The Application of the RNA Interference Technologies for KRAS: Current Status, Future Perspective and Associated Challenges

Author(s): Yu-Ting Shao, Li Ma, Tie-Hui Zhang, Tian-Rui Xu, Yuan-Chao Ye*, Ying Liu*

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 23 , 2019


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

KRAS is a member of the murine sarcoma virus oncogene-RAS gene family. It plays an important role in the prevention, diagnosis and treatment of tumors during tumor cell growth and angiogenesis. KRAS is the most commonly mutated oncogene in human cancers, such as pancreatic cancers, colon cancers, and lung cancers. Detection of KRAS gene mutation is an important indicator for tracking the status of oncogenes, highlighting the developmental prognosis of various cancers, and the efficacy of radiotherapy and chemotherapy. However, the efficacy of different patients in clinical treatment is not the same. Since RNA interference (RNAi) technologies can specifically eliminate the expression of specific genes, these technologies have been widely used in the field of gene therapy for exploring gene function, infectious diseases and malignant tumors. RNAi refers to the phenomenon of highly specific degradation of homologous mRNA induced by double-stranded RNA (dsRNA), which is highly conserved during evolution. There are three classical RNAi technologies, including siRNA, shRNA and CRISPR-Cas9 system, and a novel synthetic lethal interaction that selectively targets KRAS mutant cancers. Therefore, the implementation of individualized targeted drug therapy has become the best choice for doctors and patients. Thus, this review focuses on the current status, future perspective and associated challenges in silencing of KRAS with RNAi technology.

Keywords: KRAS, Oncogene, Cancer, RNAi technology, Gene therapy, Gene knockdown.

[1]
Shimizu, K.; Goldfarb, M.; Suard, Y.; Perucho, M.; Li, Y.; Kamata, T.; Feramisco, J.; Stavnezer, E.; Fogh, J.; Wigler, M.H. Three human transforming genes are related to the viral ras oncogenes. Proc. Natl. Acad. Sci. USA, 1983, 80(8), 2112-2116.
[http://dx.doi.org/10.1073/pnas.80.8.2112] [PMID: 6572964]
[2]
Shih, C.; Weinberg, R.A. Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell, 1982, 29(1), 161-169.
[http://dx.doi.org/10.1016/0092-8674(82)90100-3] [PMID: 6286138]
[3]
Waters, A.M.; Der, C.J. KRAS: The critical driver and therapeutic target for pancreatic cancer. Cold Spring Harb. Perspect. Med., 2018, 8(9)a031435
[http://dx.doi.org/10.1101/cshperspect.a031435] [PMID: 29229669]
[4]
Tong, J.H.M.; Lung, R.W.M.; Sin, F.M.C.; Law, P.P.Y.; Kang, W.; Chan, A.W.H.; Ma, B.B.Y.; Mak, T.W.C.; Ng, S.S.M.; To, K.F. Characterization of rare transforming KRAS mutations in sporadic colorectal cancer. Cancer Biol. Ther., 2014, 15(6), 768-776.
[http://dx.doi.org/10.4161/cbt.28550] [PMID: 24642870]
[5]
Foltran, L.; De Maglio, G.; Pella, N.; Ermacora, P.; Aprile, G.; Masiero, E.; Giovannoni, M.; Iaiza, E.; Cardellino, G.G.; Lutrino, S.E.; Mazzer, M.; Giangreco, M.; Pisa, F.E.; Pizzolitto, S.; Fasola, G. Prognostic role of KRAS, NRAS, BRAF and PIK3CA mutations in advanced colorectal cancer. Future Oncol., 2015, 11(4), 629-640.
[http://dx.doi.org/10.2217/fon.14.279] [PMID: 25686118]
[6]
Forbes, S.A.; Beare, D.; Gunasekaran, P.; Leung, K.; Bindal, N.; Boutselakis, H.; Ding, M.; Bamford, S.; Cole, C.; Ward, S.; Kok, C.Y.; Jia, M.; De, T.; Teague, J.W.; Stratton, M.R.; McDermott, U.; Campbell, P.J. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res., 2015, 43(Database issue), D805-D811.
[http://dx.doi.org/10.1093/nar/gku1075] [PMID: 25355519]
[7]
Hobbs, G.A.; Der, C.J.; Rossman, K.L. RAS isoforms and mutations in cancer at a glance. J. Cell Sci., 2016, 129(7), 1287-1292.
[http://dx.doi.org/10.1242/jcs.182873] [PMID: 26985062]
[8]
Ross, S.J.; Revenko, A.S.; Hanson, L.L.; Ellston, R.; Staniszewska, A.; Whalley, N.; Pandey, S.K.; Revill, M.; Rooney, C.; Buckett, L.K.; Klein, S.K.; Hudson, K.; Monia, B.P.; Zinda, M.; Blakey, D.C.; Lyne, P.D.; Macleod, A.R. Targeting KRAS-dependent tumors with AZD4785, a high-affinity therapeutic antisense oligonucleotide inhibitor of KRAS. Sci. Transl. Med., 2017, 9(394)eaal5253
[http://dx.doi.org/10.1126/scitranslmed.aal5253] [PMID: 28615361]
[9]
Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer, 2003, 3(1), 11-22.
[http://dx.doi.org/10.1038/nrc969] [PMID: 12509763]
[10]
Liu, L.; Wei, S. Research progress of KRAS mutation in non-small cell lung cancer. Zhongguo fei ai za zhi. Chin. J. Lung Cancer, 2018, 21(5), 419-424.
[http://dx.doi.org/[10.3779/j.issn.1009-3419.2018.05.11] [PMID: 5999922]
[11]
Lv, J.; Wang, J.; Chang, S.; Liu, M.; Pang, X. The greedy nature of mutant RAS: a boon for drug discovery targeting cancer metabolism? Acta Biochim. Biophys. Sin. (Shanghai), 2016, 48(1), 17-26.
[http://dx.doi.org/10.1093/abbs/gmv102] [PMID: 26487443]
[12]
Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669), 806-811.
[http://dx.doi.org/10.1038/35888] [PMID: 9486653]
[13]
Ambros, V. The functions of animal microRNAs. Nature, 2004, 431(7006), 350-355.
[http://dx.doi.org/10.1038/nature02871] [PMID: 15372042]
[14]
Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2), 215-233.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[15]
Cech, T.R.; Steitz, J.A. The noncoding RNA revolution-trashing old rules to forge new ones. Cell, 2014, 157(1), 77-94.
[http://dx.doi.org/10.1016/j.cell.2014.03.008] [PMID: 24679528]
[16]
Carthew, R.W.; Sontheimer, E.J. Origins and mechanisms of miRNAs and siRNAs. Cell, 2009, 136(4), 642-655.
[http://dx.doi.org/10.1016/j.cell.2009.01.035] [PMID: 19239886]
[17]
Hajiasgharzadeh, K.; Somi, M.H.; Shanehbandi, D.; Mokhtarzadeh, A.; Baradaran, B. Small interfering RNA-mediated gene suppression as a therapeutic intervention in hepatocellular carcinoma. J. Cell. Physiol., 2019, 234(4), 3263-3276.
[http://dx.doi.org/10.1002/jcp.27015] [PMID: 30362510]
[18]
Mansoori, B.; Sandoghchian Shotorbani, S.; Baradaran, B. RNA interference and its role in cancer therapy. Adv. Pharm. Bull., 2014, 4(4), 313-321.
