Monitoring of Energy Metabolism by Organic Acid Profiling Analysis in Plasma of Type 2 Diabetic Mice

Author(s): Hae-In Lee, Chan Seo, Man-Jeong Paik, Mi-Kyung Lee*

Journal Name: Current Metabolomics and Systems Biology
Formerly Current Metabolomics

Volume 7 , Issue 1 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Objective: This study was conducted to investigate energy metabolism based on changes in organic acids in diabetes and to establish a correlation between metabolites or bone microarchitecture and the glucose index in type 2 diabetic mice.

Methods: Seven-week-old male C57BL/6 mice were randomly divided into a non-diabetic group and a diabetic group. The diabetic group was fed a high-fat diet (HFD) that induced insulin resistance for 5 weeks. Afterwards, diabetes was induced by a single streptozotocin injection. Both the groups were fed a normal diet and HFD diet for 9 weeks.

Results: The fasting blood glucose level glycosylated hemoglobin (HbA1c) significantly increased in diabetic mice. Bone-alkaline phosphatase activity decreased in the diabetic group. Diabetes increased the levels of ketone bodies, including 3-hydroxybutyric, acetoacetic and butyric acid, whereas it decreased Krebs cycle components, including succinic acid and malic acid, as well as levels of glycolytic products, including lactic acid. Diabetes also induced a shortage of trabecular bone mineral density (BMD) by the regulation of trabecular morphometric parameters in the femur and tibia. Correlation analysis indicated that BMD, Krebs cycle components and lactic acid levels were negatively correlated with HbA1c, whereas ketone bodies were positively correlated with HbA1c.

Conclusion: This research suggested that uncontrolled HbA1c can affect bone loss, production of ketone bodies and utilization of glucose metabolites for energy production in type 2 diabetes.

Keywords: Diabetes, organic acid, profiling analysis, HbA1c, ketone bodies, bone.

