthan gum microparticle-based oral tablet for colon-targeted and sustained delivery of quercetin. J Microencapsul 2014; 31(7): 694-9.
[http://dx.doi.org/10.3109/02652048.2014.913726] [PMID: 24903450]
[23]
Trapani A, Palazzo C, Contino M, et al. Mucoadhesive properties and interaction with P-glycoprotein (P-gp) of thiolated-chitosans and -glycol chitosans and corresponding parent polymers: a comparative study. Biomacromolecules 2014; 15(3): 882-93.
[http://dx.doi.org/10.1021/bm401733p] [PMID: 24521085]
[24]
Palazzo C, Trapani G, Ponchel G, Trapani A, Vauthier C. Mucoadhesive properties of low molecular weight chitosan- or glycol chitosan- and corresponding thiomer-coated poly(isobutylcyano-acrylate) core-shell nanoparticles. Eur J Pharm Biopharm 2017; 117: 315-23.
[http://dx.doi.org/10.1016/j.ejpb.2017.04.020] [PMID: 28455206]
[25]
Xia W, Liu P, Zhang J, Chen J. Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll 2011; 25(2): 170-9.
[http://dx.doi.org/10.1016/j.foodhyd.2010.03.003]
[26]
Park JK, Chung MJ, Choi HN, Park YI. Effects of the molecular weight and the degree of deacetylation of chitosan oligosaccharides on antitumor activity. Int J Mol Sci 2011; 12(1): 266-77.
[http://dx.doi.org/10.3390/ijms12010266] [PMID: 21339986]
[27]
Tang ES, Huang M, Lim LY. Ultrasonication of chitosan and chitosan nanoparticles. Int J Pharm 2003; 265(1-2): 103-14.
[http://dx.doi.org/10.1016/S0378-5173(03)00408-3] [PMID: 14522123]
[28]
Gulbake A, Jain SK. Chitosan: a potential polymer for colon-specific drug delivery system. Expert Opin Drug Deliv 2012; 9(6): 713-29.
[http://dx.doi.org/10.1517/17425247.2012.682148] [PMID: 22530707]
[29]
Bowman K, Leong KW. Chitosan nanoparticles for oral drug and gene delivery. Int J Nanomed 2006; 1(2): 117-28.
[http://dx.doi.org/10.2147/nano.2006.1.2.117] [PMID: 17722528]
[30]
Khutoryanskiy VV. Advances in mucoadhesion and mucoadhesive polymers. Macromol Biosci 2011; 11(6): 748-64.
[http://dx.doi.org/10.1002/mabi.201000388] [PMID: 21188688]
[31]
Kim K, Kim K, Ryu JH, Lee H. Chitosan-catechol: a polymer with long-lasting mucoadhesive properties. Biomaterials 2015; 52: 161-70.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.010] [PMID: 25818422]
[32]
Artursson P, Lindmark T, Davis SS, Illum L. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm Res 1994; 11(9): 1358-61.
[http://dx.doi.org/10.1023/A:1018967116988] [PMID: 7816770]
[33]
Liu M, Zhang J, Zhu X, et al. Efficient mucus permeation and tight junction opening by dissociable “mucus-inert” agent coated trimethyl chitosan nanoparticles for oral insulin delivery. J Control Release 2016; 222: 67-77.
[http://dx.doi.org/10.1016/j.jconrel.2015.12.008] [PMID: 26686663]
[34]
Wang JJ, Zeng ZW, Xiao RZ, et al. Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomedicine 2011; 6: 765-74.
[PMID: 21589644]
[35]
Zhang B, Pan Y, Chen H, Liu T, Tao H, Tian Y. Stabilization of starch-based microgel-lysozyme complexes using a layer-by-layer assembly technique. Food Chem 2017; 214: 213-7.
[http://dx.doi.org/10.1016/j.foodchem.2016.07.076] [PMID: 27507468]
[36]
Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 2010; 62(1): 3-11.