[PMID: 25436185]
[19]
Yu, A-M.; Jian, C.; Yu, A.H.; Tu, M-J. RNA therapy: are we using the right molecules? Pharmacol. Ther., 2018, 196, 91-104.
[http://dx.doi.org/10.1016/j.pharmthera.2018.11.011 ] [PMID: 30521885]
[20]
Meister, G.; Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature, 2004, 431(7006), 343-349.
[http://dx.doi.org/10.1038/nature02873] [PMID: 15372041]
[21]
Ho, W.; Zhang, X.Q.; Xu, X. Biomaterials in siRNA Delivery: a comprehensive review. Adv. Healthc. Mater., 2016, 5(21), 2715-2731.
[http://dx.doi.org/10.1002/adhm.201600418] [PMID: 27700013]
[22]
Tomari, Y.; Zamore, P.D. Perspective: machines for RNAi. Genes Dev., 2005, 19(5), 517-529.
[http://dx.doi.org/10.1101/gad.1284105] [PMID: 15741316]
[23]
Whitehead, K.A.; Langer, R.; Anderson, D.G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov., 2009, 8(2), 129-138.
[http://dx.doi.org/10.1038/nrd2742] [PMID: 19180106]
[24]
Whitehead, K.A.; Langer, R.; Anderson, D.G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov., 2009, 8(6), 516-516.
[http://dx.doi.org/10.1038/nrd2919-c1]
[25]
Hammond, S.M.; Bernstein, E.; Beach, D.; Hannon, G.J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 2000, 404(6775), 293-296.
[http://dx.doi.org/10.1038/35005107] [PMID: 10749213]
[26]
Tolia, N.H.; Joshua-Tor, L. Slicer and the argonautes. Nat. Chem. Biol., 2007, 3(1), 36-43.
[http://dx.doi.org/10.1038/nchembio848] [PMID: 17173028]
[27]
Duan, Z.; Yu, A-M. Bioengineered non-coding RNA agent (BERA) in action. Bioengineered, 2016, 7(6), 411-417.
[http://dx.doi.org/10.1080/21655979.2016.1207011] [PMID: 27415469]
[28]
Ho, P.Y.; Yu, A-M. Bioengineering of noncoding RNAs for research agents and therapeutics. Wiley Interdiscip. Rev. RNA, 2016, 7(2), 186-197.
[http://dx.doi.org/10.1002/wrna.1324] [PMID: 26763749]
[29]
Scherr, M.; Battmer, K.; Winkler, T.; Heidenreich, O.; Ganser, A.; Eder, M. Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood, 2003, 101(4), 1566-1569.
[http://dx.doi.org/10.1182/blood-2002-06-1685] [PMID: 12393533]
[30]
Brummelkamp, T.R.; Bernards, R.; Agami, R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell, 2002, 2(3), 243-247.
[http://dx.doi.org/10.1016/S1535-6108(02)00122-8] [PMID: 12242156]
[31]
Martinez, L.A.; Naguibneva, I.; Lehrmann, H.; Vervisch, A.; Tchénio, T.; Lozano, G.; Harel-Bellan, A. Synthetic small inhibiting RNAs: efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proc. Natl. Acad. Sci. USA, 2002, 99(23), 14849-14854.
[http://dx.doi.org/10.1073/pnas.222406899] [PMID: 12403821]
[32]
Yoshinouchi, M.; Yamada, T.; Kizaki, M.; Fen, J.; Koseki, T.; Ikeda, Y.; Nishihara, T.; Yamato, K. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by E6 siRNA. Mol. Ther., 2003, 8(5), 762-768.
[http://dx.doi.org/10.1016/j.ymthe.2003.08.004] [PMID: 14599809]
[33]
Choudhury, A.; Charo, J.; Parapuram, S.K.; Hunt, R.C.; Hunt, D.M.; Seliger, B.; Kiessling, R. Small interfering RNA (siRNA) inhibits the expression of the Her2/neu gene, upregulates HLA class I and induces apoptosis of Her2/neu positive tumor cell lines. Int. J. Cancer, 2004, 108(1), 71-77.
[http://dx.doi.org/10.1002/ijc.11497] [PMID: 14618618]
[34]
Farrow, B.; Rychahou, P.; Murillo, C.; O’connor, K.L.; Iwamura, T.; Evers, B.M. Inhibition of pancreatic cancer cell growth and induction of apoptosis with novel therapies directed against protein kinase A. Surgery, 2003, 134(2), 197-205.
[http://dx.doi.org/10.1067/msy.2003.220] [PMID: 12947318]
[35]
Yagüe, E.; Higgins, C.F.; Raguz, S. Complete reversal of multidrug resistance by stable expression of small interfering RNAs targeting MDR1. Gene Ther., 2004, 11(14), 1170-1174.
[http://dx.doi.org/10.1038/sj.gt.3302269] [PMID: 15164094]
[36]
Kosciolek, B.A.; Kalantidis, K.; Tabler, M.; Rowley, P.T. Inhibition of telomerase activity in human cancer cells by RNA interference. Mol. Cancer Ther., 2003, 2(3), 209-216.
[PMID: 12657713]
[37]
Cioca, D.P.; Aoki, Y.; Kiyosawa, K. RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines. Cancer Gene Ther., 2003, 10(2), 125-133.
[http://dx.doi.org/10.1038/sj.cgt.7700544] [PMID: 12536201]
[38]
Kawasaki, H.; Taira, K. Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res., 2003, 31(2), 700-707.
[http://dx.doi.org/10.1093/nar/gkg158] [PMID: 12527779]
[39]
Li, K.; Lin, S.Y.; Brunicardi, F.C.; Seu, P. Use of RNA interference to target cyclin E-overexpressing hepatocellular carcinoma. Cancer Res., 2003, 63(13), 3593-3597.
[PMID: 12839946]
[40]
Verma, U.N.; Surabhi, R.M.; Schmaltieg, A.; Becerra, C.; Gaynor, R.B. Small interfering RNAs directed against beta-catenin inhibit the in vitro and in vivo growth of colon cancer cells. Clin. Cancer Res., 2003, 9(4), 1291-1300.
[PMID: 12684397]
[41]
Aharinejad, S.; Paulus, P.; Sioud, M.; Hofmann, M.; Zins, K.; Schäfer, R.; Stanley, E.R.; Abraham, D. Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer Res., 2004, 64(15), 5378-5384.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0961] [PMID: 15289345]
[42]
Uchida, H.; Tanaka, T.; Sasaki, K.; Kato, K.; Dehari, H.; Ito, Y.; Kobune, M.; Miyagishi, M.; Taira, K.; Tahara, H.; Hamada, H. Adenovirus-mediated transfer of siRNA against survivin induced apoptosis and attenuated tumor cell growth in vitro and in vivo. Mol. Ther., 2004, 10(1), 162-171.
[http://dx.doi.org/10.1016/j.ymthe.2004.05.006] [PMID: 15233951]
[43]
Salisbury, A.J.; Macaulay, V.M. Development of molecular agents for IGF receptor targeting. Horm. Metab. Res., 2003, 35(11-12), 843-849.
