Microwave-assisted One-pot Synthesis of Amide Bond using WEB

Author(s): Kantharaju Kamanna*, S.Y. Khatavi, P.B. Hiremath

Journal Name: Current Microwave Chemistry

Volume 7 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Background: Amide bond plays a key role in medicinal chemistry, and the analysis of bioactive molecular database revealed that the carboxamide group appears in more than 25% of the existing database drugs. Typically amide bonds are formed from the union of carboxylic acid and amine; however, the product formation does not occur spontaneously. Several synthetic methods have been reported for amide bond formation in literature. Present work demonstrated simple and eco-friendly amide bond formation using carboxylic acid and primary amines through in situ generation of O-acylurea. The reaction was found to be more efficient, faster reaction rate; simple work-up gave pure compound isolation in moderate to excellent yield using microwave irradiation as compared to conventional heating.

Methods: Developed one-pot synthesis of amide compounds using agro-waste derived greener catalyst under microwave irradiation.

Results: Twenty amide bond containing organic compounds are synthesized from carboxylic acid with primary amine catalyzed by agro-waste derived medium under microwave irradiation. First, the reaction involved carboxylic acid activation using EDC.HCl, which is the required base for the neutralization and coupling. The method employed natural agro-waste derived from banana peel ash (WEB) for the coupling gave target amide product without the use of an external organic or inorganic base.

Conclusion: In the present work, we demonstrated that agro-waste extract is an alternative greener catalytic medium for the condensation of organic carboxylic acid and primary amine under microwave irradiation. The method found several advantages compared to reported methods like solventfree, non-toxic, cheaper catalyst, and simple reaction condition. The final isolated product achieved chromatographically pure by simple recrystallization and did not require further purification.

Keywords: Water extraction of banana, ethylene glycol, carbodiimide, microwave Irradiation, amide bond, carboxylic acid.