[http://dx.doi.org/10.1016/j.addr.2009.09.004] [PMID: 19800377]
[37]
Teixeira GQ, Leite Pereira C, Castro F, et al. Anti-inflammatory chitosan/poly-γ-glutamic acid nanoparticles control inflammation while remodeling extracellular matrix in degenerated intervertebral disc. Acta Biomater 2016; 42: 168-79.
[http://dx.doi.org/10.1016/j.actbio.2016.06.013] [PMID: 27321188]
[38]
Qiao Y, Bai X-F, Du Y-G. Chitosan oligosaccharides protect mice from LPS challenge by attenuation of inflammation and oxidative stress. Int Immunopharmacol 2011; 11(1): 121-7.
[http://dx.doi.org/10.1016/j.intimp.2010.10.016] [PMID: 21059391]
[39]
Abdel-Wahhab MA, Aljawish A, El-Nekeety AA, Abdel-Aziem SH, Hassan NS. Chitosan nanoparticles plus quercetin suppress the oxidative stress, modulate DNA fragmentation and gene expression in the kidney of rats fed ochratoxin A-contaminated diet. Food Chem Toxicol 2017; 99: 209-21.
[http://dx.doi.org/10.1016/j.fct.2016.12.002] [PMID: 27923682]
[40]
Choi C, Nam J-P, Nah J-W. Application of chitosan and chitosan derivatives as biomaterials. J Ind Eng Chem 2016; 33: 1-10.
[http://dx.doi.org/10.1016/j.jiec.2015.10.028]
[41]
Anderson JM, Van Itallie CM. Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 2009; 1(2)a002584
[http://dx.doi.org/10.1101/cshperspect.a002584] [PMID: 20066090]
[42]
Zhang J, Zhu X, Jin Y, Shan W, Huang Y. Mechanism study of cellular uptake and tight junction opening mediated by goblet cell-specific trimethyl chitosan nanoparticles. Mol Pharm 2014; 11(5): 1520-32.
[http://dx.doi.org/10.1021/mp400685v] [PMID: 24673570]
[43]
Sonaje K, Lin KJ, Wang JJ, et al. Self‐assembled pH‐sensitive nanoparticles: a platform for oral delivery of protein drugs. Adv Funct Mater 2010; 20(21): 3695-700.
[http://dx.doi.org/10.1002/adfm.201001014]
[44]
Wang X, Chen Y, Dahmani FZ, Yin L, Zhou J, Yao J. Amphiphilic carboxymethyl chitosan-quercetin conjugate with P-gp inhibitory properties for oral delivery of paclitaxel. Biomaterials 2014; 35(26): 7654-65.
[http://dx.doi.org/10.1016/j.biomaterials.2014.05.053] [PMID: 24927684]
[45]
Kast C, Bernkop-Schnürch A. Influence of the molecular mass on the permeation enhancing effect of different poly (acrylates). STP Pharma Sci 2002; 12(6): 351-6.
[46]
Yeh T-H, Hsu L-W, Tseng MT, et al. Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials 2011; 32(26): 6164-73.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.056] [PMID: 21641031]
[47]
Sonaje K, Chuang E-Y, Lin K-J, et al. Opening of epithelial tight junctions and enhancement of paracellular permeation by chitosan: microscopic, ultrastructural, and computed-tomographic observations. Mol Pharm 2012; 9(5): 1271-9.
[http://dx.doi.org/10.1021/mp200572t] [PMID: 22462641]
[48]
Sadreddini S, Safaralizadeh R, Baradaran B, et al. Chitosan nanoparticles as a dual drug/siRNA delivery system for treatment of colorectal cancer. Immunol Lett 2017; 181: 79-86.
[http://dx.doi.org/10.1016/j.imlet.2016.11.013] [PMID: 27916629]
[49]
Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev 2012; 64: 18-23.