[http://dx.doi.org/10.1055/s-2004-814158] [PMID: 14710367]
[44]
Duxbury, M.S.; Ito, H.; Zinner, M.J.; Ashley, S.W.; Whang, E.E. Focal adhesion kinase gene silencing promotes anoikis and suppresses metastasis of human pancreatic adenocarcinoma cells. Surgery, 2004, 135(5), 555-562.
[http://dx.doi.org/10.1016/j.surg.2003.10.017] [PMID: 15118593]
[45]
Duxbury, M.S.; Matros, E.; Ito, H.; Zinner, M.J.; Ashley, S.W.; Whang, E.E. Systemic siRNA-mediated gene silencing: a new approach to targeted therapy of cancer. Ann. Surg., 2004, 240(4), 667-674.
[http://dx.doi.org/10.1097/01.sla.0000140755.97224.9a] [PMID: 15383794]
[46]
Filleur, S.; Courtin, A.; Ait-Si-Ali, S.; Guglielmi, J.; Merle, C.; Harel-Bellan, A.; Clézardin, P.; Cabon, F. SiRNA-mediated inhibition of vascular endothelial growth factor severely limits tumor resistance to antiangiogenic thrombospondin-1 and slows tumor vascularization and growth. Cancer Res., 2003, 63(14), 3919-3922.
[PMID: 12873985]
[47]
Takei, Y.; Kadomatsu, K.; Yuzawa, Y.; Matsuo, S.; Muramatsu, T. A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res., 2004, 64(10), 3365-3370.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2682] [PMID: 15150085]
[48]
Lakka, S.S.; Gondi, C.S.; Yanamandra, N.; Olivero, W.C.; Dinh, D.H.; Gujrati, M.; Rao, J.S. Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene, 2004, 23(27), 4681-4689.
[http://dx.doi.org/10.1038/sj.onc.1207616] [PMID: 15122332]
[49]
Singh, A.; Boldin-Adamsky, S.; Thimmulappa, R.K.; Rath, S.K.; Ashush, H.; Coulter, J.; Blackford, A.; Goodman, S.N.; Bunz, F.; Watson, W.H.; Gabrielson, E.; Feinstein, E.; Biswal, S. RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res., 2008, 68(19), 7975-7984.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1401] [PMID: 18829555]
[50]
Nakahira, S.; Nakamori, S.; Tsujie, M.; Takahashi, Y.; Okami, J.; Yoshioka, S.; Yamasaki, M.; Marubashi, S.; Takemasa, I.; Miyamoto, A.; Takeda, Y.; Nagano, H.; Dono, K.; Umeshita, K.; Sakon, M.; Monden, M. Involvement of ribonucleotide reductase M1 subunit overexpression in gemcitabine resistance of human pancreatic cancer. Int. J. Cancer, 2007, 120(6), 1355-1363.
[http://dx.doi.org/10.1002/ijc.22390] [PMID: 17131328]
[51]
McCormick, F. KRAS as a therapeutic target. Clin. Cancer Res., 2015, 21(8), 1797-1801.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2662] [PMID: 25878360]
[52]
Pang, X.; Liu, M. Defeat mutant KRAS with synthetic lethality. Small GTPases, 2017, 8(4), 212-219.
[http://dx.doi.org/10.1080/21541248.2016.1213783] [PMID: 27463838]
[53]
Keating, G.M.; Panitumumab, A. Panitumumab: a review of its use in metastatic colorectal cancer. Drugs, 2010, 70(8), 1059-1078.
[http://dx.doi.org/10.2165/11205090-000000000-00000] [PMID: 20481659]
[54]
Asati, V.; Mahapatra, D.K.; Bharti, S.K. K-Ras and its inhibitors towards personalized cancer treatment: pharmacological and structural perspectives. Eur. J. Med. Chem., 2017, 125, 299-314.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.049] [PMID: 27688185]
[55]
Bobbin, M.L.; Rossi, J.J.; Interference, R.N.A. (RNAi)-Based Therapeutics: Delivering on the Promise? Annual Review of Pharmacology and Toxicology; Insel, P.A., Ed.; , 2016, Vol. 56, pp. 103-122.
[http://dx.doi.org/10.1146/annurev-pharmtox-010715-103633] [PMID: 26738473]
[56]
Zhang, H.; Kolb, F.A.; Jaskiewicz, L.; Westhof, E.; Filipowicz, W. Single processing center models for human Dicer and bacterial RNase III. Cell, 2004, 118(1), 57-68.
[http://dx.doi.org/10.1016/j.cell.2004.06.017] [PMID: 15242644]
[57]
Macrae, I.J.; Zhou, K.; Li, F.; Repic, A.; Brooks, A.N.; Cande, W.Z.; Adams, P.D.; Doudna, J.A. Structural basis for double-stranded RNA processing by Dicer. Science, 2006, 311(5758), 195-198.
[http://dx.doi.org/10.1126/science.1121638] [PMID: 16410517]
[58]
Wang, Y.; Juranek, S.; Li, H.; Sheng, G.; Tuschl, T.; Patel, D.J. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature, 2008, 456(7224), 921-926.
[http://dx.doi.org/10.1038/nature07666] [PMID: 19092929]
[59]
Wang, Y.; Sheng, G.; Juranek, S.; Tuschl, T.; Patel, D.J. Structure of the guide-strand-containing argonaute silencing complex. Nature, 2008, 456(7219), 209-213.
[http://dx.doi.org/10.1038/nature07315] [PMID: 18754009]
[60]
Song, J.J.; Smith, S.K.; Hannon, G.J.; Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science, 2004, 305(5689), 1434-1437.
[http://dx.doi.org/10.1126/science.1102514] [PMID: 15284453]
[61]
Yuan, Y.R.; Pei, Y.; Ma, J.B.; Kuryavyi, V.; Zhadina, M.; Meister, G.; Chen, H.Y.; Dauter, Z.; Tuschl, T.; Patel, D.J. Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol. Cell, 2005, 19(3), 405-419.
[http://dx.doi.org/10.1016/j.molcel.2005.07.011] [PMID: 16061186]
[62]
Chendrimada, T.P.; Gregory, R.I.; Kumaraswamy, E.; Norman, J.; Cooch, N.; Nishikura, K.; Shiekhattar, R. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 2005, 436(7051), 740-744.
[http://dx.doi.org/10.1038/nature03868] [PMID: 15973356]
[63]
Wilson, R.C.; Tambe, A.; Kidwell, M.A.; Noland, C.L.; Schneider, C.P.; Doudna, J.A. Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis. Mol. Cell, 2015, 57(3), 397-407.
[http://dx.doi.org/10.1016/j.molcel.2014.11.030] [PMID: 25557550]
[64]
Fareh, M.; Yeom, K-H.; Haagsma, A.C.; Chauhan, S.; Heo, I.; Joo, C. TRBP ensures efficient Dicer processing of precursor microRNA in RNA-crowded environments. Nat. Commun., 2016, 7, 13694.
[http://dx.doi.org/10.1038/ncomms13694] [PMID: 27934859]
[65]
Masliah, G.; Maris, C.; König, S.L.B.; Yulikov, M.; Aeschimann, F.; Malinowska, A.L.; Mabille, J.; Weiler, J.; Holla, A.; Hunziker, J.; Meisner-Kober, N.; Schuler, B.; Jeschke, G.; Allain, F.H.T. Structural basis of siRNA recognition by TRBP double-stranded RNA binding domains. EMBO J., 2018, 37(6)e97089
[http://dx.doi.org/10.15252/embj.201797089] [PMID: 29449323]
[66]
Gregory, R.I.; Chendrimada, T.P.; Cooch, N.; Shiekhattar, R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell, 2005, 123(4), 631-640.