[1]
Korean Diabetes Association Diabetes fact sheet in Korea 2016.,. 2018.
[2]
Shi, B.Y. The importance and strategy of diabetes prevention. Chronic Dis. Transl. Med., 2016, 2(4), 204-207.
[http://dx.doi.org/10.1016/j.cdtm.2016.11.013] [PMID: 29063043]
[3]
Zheng, Y.; Hu, F.B. Comprehensive metabolomic profiling of type 2 diabetes. Clin. Chem., 2015, 61(3), 453-455.
[http://dx.doi.org/10.1373/clinchem.2014.235986] [PMID: 25595438]
[4]
Jenkinson, C.P.; Göring, H.H.; Arya, R.; Blangero, J.; Duggirala, R.; DeFronzo, R.A. Transcriptomics in type 2 diabetes: Bridging the gap between genotype and phenotype. Genom. Data, 2015, 8, 25-36.
[http://dx.doi.org/10.1016/j.gdata.2015.12.001] [PMID: 27114903]
[5]
Friedrich, N. Metabolomics in diabetes research. J. Endocrinol., 2012, 215(1), 29-42.
[http://dx.doi.org/10.1530/JOE-12-0120] [PMID: 22718433]
[6]
López-Villar, E.; Martos-Moreno, G.Á.; Chowen, J.A.; Okada, S.; Kopchick, J.J.; Argente, J. A proteomic approach to obesity and type 2 diabetes. J. Cell. Mol. Med., 2015, 19(7), 1455-1470.
[http://dx.doi.org/10.1111/jcmm.12600] [PMID: 25960181]
[7]
Padberg, I.; Peter, E.; González-Maldonado, S.; Witt, H.; Mueller, M.; Weis, T.; Bethan, B.; Liebenberg, V.; Wiemer, J.; Katus, H.A.; Rein, D.; Schatz, P. A new metabolomic signature in type-2 diabetes mellitus and its pathophysiology. PLoS One, 2014, 9(1)e85082
[http://dx.doi.org/10.1371/journal.pone.0085082] [PMID: 24465478]
[8]
Bénit, P.; Letouzé, E.; Rak, M.; Aubry, L.; Burnichon, N.; Favier, J.; Gimenez-Roqueplo, A.P.; Rustin, P. Unsuspected task for an old team: succinate, fumarate and other Krebs cycle acids in metabolic remodeling. Biochim. Biophys. Acta, 2014, 1837(8), 1330-1337.
[http://dx.doi.org/10.1016/j.bbabio.2014.03.013] [PMID: 24699309]
[9]
Wang, T.J.; Ngo, D.; Psychogios, N.; Dejam, A.; Larson, M.G.; Vasan, R.S.; Ghorbani, A.; O’Sullivan, J.; Cheng, S.; Rhee, E.P.; Sinha, S.; McCabe, E.; Fox, C.S.; O’Donnell, C.J.; Ho, J.E.; Florez, J.C.; Magnusson, M.; Pierce, K.A.; Souza, A.L.; Yu, Y.; Carter, C.; Light, P.E.; Melander, O.; Clish, C.B.; Gerszten, R.E. 2-Aminoadipic acid is a biomarker for diabetes risk. J. Clin. Invest., 2013, 123(10), 4309-4317.
[http://dx.doi.org/10.1172/JCI64801] [PMID: 24091325]
[10]
Moseley, K.F. Type 2 diabetes and bone fractures. Curr. Opin. Endocrinol. Diabetes Obes., 2012, 19(2), 128-135.
[http://dx.doi.org/10.1097/MED.0b013e328350a6e1] [PMID: 22262002]
[11]
Sharifi, F.; Ahmadimoghadam, N.; Mousavinasab, N. The relationship between type 2 diabetes mellitus and bone density in postmenopausal women. Int. J. Endocrinol. Metab., 2006, 2006(3, Summer), 117-122.
[12]
Kurra, S.; Siris, E. Diabetes and bone health: the relationship between diabetes and osteoporosis-associated fractures. Diabetes Metab. Res. Rev., 2011, 27(5), 430-435.
[http://dx.doi.org/10.1002/dmrr.1197] [PMID: 21432981]
[13]
Hofbauer, L.C.; Brueck, C.C.; Singh, S.K.; Dobnig, H. Osteoporosis in patients with diabetes mellitus. J. Bone Miner. Res., 2007, 22(9), 1317-1328.
[http://dx.doi.org/10.1359/jbmr.070510] [PMID: 17501667]
[14]
Leidig-Bruckner, G.; Grobholz, S.; Bruckner, T.; Scheidt-Nave, C.; Nawroth, P.; Schneider, J.G. Prevalence and determinants of osteoporosis in patients with type 1 and type 2 diabetes mellitus. BMC Endocr. Disord., 2014, 14(1), 33.
[http://dx.doi.org/10.1186/1472-6823-14-33] [PMID: 24721668]
[15]
Gerdhem, P.; Isaksson, A.; Åkesson, K.; Obrant, K.J. Increased bone density and decreased bone turnover, but no evident alteration of fracture susceptibility in elderly women with diabetes mellitus. Osteoporos. Int., 2005, 16(12), 1506-1512.
[http://dx.doi.org/10.1007/s00198-005-1877-5] [PMID: 15824889]
[16]
Hoc, A. Committee on standards for nutritional studies: report of the American Institute of Nutrition. J. Nutr., 1977, 107(15), 1340-1348.
[17]
Paik, M.J.; Kim, K.R. Sequential ethoxycarbonylation, methoximation and tert-butyldimethylsilylation for simultaneous determination of amino acids and carboxylic acids by dual-column gas chromatography. J. Chromatogr. A, 2004, 1034(1-2), 13-23.
[http://dx.doi.org/10.1016/j.chroma.2004.02.032] [PMID: 15116910]
[18]
Paik, M.J.; Lee, H.J.; Kim, K.R. Simultaneous retention index analysis of urinary amino acids and carboxylic acids for graphic recognition of abnormal state. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 821(1), 94-104.