[http://dx.doi.org/10.1016/j.addr.2012.09.010] [PMID: 11755703]
[50]
Mukhopadhyay P, Maity S, Mandal S, Chakraborti AS, Prajapati AK, Kundu PP. Preparation, characterization and in vivo evaluation of pH sensitive, safe quercetin-succinylated chitosan-alginate core-shell-corona nanoparticle for diabetes treatment. Carbohydr Polym 2018; 182: 42-51.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.098] [PMID: 29279124]
[51]
Zhang Y, Lin S, Qiao J, et al. Malic acid-enhanced chitosan hydrogel beads (mCHBs) for the removal of Cr (VI) and Cu (II) from aqueous solution. Chem Eng J 2018; 353: 225-36.
[http://dx.doi.org/10.1016/j.cej.2018.06.143]
[52]
Wang T, Hou J, Su C, Zhao L, Shi Y. Hyaluronic acid-coated chitosan nanoparticles induce ROS-mediated tumor cell apoptosis and enhance antitumor efficiency by targeted drug delivery via CD44. J Nanobiotechnology 2017; 15(1): 7.
[http://dx.doi.org/10.1186/s12951-016-0245-2] [PMID: 28068992]
[53]
Anandhakumar S, Krishnamoorthy G, Ramkumar KM, Raichur AM. Preparation of collagen peptide functionalized chitosan nanoparticles by ionic gelation method: An effective carrier system for encapsulation and release of doxorubicin for cancer drug delivery. Mater Sci Eng C 2017; 70(Pt 1): 378-85.
[http://dx.doi.org/10.1016/j.msec.2016.09.003] [PMID: 27770906]
[54]
Shekarforoush E, Ajalloueian F, Zeng G, Mendes AC, Chronakis IS. Electrospun xanthan gum-chitosan nanofibers as delivery carrier of hydrophobic bioactives. Mater Lett 2018; 228: 322-6.
[http://dx.doi.org/10.1016/j.matlet.2018.06.033]
[55]
Mobasseri R, Karimi M, Tian L, Naderi-Manesh H, Ramakrishna S. Hydrophobic lapatinib encapsulated dextran-chitosan nanoparticles using a toxic solvent free method: fabrication, release property & in vitro anti-cancer activity. Mater Sci Eng C 2017; 74: 413-21.
[http://dx.doi.org/10.1016/j.msec.2016.12.027] [PMID: 28254312]
[56]
Siahmansouri H, Somi MH, Babaloo Z, et al. Effects of HMGA2 siRNA and doxorubicin dual delivery by chitosan nanoparticles on cytotoxicity and gene expression of HT-29 colorectal cancer cell line. J Pharm Pharmacol 2016; 68(9): 1119-30.
[http://dx.doi.org/10.1111/jphp.12593] [PMID: 27350211]
[57]
Zheng Y, Yang W, Wang C, et al. Nanoparticles based on the complex of chitosan and polyaspartic acid sodium salt: preparation, characterization and the use for 5-fluorouracil delivery. Eur J Pharm Biopharm 2007; 67(3): 621-31.
[http://dx.doi.org/10.1016/j.ejpb.2007.04.007] [PMID: 17533123]
[58]
Razmi M, Divsalar A, Saboury AA, Izadi Z, Haertlé T, Mansuri-Torshizi H. Beta-casein and its complexes with chitosan as nanovehicles for delivery of a platinum anticancer drug. Colloids Surf B Biointerfaces 2013; 112: 362-7.
[http://dx.doi.org/10.1016/j.colsurfb.2013.08.022] [PMID: 24028849]
[59]
Xie Y-T, Du YZ, Yuan H, Hu FQ. Brain-targeting study of stearic acid-grafted chitosan micelle drug-delivery system. Int J Nanomed 2012; 7: 3235-44.
[PMID: 22802685]
[60]
Wang W, Chen S, Zhang L, et al. Poly(lactic acid)/chitosan hybrid nanoparticles for controlled release of anticancer drug. Mater Sci Eng C 2015; 46: 514-20.
[http://dx.doi.org/10.1016/j.msec.2014.10.048] [PMID: 25492016]
[61]
McGraw GS, Jennings JA, Fujiwara T, Masters E, Haggard WO, Bumgardner JD. Chitosan Microspheres Cross-linked with Glyoxal for the Local Delivery of Antibiotics. J Polymer Mat 2017; 34(1): 305-17.