[http://dx.doi.org/10.1016/j.cell.2005.10.022] [PMID: 16271387]
[67]
Maniataki, E.; Mourelatos, Z. A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev., 2005, 19(24), 2979-2990.
[http://dx.doi.org/10.1101/gad.1384005] [PMID: 16357216]
[68]
MacRae, I.J.; Ma, E.; Zhou, M.; Robinson, C.V.; Doudna, J.A. In vitro reconstitution of the human RISC-loading complex. Proc. Natl. Acad. Sci. USA, 2008, 105(2), 512-517.
[http://dx.doi.org/10.1073/pnas.0710869105] [PMID: 18178619]
[69]
Golden, D.E.; Gerbasi, V.R.; Sontheimer, E.J. An inside job for siRNAs. Mol. Cell, 2008, 31(3), 309-312.
[http://dx.doi.org/10.1016/j.molcel.2008.07.008] [PMID: 18691963]
[70]
Förstemann, K.; Tomari, Y.; Du, T.; Vagin, V.V.; Denli, A.M.; Bratu, D.P.; Klattenhoff, C.; Theurkauf, W.E.; Zamore, P.D. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol., 2005, 3(7)e236
[http://dx.doi.org/10.1371/journal.pbio.0030236] [PMID: 15918770]
[71]
Jiang, F.; Ye, X.; Liu, X.; Fincher, L.; McKearin, D.; Liu, Q. Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes Dev., 2005, 19(14), 1674-1679.
[http://dx.doi.org/10.1101/gad.1334005] [PMID: 15985611]
[72]
Saito, K.; Ishizuka, A.; Siomi, H.; Siomi, M.C. Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol., 2005, 3(7)e235
[http://dx.doi.org/10.1371/journal.pbio.0030235] [PMID: 15918769]
[73]
Haigis, K.M. KRAS alleles: The devil is in the detail. Trends Cancer, 2017, 3(10), 686-697.
[http://dx.doi.org/10.1016/j.trecan.2017.08.006] [PMID: 28958387]
[74]
Titze-de-Almeida, R.; David, C.; Titze-de-Almeida, S.S. Correction to: the race of 10 synthetic RNAi-based drugs to the pharmaceutical market. Pharm. Res., 2018, 35(3), 53.
[http://dx.doi.org/10.1007/s11095-017-2335-8] [PMID: 29417239]
[75]
Zorde Khvalevsky, E.; Gabai, R.; Rachmut, I.H.; Horwitz, E.; Brunschwig, Z.; Orbach, A.; Shemi, A.; Golan, T.; Domb, A.J.; Yavin, E.; Giladi, H.; Rivkin, L.; Simerzin, A.; Eliakim, R.; Khalaileh, A.; Hubert, A.; Lahav, M.; Kopelman, Y.; Goldin, E.; Dancour, A.; Hants, Y.; Arbel-Alon, S.; Abramovitch, R.; Shemi, A.; Galun, E. Mutant KRAS is a druggable target for pancreatic cancer. Proc. Natl. Acad. Sci. USA, 2013, 110(51), 20723-20728.
[http://dx.doi.org/10.1073/pnas.1314307110] [PMID: 24297898]
[76]
Shemi, A.; Khvalevsky, E.Z.; Gabai, R.M.; Domb, A.; Barenholz, Y. Multistep, effective drug distribution within solid tumors. Oncotarget, 2015, 6(37), 39564-39577.
[http://dx.doi.org/10.18632/oncotarget.5051] [PMID: 26416413]
[77]
Ramot, Y.; Rotkopf, S.; Gabai, R.M.; Zorde Khvalevsky, E.; Muravnik, S.; Marzoli, G.A.; Domb, A.J.; Shemi, A.; Nyska, A. Preclinical safety evaluation in rats of a polymeric matrix containing an sirna drug used as a local and prolonged delivery system for pancreatic cancer therapy. Toxicol. Pathol., 2016, 44(6), 856-865.
[http://dx.doi.org/10.1177/0192623316645860] [PMID: 27147553]
[78]
Yuan, T.L.; Fellmann, C.; Lee, C-S.; Ritchie, C.D.; Thapar, V.; Lee, L.C.; Hsu, D.J.; Grace, D.; Carver, J.O.; Zuber, J.; Luo, J.; McCormick, F.; Lowe, S.W. Development of siRNA payloads to target KRAS-mutant cancer. Cancer Discov., 2014, 4(10), 1182-1197.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0900] [PMID: 25100204]
[79]
Gu, L.; Deng, Z.J.; Roy, S.; Hammond, P.T. A combination RNAi-Chemotherapy layer-by-layer nanoparticle for systemic targeting of KRAS/P53 with cisplatin to treat non-small cell lung cancer. Clin. Cancer Res., 2017, 23(23), 7312-7323.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2186] [PMID: 28912139]
[80]
Zarredar, H.; Pashapour, S.; Ansarin, K.; Khalili, M.; Baghban, R.; Farajnia, S. Combination therapy with KRAS siRNA and EGFR inhibitor AZD8931 suppresses lung cancer cell growth in vitro. J. Cell. Physiol., 2019, 234(2), 1560-1566.
[http://dx.doi.org/10.1002/jcp.27021] [PMID: 30132854]
[81]
Mou, H.; Moore, J.; Malonia, S.K.; Li, Y.; Ozata, D.M.; Hough, S.; Song, C-Q.; Smith, J.L.; Fischer, A.; Weng, Z.; Green, M.R.; Xue, W. Genetic disruption of oncogenic Kras sensitizes lung cancer cells to Fas receptor-mediated apoptosis. Proc. Natl. Acad. Sci. USA, 2017, 114(14), 3648-3653.
[http://dx.doi.org/10.1073/pnas.1620861114] [PMID: 28320962]
[82]
Bader, A.G.; Brown, D.; Winkler, M. The promise of microRNA replacement therapy. Cancer Res., 2010, 70(18), 7027-7030.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2010] [PMID: 20807816]
[83]
Yu, A-M.; Tian, Y.; Tu, M-J.; Ho, P.Y.; Jilek, J.L.; Micro, R.N.A. MicroRNA Pharmacoepigenetics: Posttranscriptional regulation mechanisms behind variable drug disposition and strategy to develop more effective therapy. Drug Metab. Dispos., 2016, 44(3), 308-319.
[http://dx.doi.org/10.1124/dmd.115.067470] [PMID: 26566807]
[84]
Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov., 2017, 16(3), 203-222.
[http://dx.doi.org/10.1038/nrd.2016.246] [PMID: 28209991]
[85]
Acunzo, M.; Romano, G.; Nigita, G.; Veneziano, D.; Fattore, L.; Laganà, A.; Zanesi, N.; Fadda, P.; Fassan, M.; Rizzotto, L.; Kladney, R.; Coppola, V.; Croce, C.M. Selective targeting of point-mutated KRAS through artificial microRNAs. Proc. Natl. Acad. Sci. USA, 2017, 114(21), E4203-E4212.