(a) Parrish, R.M.; Sitkoff, D.F.; Cheney, D.L.; Sherrill, C.D. Sitko.; Daniel, L. Cheney.; David, C. S.; The surprising importance of peptide bond contacts in drug-protein interactions. Chemistry, 2017, 23(33), 7887-7890.
[http://dx.doi.org/10.1002/chem.201701031] [PMID: 28378374]
(b) Manashjyoti, K.; Abdul, A.A.; Diganta, S. A green protocol for peptide bond formation in WEB. Tetrahedron Lett., 2016, 57, 2283-2285.
(c) Pattabiraman, V.R.; Bode, J.W. Rethinking amide bond synthesis. Nature, 2011, 480(7378), 471-479.
[http://dx.doi.org/10.1038/nature10702] [PMID: 22193101]
(d) Madeleine, M.J.; Kenneth, M.L. Evolution of amide bond formation. ARKIVOC, 2010, 8, 189-250.
(e) Christian, A.G.N.M.; Virginie, F. Amide bond formation and peptide coupling. Tetrahedron, 2005, 61, 10827-10852.
(a) Ghosh, A.K.; Brindisi, M. Organic carbamates in drug design and medicinal chemistry. J. Med. Chem., 2015, 58(7), 2895-2940.
[http://dx.doi.org/10.1021/jm501371s] [PMID: 25565044]
(b) Jad, Y.E.; Acosta, G.A.; Khattab, S.N.; de la Torre, B.G.; Govender, T.; Kruger, H.G.; El-Faham, A.; Albericio, F. Peptide synthesis beyond DMF: THF and ACN as excellent and friendlier alternatives. Org. Biomol. Chem., 2015, 13(8), 2393-2398.
[http://dx.doi.org/10.1039/C4OB02046D] [PMID: 25563654]
(c) Makhija, D.T.; Somani, R.R.; Chavan, A.V. Synthesis and pharmacological evaluation of antiinflammatory mutual amide prodrugs. Indian J. Pharm. Sci., 2013, 75(3), 353-357.
[http://dx.doi.org/10.4103/0250-474X.117399] [PMID: 24082352]
(d) Naibo, Y.; Margaret, A.B.; Paul, W.R.H.; Jingyuan, W. Enhancing the oral bioavailability of peptide drugs by using chemical modification and other approaches. Med. Chem., 2014, 4, 763-769.
(a) Simplício, A.L.; Clancy, J.M.; Gilmer, J.F. Prodrugs for amines. Molecules, 2008, 13(3), 519-547.
[http://dx.doi.org/10.3390/molecules13030519] [PMID: 18463563]
(b) Preeti, R.; Abhilekha, S. Synthesis and biological importance of amide analogues. J Pharmacol Med Chem, 2018, 2, 22-31.
(c) Rajeev, K.; Meenakshi, R.; Prabodh, C.S.; Mohammad, S.Y. Therapeutic importance of peptidomimetics in medicinal chemistry. J. Chem. Pharm. Res., 2011, 3, 173-186.
(d) Chandrashekar, A.; Eswarappa, B.; Yadav, D.B.; Raghu, N.; Peethambar, S.K. Phenethylamide derivatives: Synthesis and evaluation of antimicrobial and antioxidant activity. Pharma Chem., 2012, 4, 399-406.
Johnson, W.T.; Zhang, P.; Bergstrom, D.E. The synthesis and stability of oligodeoxyribonucleotides containing the deoxyadenosine mimic 1-(2′-deoxy-beta-D-ribofuranosyl)imidazole-4-carboxamide. Nucleic Acids Res., 1997, 25(3), 559-567.
[http://dx.doi.org/10.1093/nar/25.3.559] [PMID: 9016596]
(a) Crespo, L.; Sanclimens, G.; Pons, M.; Giralt, E.; Royo, M.; Albericio, F. Peptide and amide bond-containing dendrimers. Chem. Rev., 2005, 105(5), 1663-1681.
[http://dx.doi.org/10.1021/cr030449l] [PMID: 15884786]
(b) Greger, H.; Zechner, G.; Hofer, O.; Vajrodaya, S. Bioactive amides from Glycosmis species. J. Nat. Prod., 1996, 59(12), 1163-1168.
[http://dx.doi.org/10.1021/np9604238] [PMID: 9036182]
(a) Giardina, B.; Messana, I.; Scatena, R.; Castagnola, M. The multiple functions of hemoglobin. Crit. Rev. Biochem. Mol. Biol., 1995, 30(3), 165-196.
[http://dx.doi.org/10.3109/10409239509085142] [PMID: 7555018]
(b) Lukin, J.A.; Ho, C. The structure--function relationship of hemoglobin in solution at atomic resolution. Chem. Rev., 2004, 104(3), 1219-1230.
[http://dx.doi.org/10.1021/cr940325w] [PMID: 15008621]
(c) Tamura, T.; Hamachi, I. Chemistry for covalent modification of endogenous/native proteins: From test tubes to complex biological systems. J. Am. Chem. Soc., 2019, 141(7), 2782-2799.
[http://dx.doi.org/10.1021/jacs.8b11747] [PMID: 30592612]
(d) Cameron, J.G.; Julius, B.L.; Matthew, P.D. Engineered protein machines: Emergent tools for synthetic biology cell. Biology (Basel), 2016, 23, 45-56.
(e) Therisod, H.; Kennedy, E.P. The function of acyl carrier protein in the synthesis of membrane-derived oligosaccharides does not require its phosphopantetheine prosthetic group. Proc. Natl. Acad. Sci. USA, 1987, 84(23), 8235-8238.
[http://dx.doi.org/10.1073/pnas.84.23.8235] [PMID: 3479786]