[62]
Walke S, Srivastava G, Nikalje M, et al. Fabrication of chitosan microspheres using vanillin/TPP dual crosslinkers for protein antigens encapsulation. Carbohydr Polym 2015; 128: 188-98.
[http://dx.doi.org/10.1016/j.carbpol.2015.04.020] [PMID: 26005155]
[63]
Jătariu Cadinoiu AN, Popa M, Curteanu S, Peptu CA. Covalent and ionic co-cross-linking--an original way to prepare chitosan-gelatin hydrogels for biomedical applications. J Biomed Mater Res A 2011; 98(3): 342-50.
[http://dx.doi.org/10.1002/jbm.a.33122] [PMID: 21626665]
[64]
Feng C, Li J, Mu Y, et al. Multilayer micro-dispersing system as oral carriers for co-delivery of doxorubicin hydrochloride and P-gp inhibitor. Int J Biol Macromol 2017; 94(Pt A): 170-80.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.10.012] [PMID: 27720963]
[65]
Ahmadi F, Ghasemi-Kasman M, Ghasemi S, et al. Induction of apoptosis in HeLa cancer cells by an ultrasonic-mediated synthesis of curcumin-loaded chitosan-alginate-STPP nanoparticles. Int J Nanomed 2017; 12: 8545-56.
[http://dx.doi.org/10.2147/IJN.S146516] [PMID: 29238191]
[66]
Xu Y, Zhan C, Fan L, Wang L, Zheng H. Preparation of dual crosslinked alginate-chitosan blend gel beads and in vitro controlled release in oral site-specific drug delivery system. Int J Pharm 2007; 336(2): 329-37.
[http://dx.doi.org/10.1016/j.ijpharm.2006.12.019] [PMID: 17223290]
[67]
Wu J, Wang Y, Yang H, Liu X, Lu Z. Preparation and biological activity studies of resveratrol loaded ionically cross-linked chitosan-TPP nanoparticles. Carbohydr Polym 2017; 175: 170-7.
[http://dx.doi.org/10.1016/j.carbpol.2017.07.058] [PMID: 28917853]
[68]
Caddeo C, Díez-Sales O, Pons R, et al. Cross-linked chitosan/liposome hybrid system for the intestinal delivery of quercetin. J Colloid Interface Sci 2016; 461: 69-78.
[http://dx.doi.org/10.1016/j.jcis.2015.09.013] [PMID: 26397912]
[69]
Noor NM, Sheikh K, Somavarapu S, Taylor KMG. Preparation and characterization of dutasteride-loaded nanostructured lipid carriers coated with stearic acid-chitosan oligomer for topical delivery. Eur J Pharm Biopharm 2017; 117: 372-84.
[http://dx.doi.org/10.1016/j.ejpb.2017.04.012] [PMID: 28412472]
[70]
Castangia I, Nácher A, Caddeo C, et al. Therapeutic efficacy of quercetin enzyme-responsive nanovesicles for the treatment of experimental colitis in rats. Acta Biomater 2015; 13: 216-27.
[http://dx.doi.org/10.1016/j.actbio.2014.11.017] [PMID: 25463498]
[71]
Caddeo C, Pons R, Carbone C, et al. Physico-chemical characterization of succinyl chitosan-stabilized liposomes for the oral co-delivery of quercetin and resveratrol. Carbohydr Polym 2017; 157: 1853-61.
[http://dx.doi.org/10.1016/j.carbpol.2016.11.072] [PMID: 27987905]
[72]
Sun W, Mao S, Wang Y, et al. Bioadhesion and oral absorption of enoxaparin nanocomplexes. Int J Pharm 2010; 386(1-2): 275-81.