[http://dx.doi.org/10.1073/pnas.1620562114] [PMID: 28484014]
[86]
Heidel, J.D.; Liu, J.Y-C.; Yen, Y.; Zhou, B.; Heale, B.S.E.; Rossi, J.J.; Bartlett, D.W.; Davis, M.E. Potent siRNA inhibitors of ribonucleotide reductase subunit RRM2 reduce cell proliferation in vitro and in vivo. Clin. Cancer Res., 2007, 13(7), 2207-2215.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2218] [PMID: 17404105]
[87]
Heidel, J.D.; Yu, Z.; Liu, J.Y-C.; Rele, S.M.; Liang, Y.; Zeidan, R.K.; Kornbrust, D.J.; Davis, M.E. Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc. Natl. Acad. Sci. USA, 2007, 104(14), 5715-5721.
[http://dx.doi.org/10.1073/pnas.0701458104] [PMID: 17379663]
[88]
Siolas, D.; Lerner, C.; Burchard, J.; Ge, W.; Linsley, P.S.; Paddison, P.J.; Hannon, G.J.; Cleary, M.A. Synthetic shRNAs as potent RNAi triggers. Nat. Biotechnol., 2005, 23(2), 227-231.
[http://dx.doi.org/10.1038/nbt1052] [PMID: 15619616]
[89]
McAnuff, M.A.; Rettig, G.R.; Rice, K.G. Potency of siRNA versus shRNA mediated knockdown in vivo. J. Pharm. Sci., 2007, 96(11), 2922-2930.
[http://dx.doi.org/10.1002/jps.20968] [PMID: 17518360]
[90]
Lambeth, L.S.; Smith, C.A. Short hairpin RNA-mediated gene silencing. Methods Mol. Biol., 2013, 942, 205-232.
[http://dx.doi.org/10.1007/978-1-62703-119-6_12] [PMID: 23027054]
[91]
Cullen, B.R. Transcription and processing of human microRNA precursors. Mol. Cell, 2004, 16(6), 861-865.
[http://dx.doi.org/10.1016/j.molcel.2004.12.002] [PMID: 15610730]
[92]
Lee, Y.; Ahn, C.; Han, J.; Choi, H.; Kim, J.; Yim, J.; Lee, J.; Provost, P.; Rådmark, O.; Kim, S.; Kim, V.N. The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003, 425(6956), 415-419.
[http://dx.doi.org/10.1038/nature01957] [PMID: 14508493]
[93]
Zhang, H.; Kolb, F.A.; Brondani, V.; Billy, E.; Filipowicz, W. Human dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J., 2002, 21(21), 5875-5885.
[http://dx.doi.org/10.1093/emboj/cdf582] [PMID: 12411505]
[94]
Lee, Y.; Jeon, K.; Lee, J.T.; Kim, S.; Kim, V.N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J., 2002, 21(17), 4663-4670.
[http://dx.doi.org/10.1093/emboj/cdf476] [PMID: 12198168]
[95]
Yi, R.; Qin, Y.; Macara, I.G.; Cullen, B.R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev., 2003, 17(24), 3011-3016.
[http://dx.doi.org/10.1101/gad.1158803] [PMID: 14681208]
[96]
Lund, E.; Güttinger, S.; Calado, A.; Dahlberg, J.E.; Kutay, U. Nuclear export of microRNA precursors. Science, 2004, 303(5654), 95-98.
[http://dx.doi.org/10.1126/science.1090599] [PMID: 14631048]
[97]
Lee, Y.S.; Nakahara, K.; Pham, J.W.; Kim, K.; He, Z.; Sontheimer, E.J.; Carthew, R.W. Distinct roles for drosophila dicer-1 and dicer-2 in the siRNA/miRNA silencing pathways. Cell, 2004, 117(1), 69-81.
[http://dx.doi.org/10.1016/S0092-8674(04)00261-2] [PMID: 15066283]
[98]
Kutter, C.; Svoboda, P. miRNA, siRNA, piRNA: Knowns of the unknown. RNA Biol., 2008, 5(4), 181-188.
[http://dx.doi.org/10.4161/rna.7227] [PMID: 19182524]
[99]
Tong, A.W.; Zhang, Y.A.; Nemunaitis, J. Small interfering RNA for experimental cancer therapy. Curr. Opin. Mol. Ther., 2005, 7(2), 114-124.
[PMID: 15844618]
[100]
Aigner, A. Cellular delivery in vivo of siRNA-based therapeutics. Curr. Pharm. Des., 2008, 14(34), 3603-3619.
[http://dx.doi.org/10.2174/138161208786898815] [PMID: 19075737]
[101]
Tong, A.W.; Jay, C.M.; Senzer, N.; Maples, P.B.; Nemunaitis, J. Systemic therapeutic gene delivery for cancer: crafting Paris’ arrow. Curr. Gene Ther., 2009, 9(1), 45-60.
[http://dx.doi.org/10.2174/156652309787354630] [PMID: 19275571]
[102]
Gossen, M.; Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA, 1992, 89(12), 5547-5551.
[http://dx.doi.org/10.1073/pnas.89.12.5547] [PMID: 1319065]
[103]
Gupta, S.; Schoer, R.A.; Egan, J.E.; Hannon, G.J.; Mittal, V. Inducible, reversible, and stable RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA, 2004, 101(7), 1927-1932.
[http://dx.doi.org/10.1073/pnas.0306111101] [PMID: 14762164]
[104]
Dickins, R.A.; Hemann, M.T.; Zilfou, J.T.; Simpson, D.R.; Ibarra, I.; Hannon, G.J.; Lowe, S.W. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat. Genet., 2005, 37(11), 1289-1295.
[http://dx.doi.org/10.1038/ng1651] [PMID: 16200064]
[105]
Watts, J.K.; Deleavey, G.F.; Damha, M.J. Chemically modified siRNA: tools and applications. Drug Discov. Today, 2008, 13(19-20), 842-855.
[http://dx.doi.org/10.1016/j.drudis.2008.05.007] [PMID: 18614389]
[106]
Snøve, O., Jr; Rossi, J.J. Chemical modifications rescue off-target effects of RNAi. ACS Chem. Biol., 2006, 1(5), 274-276.
[http://dx.doi.org/10.1021/cb6002256] [PMID: 17163754]
[107]
Behlke, M.A. Chemical modification of siRNAs for in vivo use. Oligonucleotides, 2008, 18(4), 305-319.
[http://dx.doi.org/10.1089/oli.2008.0164] [PMID: 19025401]
[108]
Rao, D.D.; Senzer, N.; Cleary, M.A.; Nemunaitis, J. Comparative assessment of siRNA and shRNA off target effects: what is slowing clinical development. Cancer Gene Ther., 2009, 16(11), 807-809.
[http://dx.doi.org/10.1038/cgt.2009.53] [PMID: 19713999]
[109]
Frank, S.B.; Schulz, V.V.; Miranti, C.K. A streamlined method for the design and cloning of shRNAs into an optimized Dox-inducible lentiviral vector. BMC Biotechnol., 2017, 17(1), 24-29.