Henninot, A.; Collins, J.C.; Nuss, J.M. The current state of peptide drug discovery: back to the future. J. Med. Chem., 2018, 61(4), 1382-1414.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00318] [PMID: 28737935]
Peter, H.J.; Michael, H.D.; Evan, A.S.; Harold, E.B.; James, M.M.; Elinor, M.; Valerie, A. Cain.; James, W. B.; Comparison of the efficacy and safety of rosuvastatin versus atorvastatin, simvastatin, and pravastatin across doses (STELLAR* Trial). Am. J. Cardiol., 2003, 93, 152-160.
Tiffany, T.; Miranda, E.K.; Steven, M.S.; Angela, M.T.; Isabella, Y.D.; Katy, E.T. Efficacy and safety of twice-vsonce-daily dosing of lisinoprilfor hypertension. J. Clin. Hypertens. (Greenwich), 2017, 00, 1-6.
Srinivas, D.; Subal, D.; Chowdary, T.R.S.; Manjunath, S.Y. Formulation and evaluation of valsartan film coated tablets. J. Chem. Pharm. Res., 2010, 2, 534-540.
Barry, M. Massie, Elaine Der, R. N., Theodore, S. Herman; Topolski, P.; Glen D. P.; William Stewart, H.; 24-Hour efficacy of once-daily diltiazem in essential hypertension. Clin. Cardiol., 1992, 15, 365-368.
Narendar Reddy, T.; Beatriz, A.; Jayathirtha Rao, V.; de Lima, D.P. Carbonyl compounds’ journey to amide bond formation. Chem. Asian J., 2019, 14(3), 344-388.
[http://dx.doi.org/10.1002/asia.201801560] [PMID: 30623602]
(a) Due-Hansen, M.E.; Pandey, S.K.; Christiansen, E.; Andersen, R.; Hansen, S.V.F.; Ulven, T. A protocol for amide bond formation with electron deficient amines and sterically hindered substrates. Org. Biomol. Chem., 2016, 14(2), 430-433.
[http://dx.doi.org/10.1039/C5OB02129D] [PMID: 26586516]
(b) Zhang, S.L.; Wan, H.X.; Deng, Z.Q. A computational study on the mechanism of ynamide-mediated amide bond formation from carboxylic acids and amines. Org. Biomol. Chem., 2017, 15(30), 6367-6374.
[http://dx.doi.org/10.1039/C7OB01378G] [PMID: 28717802]
Guo, C.; Jordan, J.S.; Yarger, J.L.; Holland, G.P. Highly efficient fumed silica nanoparticles for peptide bond formation: Converting alanine to alanine anhydride. ACS Appl. Mater. Interfaces, 2017, 9(20), 17653-17661.
[http://dx.doi.org/10.1021/acsami.7b04887] [PMID: 28452465]
Valeur, E.; Bradley, M. Amide bond formation: beyond the myth of coupling reagents. Chem. Soc. Rev., 2009, 38(2), 606-631.
[http://dx.doi.org/10.1039/B701677H] [PMID: 19169468]
Paul, F. The conversion of carboxylic acids into amides via NCS/Triphenylphosphine. Synth. Commun., 1995, 25, 959-968.
(a) Christian, A.G.N.M.; Virginie, F. Amide bond formation and peptide coupling. Tetrahedron, 2005, 61, 10827-10852.
(b) Sardon, H.; Engler, A.C.; Chan, J.M.; García, J.M.; Coady, D.J.; Pascual, A.; Mecerreyes, D.; Jones, G.O.; Rice, J.E.; Horn, H.W.; Hedrick, J.L. Organic acid-catalyzed polyurethane formation via a dual-activated mechanism: unexpected preference of N-activation over O-activation of isocyanates. J. Am. Chem. Soc., 2013, 135(43), 16235-16241.
[http://dx.doi.org/10.1021/ja408641g] [PMID: 24083673]
(c) Sasaki, K.; Crich, D. Facile amide bond formation from carboxylic acids and isocyanates. Org. Lett., 2011, 13(9), 2256-2259.
[http://dx.doi.org/10.1021/ol200531k] [PMID: 21428288]
(a) Girish, P. Basavaprabhu.; Narendra, N.; Vishwanatha, T. M.; Vommina, V. S.; Amino acid chlorides: a journey from instability and racemization toward broader utility in organic synthesis including peptides and their mimetics. Tetrahedron, 2015, 71, 2785-2832.
(b) Samokhin, G.P.; Filimonov, I.N. Coupling of peptides to protein carriers by mixed anhydride procedure. Anal. Biochem., 1985, 145(2), 311-314.
[http://dx.doi.org/10.1016/0003-2697(85)90367-7] [PMID: 4014662]
(c) Izgu, E.C.; Björkbom, A.; Kamat, N.P.; Lelyveld, V.S.; Zhang, W.; Jia, T.Z.; Szostak, J.W. N-Carboxyanhydride-Mediated Fatty acylation of amino acids and peptides for functionalization of protocell membranes. J. Am. Chem. Soc., 2016, 138(51), 16669-16676.
[http://dx.doi.org/10.1021/jacs.6b08801] [PMID: 27959544]
(d) Francims, M.F.C.; Leo, B.N. The preparation and reactions of mixed anhydrides of N-alkoxycarbonylamino acids. Can. J. Chem., 1987, 65, 619-625.