[http://dx.doi.org/10.1016/j.ijpharm.2009.11.025] [PMID: 19958824]
[73]
Vanden Braber NL, Paredes AJ, Rossi YE, et al. Controlled release and antioxidant activity of chitosan or its glucosamine water-soluble derivative microcapsules loaded with quercetin. Int J Biol Macromol 2018; 112: 399-404.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.085] [PMID: 29421395]
[74]
Zhang S, Huang S, Lu L, Song X, Li P, Wang F. Curdlan sulfate-O-linked quaternized chitosan nanoparticles: potential adjuvants to improve the immunogenicity of exogenous antigens via intranasal vaccination. Int J Nanomedicine 2018; 13: 2377-94.
[http://dx.doi.org/10.2147/IJN.S158536] [PMID: 29713168]
[75]
Singh S, Dubey V, Meena A, Siddiqui L, Maurya AK, Luqman S. Rutin restricts hydrogen peroxide-induced alterations by up-regulating the redox-system: An in vitro, in vivo and in silico study. Eur J Pharmacol 2018; 835: 115-25.
[http://dx.doi.org/10.1016/j.ejphar.2018.07.055] [PMID: 30075225]
[76]
Chebil L, Humeau C, Anthoni J, Dehez F, Engasser J-M, Ghoul M. Solubility of flavonoids in organic solvents. J Chem Eng Data 2007; 52(5): 1552-6.
[http://dx.doi.org/10.1021/je7001094]
[77]
Porcu EP, Cossu M, Rassu G, et al. Aqueous injection of quercetin: An approach for confirmation of its direct in vivo cardiovascular effects. Int J Pharm 2018; 541(1-2): 224-33.
[http://dx.doi.org/10.1016/j.ijpharm.2018.02.036] [PMID: 29474897]
[78]
Carvalho FB, Gutierres JM, Beckmann D, et al. Quercetin treatment regulates the Na+,K+-ATPase activity, peripheral cholinergic enzymes, and oxidative stress in a rat model of demyelination. Nutr Res 2018; 55: 45-56.
[http://dx.doi.org/10.1016/j.nutres.2018.04.004] [PMID: 29914627]
[79]
Liu KC, Yen CY, Wu RSC, et al. The roles of endoplasmic reticulum stress and mitochondrial apoptotic signaling pathway in quercetin-mediated cell death of human prostate cancer PC-3 cells. Environ Toxicol 2014; 29(4): 428-39.
[http://dx.doi.org/10.1002/tox.21769] [PMID: 22431435]
[80]
Zhang M, Swarts SG, Yin L, et al. Antioxidant properties of quercetin. Adv Exp Med Biol 2011; 701: 283-9.
[http://dx.doi.org/10.1007/978-1-4419-7756-4_38]
[81]
Gibellini L, Pinti M, Nasi M, et al. Quercetin and cancer chemoprevention. Evid Based Complement Alternat Med 2011; 2011591356
[http://dx.doi.org/10.1093/ecam/neq053] [PMID: 21792362]
[82]
Kamaraj S, Vinodhkumar R, Anandakumar P, Jagan S, Ramakrishnan G, Devaki T. The effects of quercetin on antioxidant status and tumor markers in the lung and serum of mice treated with benzo(a)pyrene. Biol Pharm Bull 2007; 30(12): 2268-73.
[http://dx.doi.org/10.1248/bpb.30.2268] [PMID: 18057710]
[83]
Shrihari TG. Dual role of inflammatory mediators in cancer. Ecancermedicalscience 2017; 11: 721.
[http://dx.doi.org/10.3332/ecancer.2017.721] [PMID: 28275390]
[84]
Chen AC, Arany PR, Huang Y-Y, et al. Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One 2011; 6(7)e22453
[http://dx.doi.org/10.1371/journal.pone.0022453] [PMID: 21814580]
[85]
Moskaug JØ, Carlsen H, Myhrstad M, Blomhoff R. Molecular imaging of the biological effects of quercetin and quercetin-rich foods. Mech Ageing Dev 2004; 125(4): 315-24.