[http://dx.doi.org/10.1186/s12896-017-0341-x] [PMID: 28245848]
[110]
Li, C.; Ge, M.; Yin, Y.; Luo, M.; Chen, D. Silencing expression of ribosomal protein L26 and L29 by RNA interfering inhibits proliferation of human pancreatic cancer PANC-1 cells. Mol. Cell. Biochem., 2012, 370(1-2), 127-139.
[http://dx.doi.org/10.1007/s11010-012-1404-x] [PMID: 22868929]
[111]
Rao, D.D.; Luo, X.; Wang, Z.; Jay, C.M.; Brunicardi, F.C.; Maltese, W.; Manning, L.; Senzer, N.; Nemunaitis, J. KRAS mutant allele-specific expression knockdown in pancreatic cancer model with systemically delivered bi-shRNA KRAS lipoplex. PLoS One, 2018, 13(5)e0193644
[http://dx.doi.org/10.1371/journal.pone.0193644] [PMID: 29851957]
[112]
Johnson, L.; Greenbaum, D.; Cichowski, K.; Mercer, K.; Murphy, E.; Schmitt, E.; Bronson, R.T.; Umanoff, H.; Edelmann, W.; Kucherlapati, R.; Jacks, T. K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev., 1997, 11(19), 2468-2481.
[http://dx.doi.org/10.1101/gad.11.19.2468] [PMID: 9334313]
[113]
Ahmad, H.I.; Ahmad, M.J.; Asif, A.R.; Adnan, M.; Iqbal, M.K.; Mehmood, K.; Muhammad, S.A.; Bhuiyan, A.A.; Elokil, A.; Du, X.; Zhao, C.; Liu, X.; Xie, S. A review of CRISPR-based genome editing: survival, evolution and challenges. Curr. Issues Mol. Biol., 2018, 28, 47-68.
[http://dx.doi.org/10.21775/cimb.028.047] [PMID: 29428910]
[114]
Doudna, J.A.; Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014, 346(6213)1258096
[http://dx.doi.org/10.1126/science.1258096] [PMID: 25430774]
[115]
Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc., 2013, 8(11), 2281-2308.
[http://dx.doi.org/10.1038/nprot.2013.143] [PMID: 24157548]
[116]
Barrangou, R. RNA events. Cas9 targeting and the CRISPR revolution. Science, 2014, 344(6185), 707-708.
[http://dx.doi.org/10.1126/science.1252964] [PMID: 24833384]
[117]
Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; Zhang, F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121), 819-823.
[http://dx.doi.org/10.1126/science.1231143] [PMID: 23287718]
[118]
Makarova, K.S.; Aravind, L.; Grishin, N.V.; Rogozin, I.B.; Koonin, E.V. A DNA repair system specific for thermophilic archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res., 2002, 30(2), 482-496.
[http://dx.doi.org/10.1093/nar/30.2.482] [PMID: 11788711]
[119]
Bolotin, A.; Quinquis, B.; Sorokin, A.; Ehrlich, S.D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 2005, 151(Pt 8), 2551-2561.
[http://dx.doi.org/10.1099/mic.0.28048-0] [PMID: 16079334]
[120]
Haft, D.H.; Selengut, J.; Mongodin, E.F.; Nelson, K.E. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLOS Comput. Biol., 2005, 1(6)e60
[http://dx.doi.org/10.1371/journal.pcbi.0010060] [PMID: 16292354]
[121]
Makarova, K.S.; Grishin, N.V.; Shabalina, S.A.; Wolf, Y.I.; Koonin, E.V. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct, 2006, 1, 7.
[http://dx.doi.org/10.1186/1745-6150-1-7] [PMID: 16545108]
[122]
Deltcheva, E.; Chylinski, K.; Sharma, C.M.; Gonzales, K.; Chao, Y.; Pirzada, Z.A.; Eckert, M.R.; Vogel, J.; Charpentier, E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011, 471(7340), 602-607.
[http://dx.doi.org/10.1038/nature09886] [PMID: 21455174]
[123]
Sternberg, S.H.; Redding, S.; Jinek, M.; Greene, E.C.; Doudna, J.A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 2014, 507(7490), 62-67.
[http://dx.doi.org/10.1038/nature13011] [PMID: 24476820]
[124]
Anders, C.; Niewoehner, O.; Duerst, A.; Jinek, M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature, 2014, 513(7519), 569-573.
[http://dx.doi.org/10.1038/nature13579] [PMID: 25079318]
[125]
Szczelkun, M.D.; Tikhomirova, M.S.; Sinkunas, T.; Gasiunas, G.; Karvelis, T.; Pschera, P.; Siksnys, V.; Seidel, R. Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proc. Natl. Acad. Sci. USA, 2014, 111(27), 9798-9803.
[http://dx.doi.org/10.1073/pnas.1402597111] [PMID: 24912165]
[126]
Choi, P.S.; Meyerson, M. Targeted genomic rearrangements using CRISPR/Cas technology. Nat. Commun., 2014, 5, 3728.
[http://dx.doi.org/10.1038/ncomms4728] [PMID: 24759083]
[127]
Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096), 816-821.
[http://dx.doi.org/10.1126/science.1225829] [PMID: 22745249]
[128]
Gasiunas, G.; Barrangou, R.; Horvath, P.; Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA, 2012, 109(39), E2579-E2586.
[http://dx.doi.org/10.1073/pnas.1208507109] [PMID: 22949671]
[129]
Qi, L.S.; Larson, M.H.; Gilbert, L.A.; Doudna, J.A.; Weissman, J.S.; Arkin, A.P.; Lim, W.A. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013, 152(5), 1173-1183.
[http://dx.doi.org/10.1016/j.cell.2013.02.022] [PMID: 23452860]
[130]
Kim, W.; Lee, S.; Kim, H.S.; Song, M.; Cha, Y.H.; Kim, Y-H.; Shin, J.; Lee, E-S.; Joo, Y.; Song, J.J.; Choi, E.J.; Choi, J.W.; Lee, J.; Kang, M.; Yook, J.I.; Lee, M.G.; Kim, Y-S.; Paik, S.; Kim, H.H. Targeting mutant KRAS with CRISPR-Cas9 controls tumor growth. Genome Res., 2018, 28(3), 374-382.
[http://dx.doi.org/10.1101/gr.223891.117] [PMID: 29326299]
[131]
Abudayyeh, O.O.; Gootenberg, J.S.; Konermann, S.; Joung, J.; Slaymaker, I.M.; Cox, D.B.T.; Shmakov, S.; Makarova, K.S.; Semenova, E.; Minakhin, L.; Severinov, K.; Regev, A.; Lander, E.S.; Koonin, E.V.; Zhang, F. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 2016, 353(6299)aaf5573
[http://dx.doi.org/10.1126/science.aaf5573] [PMID: 27256883]
[132]
Gootenberg, J.S.; Abudayyeh, O.O.; Lee, J.W.; Essletzbichler, P.; Dy, A.J.; Joung, J.; Verdine, V.; Donghia, N.; Daringer, N.M.; Freije, C.A.; Myhrvold, C.; Bhattacharyya, R.P.; Livny, J.; Regev, A.; Koonin, E.V.; Hung, D.T.; Sabeti, P.C.; Collins, J.J.; Zhang, F. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 2017, 356(6336), 438-442.
[http://dx.doi.org/10.1126/science.aam9321] [PMID: 28408723]
[133]
East-Seletsky, A.; O’Connell, M.R.; Knight, S.C.; Burstein, D.; Cate, J.H.D.; Tjian, R.; Doudna, J.A. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature, 2016, 538(7624), 270-273.