[http://dx.doi.org/10.1016/j.jchromb.2005.04.011] [PMID: 15894518]
[19]
Seo, C.; Park, M.; Choi, B.; Lee, S.; Paik, M. Metabolomic analysis of urinary organic acids following intraperitoneal injection with γ-hydroxybutyric acid in rats. Metabolomics, 2016, 12(12), 190.
[http://dx.doi.org/10.1007/s11306-016-1125-3]
[20]
Paik, M.J.; Ahn, Y.H.; Lee, P.H.; Kang, H.; Park, C.B.; Choi, S.; Lee, G. Polyamine patterns in the cerebrospinal fluid of patients with Parkinson’s disease and multiple system atrophy. Clin. Chim. Acta, 2010, 411(19-20), 1532-1535.
[http://dx.doi.org/10.1016/j.cca.2010.05.034] [PMID: 20515677]
[21]
Lee, J.H.; Lee, H.J.; Yang, M.; Moon, C.; Kim, J.C.; Bae, C.S.; Jo, S.K.; Jang, J.S.; Kim, S.H. Effect of Korean Red Ginseng on radiation-induced bone loss in C3H/HeN mice. J. Ginseng Res., 2013, 37(4), 435-441.
[http://dx.doi.org/10.5142/jgr.2013.37.435] [PMID: 24233384]
[22]
Avanesov, A.S.; Ma, S.; Pierce, K.A.; Yim, S.H.; Lee, B.C.; Clish, C.B.; Gladyshev, V.N. Age- and diet-associated metabolome remodeling characterizes the aging process driven by damage accumulation. eLife, 2014, 3e02077
[http://dx.doi.org/10.7554/eLife.02077] [PMID: 24843015]
[23]
Tsoukalas, D.; Alegakis, A.; Fragkiadaki, P.; Papakonstantinou, E.; Nikitovic, D.; Karataraki, A.; Nosyrev, A.E.; Papadakis, E.G.; Spandidos, D.A.; Drakoulis, N.; Tsatsakis, A.M. Application of metabolomics: Focus on the quantification of organic acids in healthy adults. Int. J. Mol. Med., 2017, 40(1), 112-120.
[http://dx.doi.org/10.3892/ijmm.2017.2983] [PMID: 28498405]
[24]
Yamasaki, M.; Hasegawa, S.; Imai, M.; Takahashi, N.; Fukui, T. High-fat diet-induced obesity stimulates ketone body utilization in osteoclasts of the mouse bone. Biochem. Biophys. Res. Commun., 2016, 473(2), 654-661.
[http://dx.doi.org/10.1016/j.bbrc.2016.03.115] [PMID: 27021680]
[25]
Yared, Z.; Chiasson, J.L. Ketoacidosis and the hyperosmolar hyperglycemic state in adult diabetic patients. Diagnosis and treatment. Minerva Med., 2003, 94(6), 409-418.
[PMID: 14976469]
[26]
Gaster, M. Reduced TCA flux in diabetic myotubes: determined by single defects? Biochem. Biophys. Res. Commun., 2012, 2012
[http://dx.doi.org/10.1155/2012/716056]
[27]
Pari, L.; Saravanan, R. Beneficial effect of succinic acid monoethyl ester on erythrocyte membrane bound enzymes and antioxidant status in streptozotocin-nicotinamide induced type 2 diabetes. Chem. Biol. Interact., 2007, 169(1), 15-24.
[http://dx.doi.org/10.1016/j.cbi.2007.04.010] [PMID: 17537413]
[28]
Alarcon, C.; Wicksteed, B.; Prentki, M.; Corkey, B.E.; Rhodes, C.J. Succinate is a preferential metabolic stimulus-coupling signal for glucose-induced proinsulin biosynthesis translation. Diabetes, 2002, 51(8), 2496-2504.
[http://dx.doi.org/10.2337/diabetes.51.8.2496] [PMID: 12145163]
[29]
Legrand, E.; Chappard, D.; Pascaretti, C.; Duquenne, M.; Krebs, S.; Rohmer, V.; Basle, M.F.; Audran, M. Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J. Bone Miner. Res., 2000, 15(1), 13-19.
[http://dx.doi.org/10.1359/jbmr.2000.15.1.13] [PMID: 10646109]
[30]
Ma, B.; Zhang, Q.; Wu, D.; Wang, Y.L.; Hu, Y.Y.; Cheng, Y.P.; Yang, Z.D.; Zheng, Y.Y.; Ying, H.J. Strontium fructose 1,6-diphosphate prevents bone loss in a rat model of postmenopausal osteoporosis via the OPG/RANKL/RANK pathway. Acta Pharmacol. Sin., 2012, 33(4), 479-489.
[http://dx.doi.org/10.1038/aps.2011.177] [PMID: 22426695]
[31]
Xue, L.; Wang, Y.; Jiang, Y.; Han, T.; Nie, Y.; Zhao, L.; Zhang, Q.; Qin, L. Comparative effects of er-xian decoction, epimedium herbs, and icariin with estrogen on bone and reproductive tissue in ovariectomized rats. Evid. Based Complement Alternat. Med.,, 2012, 2012
[32]
Zhu, B.; Bu, L.; Zhang, M.; Gusdon, A.M.; Zheng, L.; Rampersad, S.; Li, J.; Qu, S. HbA1c as a Screening tool for Ketosis in Patients with Type 2 Diabetes Mellitus. Sci. Rep., 2016, 6, 39687.
[http://dx.doi.org/10.1038/srep39687] [PMID: 28009017]
[33]
Ma, L.; Oei, L.; Jiang, L.; Estrada, K.; Chen, H.; Wang, Z.; Yu, Q.; Zillikens, M.C.; Gao, X.; Rivadeneira, F. Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies. Eur. J. Epidemiol., 2012, 27(5), 319-332.
[http://dx.doi.org/10.1007/s10654-012-9674-x] [PMID: 22451239]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 7
ISSUE: 1
Year: 2020
Published on: 05 September, 2020
Page: [42 - 50]
Pages: 9
DOI: 10.2174/2666338407666190828155646

Article Metrics

PDF: 17
HTML: 1