[http://dx.doi.org/10.1016/j.mad.2004.01.007] [PMID: 15063108]
[86]
Pratheeshkumar P, Budhraja A, Son Y-O, et al. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR- 2 regulated AKT/mTOR/P70S6K signaling pathways. PLoS One 2012; 7(10)e47516
[http://dx.doi.org/10.1371/journal.pone.0047516] [PMID: 23094058]
[87]
Pan H-C, Jiang Q, Yu Y, Mei J-P, Cui Y-K, Zhao W-J. Quercetin promotes cell apoptosis and inhibits the expression of MMP-9 and fibronectin via the AKT and ERK signalling pathways in human glioma cells. Neurochem Int 2015; 80: 60-71.
[http://dx.doi.org/10.1016/j.neuint.2014.12.001] [PMID: 25481090]
[88]
Sun Z-J, Chen G, Hu X, et al. Activation of PI3K/Akt/IKK-α/NF-kappaB signaling pathway is required for the apoptosis-evasion in human salivary adenoid cystic carcinoma: its inhibition by quercetin. Apoptosis 2010; 15(7): 850-63.
[http://dx.doi.org/10.1007/s10495-010-0497-5] [PMID: 20386985]
[89]
Huang C-Y, Chan C-Y, Chou I-T, Lien C-H, Hung H-C, Lee M-F. Quercetin induces growth arrest through activation of FOXO1 transcription factor in EGFR-overexpressing oral cancer cells. J Nutr Biochem 2013; 24(9): 1596-603.
[http://dx.doi.org/10.1016/j.jnutbio.2013.01.010] [PMID: 23618529]
[90]
Lou G, Liu Y, Wu S, et al. The p53/miR-34a/SIRT1 positive feedback loop in quercetin-induced apoptosis. Cell Physiol Biochem 2015; 35(6): 2192-202.
[http://dx.doi.org/10.1159/000374024] [PMID: 25896587]
[91]
Srivastava S, Somasagara RR, Hegde M, et al. Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci Rep 2016; 6: 24049.
[http://dx.doi.org/10.1038/srep24049] [PMID: 27068577]
[92]
Huang H-C, Lin C-L, Lin J-K. 1,2,3,4,6-penta-O-galloyl-β-D-glucose, quercetin, curcumin and lycopene induce cell-cycle arrest in MDA-MB-231 and BT474 cells through downregulation of Skp2 protein. J Agric Food Chem 2011; 59(12): 6765-75.
[http://dx.doi.org/10.1021/jf201096v] [PMID: 21598989]
[93]
Russo M, Spagnuolo C, Tedesco I, Bilotto S, Russo GL. The flavonoid quercetin in disease prevention and therapy: facts and fancies. Biochem Pharmacol 2012; 83(1): 6-15.
[http://dx.doi.org/10.1016/j.bcp.2011.08.010] [PMID: 21856292]
[94]
Zheng S-Y, Li Y, Jiang D, Zhao J, Ge J-F. Anticancer effect and apoptosis induction by quercetin in the human lung cancer cell line A-549. Mol Med Rep 2012; 5(3): 822-6.
[PMID: 22200874]
[95]
Chou C-C, Yang J-S, Lu H-F, et al. Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells. Arch Pharm Res 2010; 33(8): 1181-91.
[http://dx.doi.org/10.1007/s12272-010-0808-y] [PMID: 20803121]
[96]
Granado-Serrano AB, Martín MA, Bravo L, Goya L, Ramos S. Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2). J Nutr 2006; 136(11): 2715-21.
[http://dx.doi.org/10.1093/jn/136.11.2715] [PMID: 17056790]
[97]
Vidya Priyadarsini R, Senthil Murugan R, Maitreyi S, Ramalingam K, Karunagaran D, Nagini S. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition. Eur J Pharmacol 2010; 649(1-3): 84-91.
[http://dx.doi.org/10.1016/j.ejphar.2010.09.020] [PMID: 20858478]
[98]
Kim GT, Lee SH, Kim JI, Kim YM. Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner. Int J Mol Med 2014; 33(4): 863-9.