[http://dx.doi.org/10.1038/nature19802] [PMID: 27669025]
[134]
Liu, L.; Li, X.; Wang, J.; Wang, M.; Chen, P.; Yin, M.; Li, J.; Sheng, G.; Wang, Y. Two distant catalytic sites are responsible for C2c2 RNase activities. Cell, 2017, 168(1-2) 121-134, e12.
[http://dx.doi.org/10.1016/j.cell.2016.12.031] [PMID: 28086085]
[135]
East-Seletsky, A.; O’Connell, M.R.; Burstein, D.; Knott, G.J.; Doudna, J.A. RNA targeting by functionally orthogonal type VI-A CRISPR-Cas enzymes. Mol. Cell, 2017, 66(3), 373-383.
[http://dx.doi.org/10.1016/j.molcel.2017.04.008] [PMID: 28475872]
[136]
Liu, L.; Li, X.; Ma, J.; Li, Z.; You, L.; Wang, J.; Wang, M.; Zhang, X.; Wang, Y. The molecular architecture for RNA-guided RNA cleavage by cas13a. Cell, 2017, 170(4), 714-726.e10.
[http://dx.doi.org/10.1016/j.cell.2017.06.050] [PMID: 28757251]
[137]
Zhao, X.; Liu, L.; Lang, J.; Cheng, K.; Wang, Y.; Li, X.; Shi, J.; Wang, Y.; Nie, G.A. CRISPR-Cas13a system for efficient and specific therapeutic targeting of mutant KRAS for pancreatic cancer treatment. Cancer Lett., 2018, 431, 171-181.
[http://dx.doi.org/10.1016/j.canlet.2018.05.042] [PMID: 29870774]
[138]
Cox, D.B.T.; Gootenberg, J.S.; Abudayyeh, O.O.; Franklin, B.; Kellner, M.J.; Joung, J.; Zhang, F. RNA editing with CRISPR-Cas13. Science, 2017, 358(6366), 1019-1027.
[http://dx.doi.org/10.1126/science.aaq0180] [PMID: 29070703]
[139]
Abudayyeh, O.O.; Gootenberg, J.S.; Essletzbichler, P.; Han, S.; Joung, J.; Belanto, J.J.; Verdine, V.; Cox, D.B.T.; Kellner, M.J.; Regev, A.; Lander, E.S.; Voytas, D.F.; Ting, A.Y.; Zhang, F. RNA targeting with CRISPR-Cas13. Nature, 2017, 550(7675), 280-284.
[http://dx.doi.org/10.1038/nature24049] [PMID: 28976959]
[140]
Das, M.; Musetti, S.; Huang, L. RNA interference-based cancer drugs: The roadblocks, and the “Delivery” of the promise. Nucl Acid Ther., 2019, 29(2), 61-66.
[141]
Kacsinta, A.D.; Dowdy, S.F. Current views on inducing synthetic lethal RNAi responses in the treatment of cancer. Expert Opin. Biol. Ther., 2016, 16(2), 161-172.
[http://dx.doi.org/10.1517/14712598.2016.1110141] [PMID: 26630128]
[142]
Scholl, C.; Fröhling, S.; Dunn, I.F.; Schinzel, A.C.; Barbie, D.A.; Kim, S.Y.; Silver, S.J.; Tamayo, P.; Wadlow, R.C.; Ramaswamy, S.; Döhner, K.; Bullinger, L.; Sandy, P.; Boehm, J.S.; Root, D.E.; Jacks, T.; Hahn, W.C.; Gilliland, D.G. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell, 2009, 137(5), 821-834.
[http://dx.doi.org/10.1016/j.cell.2009.03.017] [PMID: 19490892]
[143]
Luo, J.; Emanuele, M.J.; Li, D.; Creighton, C.J.; Schlabach, M.R.; Westbrook, T.F.; Wong, K-K.; Elledge, S.J. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell, 2009, 137(5), 835-848.
[http://dx.doi.org/10.1016/j.cell.2009.05.006] [PMID: 19490893]
[144]
Barbie, D.A.; Tamayo, P.; Boehm, J.S.; Kim, S.Y.; Moody, S.E.; Dunn, I.F.; Schinzel, A.C.; Sandy, P.; Meylan, E.; Scholl, C.; Fröhling, S.; Chan, E.M.; Sos, M.L.; Michel, K.; Mermel, C.; Silver, S.J.; Weir, B.A.; Reiling, J.H.; Sheng, Q.; Gupta, P.B.; Wadlow, R.C.; Le, H.; Hoersch, S.; Wittner, B.S.; Ramaswamy, S.; Livingston, D.M.; Sabatini, D.M.; Meyerson, M.; Thomas, R.K.; Lander, E.S.; Mesirov, J.P.; Root, D.E.; Gilliland, D.G.; Jacks, T.; Hahn, W.C. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 2009, 462(7269), 108-112.
[http://dx.doi.org/10.1038/nature08460] [PMID: 19847166]
[145]
Wang, Y.; Ngo, V.N.; Marani, M.; Yang, Y.; Wright, G.; Staudt, L.M.; Downward, J. Critical role for transcriptional repressor Snail2 in transformation by oncogenic RAS in colorectal carcinoma cells. Oncogene, 2010, 29(33), 4658-4670.
[http://dx.doi.org/10.1038/onc.2010.218] [PMID: 20562906]
[146]
Singh, A.; Sweeney, M.F.; Yu, M.; Burger, A.; Greninger, P.; Benes, C.; Haber, D.A.; Settleman, J. TAK1 inhibition promotes apoptosis in KRAS-dependent colon cancers. Cell, 2012, 148(4), 639-650.
[http://dx.doi.org/10.1016/j.cell.2011.12.033] [PMID: 22341439]
[147]
Kumar, M.S.; Hancock, D.C. Molinaarcas, M.; Steckel, M.; East, P.; Diefenbacher, M.; ArmenterosMonterroso, E.; Lassailly, F.; Matthews, N.; Nye, E., The GATA2 transcriptional network is requisite for RAS oncogene-driven non-small cell lung. Cancer Cell, 2012, 149(3), 642-655.
[148]
Corcoran, R.B.; Cheng, K.A.; Hata, A.N.; Faber, A.C.; Ebi, H.; Coffee, E.M.; Greninger, P.; Brown, R.D.; Godfrey, J.T.; Cohoon, T.J.; Song, Y.; Lifshits, E.; Hung, K.E.; Shioda, T.; Dias-Santagata, D.; Singh, A.; Settleman, J.; Benes, C.H.; Mino-Kenudson, M.; Wong, K.K.; Engelman, J.A. Synthetic lethal interaction of combined BCL-XL and MEK inhibition promotes tumor regressions in KRAS mutant cancer models. Cancer Cell, 2013, 23(1), 121-128.
[http://dx.doi.org/10.1016/j.ccr.2012.11.007] [PMID: 23245996]
[149]
Costa-Cabral, S.; Brough, R.; Konde, A.; Aarts, M.; Campbell, J.; Marinari, E.; Riffell, J.; Bardelli, A.; Torrance, C.; Lord, C.J.; Ashworth, A. CDK1 is a synthetic lethal target for KRAS mutant tumours. PLoS One, 2016, 11(2)e0149099
[http://dx.doi.org/10.1371/journal.pone.0149099] [PMID: 26881434]
[150]
Bessis, N. GarciaCozar, F.J.; Boissier, M.C. Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther., 2004, 11(Suppl. 1), S10-S17.