[http://dx.doi.org/10.3892/ijmm.2014.1658] [PMID: 24535669]
[99]
Gokbulut AA, Apohan E, Baran Y. Resveratrol and quercetin-induced apoptosis of human 232B4 chronic lymphocytic leukemia cells by activation of caspase-3 and cell cycle arrest. Hematology 2013; 18(3): 144-50.
[http://dx.doi.org/10.1179/1607845412Y.0000000042] [PMID: 23432965]
[100]
Priyadarsini RV, Vinothini G, Murugan RS, Manikandan P, Nagini S. The flavonoid quercetin modulates the hallmark capabilities of hamster buccal pouch tumors. Nutr Cancer 2011; 63(2): 218-26.
[http://dx.doi.org/10.1080/01635581.2011.523503] [PMID: 21294050]
[101]
Sharmila G, Bhat FA, Arunkumar R, et al. Chemopreventive effect of quercetin, a natural dietary flavonoid on prostate cancer in in vivo model. Clin Nutr 2014; 33(4): 718-26.
[http://dx.doi.org/10.1016/j.clnu.2013.08.011] [PMID: 24080313]
[102]
Kim H-S, Wannatung T, Lee S, et al. Quercetin enhances hypoxia-mediated apoptosis via direct inhibition of AMPK activity in HCT116 colon cancer. Apoptosis 2012; 17(9): 938-49.
[http://dx.doi.org/10.1007/s10495-012-0719-0] [PMID: 22684842]
[103]
Oh SJ, Kim O, Lee JS, et al. Inhibition of angiogenesis by quercetin in tamoxifen-resistant breast cancer cells. Food Chem Toxicol 2010; 48(11): 3227-34.
[http://dx.doi.org/10.1016/j.fct.2010.08.028] [PMID: 20804812]
[104]
Sun S, Gong F, Liu P, Miao Q. Metformin combined with quercetin synergistically repressed prostate cancer cells via inhibition of VEGF/PI3K/Akt signaling pathway. Gene 2018; 664: 50-7.
[http://dx.doi.org/10.1016/j.gene.2018.04.045] [PMID: 29678660]
[105]
Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer 2018; 18(7): 452-64.
[http://dx.doi.org/10.1038/s41568-018-0005-8] [PMID: 29643473]
[106]
Kachalaki S, Ebrahimi M, Mohamed Khosroshahi L, Mohammadinejad S, Baradaran B. Cancer chemoresistance; biochemical and molecular aspects: a brief overview. Eur J Pharm Sci 2016; 89: 20-30.
[http://dx.doi.org/10.1016/j.ejps.2016.03.025] [PMID: 27094906]
[107]
Wang P, Zhang K, Zhang Q, et al. Effects of quercetin on the apoptosis of the human gastric carcinoma cells. Toxicol In Vitro 2012; 26(2): 221-8.
[http://dx.doi.org/10.1016/j.tiv.2011.11.015] [PMID: 22222411]
[108]
Rashedi J, Haghjo AG, Abbasi MM, et al. Anti-Tumor Effect of Quercetin Loaded Chitosan Nanoparticles on Induced Colon Cancer in Wistar Rats. Adv Pharm Bull 2019; 9(3): 409-15.
[109]
Du H, Liu M, Yang X, Zhai G. The role of glycyrrhetinic acid modification on preparation and evaluation of quercetin-loaded chitosan-based self-aggregates. J Colloid Interface Sci 2015; 460: 87-96.
[http://dx.doi.org/10.1016/j.jcis.2015.08.049] [PMID: 26319324]
[110]
Hazra M, Dasgupta Mandal D, Mandal T, Bhuniya S, Ghosh M. Designing polymeric microparticulate drug delivery system for hydrophobic drug quercetin. Saudi Pharm J 2015; 23(4): 429-36.
[http://dx.doi.org/10.1016/j.jsps.2015.01.007] [PMID: 27134546]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 28
Year: 2019
Page: [3074 - 3086]
Pages: 13
DOI: 10.2174/1381612825666190829144508
Price: $65

Article Metrics

PDF: 22
HTML: 6
EPUB: 1
PRC: 1