[http://dx.doi.org/10.1038/sj.gt.3302364] [PMID: 15454952]
[151]
Baum, C.; Kustikova, O.; Modlich, U.; Li, Z.; Fehse, B. Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum. Gene Ther., 2006, 17(3), 253-263.
[http://dx.doi.org/10.1089/hum.2006.17.253] [PMID: 16544975]
[152]
Waehler, R.; Russell, S.J.; Curiel, D.T. Engineering targeted viral vectors for gene therapy. Nat. Rev. Genet., 2007, 8(8), 573-587.
[http://dx.doi.org/10.1038/nrg2141] [PMID: 17607305]
[153]
Grimm, D.; Streetz, K.L.; Jopling, C.L.; Storm, T.A.; Pandey, K.; Davis, C.R.; Marion, P.; Salazar, F.; Kay, M.A. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature, 2006, 441(7092), 537-541.
[http://dx.doi.org/10.1038/nature04791] [PMID: 16724069]
[154]
Valdmanis, P.N.; Kay, M.A. Future of rAAV gene therapy: platform for RNAi, gene editing, and beyond. Hum. Gene Ther., 2017, 28(4), 361-372.
[http://dx.doi.org/10.1089/hum.2016.171] [PMID: 28073291]
[155]
Zuckerman, J.E.; Davis, M.E. Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat. Rev. Drug Discov., 2015, 14(12), 843-856.
[http://dx.doi.org/10.1038/nrd4685] [PMID: 26567702]
[156]
Judge, A.D.; Sood, V.; Shaw, J.R.; Fang, D.; McClintock, K.; MacLachlan, I. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol., 2005, 23(4), 457-462.
[http://dx.doi.org/10.1038/nbt1081] [PMID: 15778705]
[157]
Akhtar, S.; Benter, I. Toxicogenomics of non-viral drug delivery systems for RNAi: potential impact on siRNA-mediated gene silencing activity and specificity. Adv. Drug Deliv. Rev., 2007, 59(2-3), 164-182.
[http://dx.doi.org/10.1016/j.addr.2007.03.010] [PMID: 17481774]
[158]
Pecot, C.V.; Wu, S.Y.; Bellister, S.; Filant, J.; Rupaimoole, R.; Hisamatsu, T.; Bhattacharya, R.; Maharaj, A.; Azam, S.; Rodriguez-Aguayo, C.; Nagaraja, A.S.; Morelli, M.P.; Gharpure, K.M.; Waugh, T.A.; Gonzalez-Villasana, V.; Zand, B.; Dalton, H.J.; Kopetz, S.; Lopez-Berestein, G.; Ellis, L.M.; Sood, A.K. Therapeutic silencing of KRAS using systemically delivered siRNAs. Mol. Cancer Ther., 2014, 13(12), 2876-2885.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0074] [PMID: 25281617]
[159]
Srikar, R.; Suresh, D.; Zambre, A.; Taylor, K.; Chapman, S.; Leevy, M.; Upendran, A.; Kannan, R. Targeted nanoconjugate co-delivering siRNA and tyrosine kinase inhibitor to KRAS mutant NSCLC dissociates GAB1-SHP2 post oncogene knockdown. Sci. Rep., 2016, 6, 30245-30255.
[http://dx.doi.org/10.1038/srep30245] [PMID: 27530552]
[160]
Yin, F.; Yang, C.; Wang, Q.; Zeng, S.; Hu, R.; Lin, G.; Tian, J.; Hu, S.; Lan, R.F.; Yoon, H.S.; Lu, F.; Wang, K.; Yong, K-T. A light-driven therapy of pancreatic adenocarcinoma using gold nanorods-based nanocarriers for co-delivery of doxorubicin and siRNA. Theranostics, 2015, 5(8), 818-833.
[http://dx.doi.org/10.7150/thno.11335] [PMID: 26000055]
[161]
Yin, F.; Hu, K.; Chen, Y.; Yu, M.; Wang, D.; Wang, Q.; Yong, K-T.; Lu, F.; Liang, Y.; Li, Z. SiRNA delivery with PEGylated graphene oxide nanosheets for combined photothermal and genetherapy for pancreatic cancer. Theranostics, 2017, 7(5), 1133-1148.
[http://dx.doi.org/10.7150/thno.17841] [PMID: 28435453]
[162]
Akashi, H.; Miyagishi, M.; Yokota, T.; Watanabe, T.; Hino, T.; Nishina, K.; Kohara, M.; Taira, K. Escape from the interferon response associated with RNA interference using vectors that encode long modified hairpin-RNA. Mol. Biosyst., 2005, 1(5-6), 382-390.
[http://dx.doi.org/10.1039/b510159j] [PMID: 16881007]
[163]
Bauer, M.; Kinkl, N.; Meixner, A.; Kremmer, E.; Riemenschneider, M.; Förstl, H.; Gasser, T.; Ueffing, M. Prevention of interferon-stimulated gene expression using microRNA-designed hairpins. Gene Ther., 2009, 16(1), 142-147.
[http://dx.doi.org/10.1038/gt.2008.123] [PMID: 18701917]
[164]
Sioud, M. Single-stranded small interfering RNA are more immunostimulatory than their double-stranded counterparts: a central role for 2′-hydroxyl uridines in immune responses. Eur. J. Immunol., 2006, 36(5), 1222-1230.
[http://dx.doi.org/10.1002/eji.200535708] [PMID: 16609928]
[165]
Layzer, J.M.; McCaffrey, A.P.; Tanner, A.K.; Huang, Z.; Kay, M.A.; Sullenger, B.A. In vivo activity of nuclease-resistant siRNAs. RNA, 2004, 10(5), 766-771.
[http://dx.doi.org/10.1261/rna.5239604] [PMID: 15100431]
[166]
Karikó, K.; Buckstein, M.; Ni, H.; Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity, 2005, 23(2), 165-175.
[http://dx.doi.org/10.1016/j.immuni.2005.06.008] [PMID: 16111635]
[167]
Springfeld, C.; Jager, D.; Buchler, M.W.; Strobel, O.; Hackert, T.; Palmer, D.H.; Neoptolemos, J.P. Chemotherapy for pancreatic cancer. Presse Med., 2019, 48(3), E159-E174.
[168]
Golan, T.; Hubert, A.; Shemi, A.; Segal, A.; Dancour, A.; Khvalevsky, E.Z.; Ben-David, E.; Raskin, S.; Goldes, Y.; Inbar, Y.; Lahav, M.; Domb, A.; Galun, E. A phase I trial of a local delivery of siRNA against k-ras in combination with chemotherapy for locally advanced pancreatic adenocarcinoma. J. Clin. Oncol., 2013, 31(15), 4037.
[http://dx.doi.org/10.1200/jco.2013.31.15_suppl.4037]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 23
Year: 2019
Published on: 15 November, 2019
Page: [2143 - 2157]
Pages: 15
DOI: 10.2174/1568026619666190828162217
Price: $65

Article Metrics

PDF: 46
HTML: 4