(a) Jose, G.H.; Karen, J.A.; Deborah, C.; Stuart, L.J.; Carsten, B. Mechanoenzymatic peptide and amide bond formation. Green Chem., 2017, 19, 2620-2625.
(b) Hara, R.; Hirai, K.; Suzuki, S.; Kino, K. A chemoenzymatic process for amide bond formation by an adenylating enzyme-mediated mechanism. Sci. Rep., 2018, 8(1), 2950.
[http://dx.doi.org/10.1038/s41598-018-21408-8] [PMID: 29440726]
(c) Helena, K.P.; Pamela, J.T.; David, T.; Doug, E.F.; Sarah, L.L. A versatile biosynthetic approach to amide bond formation. Green Chem., 2018, 20, 3426-3431.
Cherkupally, P.; Ramesh, S.; de la Torre, B.G.; Govender, T.; Kruger, H.G.; Albericio, F. Immobilized coupling reagents: synthesis of amides/peptides. ACS Comb. Sci., 2014, 16(11), 579-601.
[http://dx.doi.org/10.1021/co500126y] [PMID: 25330282]
Du, Y.; Barber, T.; Lim, S.E.; Rzepa, H.S.; Baxendale, I.R.; Whiting, A. A solid-supported arylboronic acid catalyst for direct amidation. Chem. Commun. (Camb.), 2019, 55(20), 2916-2919.
[http://dx.doi.org/10.1039/C8CC09913H] [PMID: 30785133]
Jiang, Y.Y.; Zhu, L.; Liang, Y.; Man, X.; Bi, S. Mechanism of amide bond formation from carboxylic acids and amines promoted by 9-silafluorenyl dichloride derivatives. J. Org. Chem., 2017, 82(17), 9087-9096.
[http://dx.doi.org/10.1021/acs.joc.7b01637] [PMID: 28782365]
Lanigan, R.M.; Starkov, P.; Sheppard, T.D. Direct synthesis of amides from carboxylic acids and amines using B(OCH2CF3)3. J. Org. Chem., 2013, 78(9), 4512-4523.
[http://dx.doi.org/10.1021/jo400509n] [PMID: 23586467]
Cheung, C.W.; Ploeger, M.L.; Hu, X. Direct amidation of esters with nitroarenes. Nat. Commun., 2017, 8, 14878.
[http://dx.doi.org/10.1038/ncomms14878] [PMID: 28345585]
Morimoto, H.; Fujiwara, R.; Shimizu, Y.; Morisaki, K.; Ohshima, T. Lanthanum(III) triflate catalyzed direct amidation of esters. Org. Lett., 2014, 16(7), 2018-2021.
[http://dx.doi.org/10.1021/ol500593v] [PMID: 24660939]
Leggio, A.; Bagalà, J.; Belsito, E.L.; Comandè, A.; Greco, M.; Liguori, A. Formation of amides: one-pot condensation of carboxylic acids and amines mediated by TiCl4. Chem. Cent. J., 2017, 11(1), 87.
[http://dx.doi.org/10.1186/s13065-017-0318-9] [PMID: 29086872]
Cheng, L.; Ge, X.; Huang, L. Direct amidation of non-activated phenylacetic acid and benzylamine derivatives catalysed by NiCl2. R. Soc. Open Sci., 2018, 5(2)171870
[http://dx.doi.org/10.1098/rsos.171870] [PMID: 29515891]
Lenstra, D.C.; Rutjes, F.P.; Mecinović, J. Triphenylphosphine-catalysed amide bond formation between carboxylic acids and amines. Chem. Commun. (Camb.), 2014, 50(43), 5763-5766.
[http://dx.doi.org/10.1039/c4cc01861c] [PMID: 24752820]
Houlding, T.K.; Tchabanenko, K.; Rahman, M.T.; Rebrov, E.V. Direct amide formation using radiofrequency heating. Org. Biomol. Chem., 2013, 11(25), 4171-4177.
[http://dx.doi.org/10.1039/C2OB26930A] [PMID: 23175135]
Basavaprabhu, Krishnamurthy, M..; Nageswara, R.P.; Panduranga, V.; Vommina, V.S. A simple and greener approach for the amide bond formation employing FeCl3 as a catalyst. New J. Chem., 2015, 39, 7746-7749.
(a) Murugan, S.; Sangaraiah, N.; Poovan, S. Velan.; Murugan, D.; Alagusundaram, P.; Microwave-assisted clean synthesis of amides via aza-wittig reaction under solvent-free condition. J. Braz. Chem. Soc., 2011, 22, 2065-2069.
(b) Naremaddepalli, S.S.; Vommina, V.S.B. Microwave accelerated high speed solution synthesis of peptides employing HATU/HOAt. Indian J. Chem., 2005, 44B, 1509-1511.
Hayley, C.; David, A.J.; George, H.; Andrew, W.; Mark, R.W. The uncatalyzed direct amide formation reaction - mechanism studies and the key role of carboxylic acid H- bonding. Eur. J. Org. Chem., 2011, 5981-5990.
Cossy, J.; Pale-Crosdemange, C. A Conveninent synthesis of amides from carboxylic acid and primary amines. Tetrahedron Lett., 1989, 30, 2771-2774.
(a) Gabriel, C.M.; Keener, M.; Gallou, F.; Lipshutz, B.H. Amide and peptide bond formation in water at room temperature. Org. Lett., 2015, 17(16), 3968-3971.
[http://dx.doi.org/10.1021/acs.orglett.5b01812] [PMID: 26251952]
(b) Fabrice, G.; Pengfei, G.; Michael, P.; Jianguang, Z. A general and practical alternative to polar aprotic solvents exemplified on an amide bond formation. Org. Process Res. Dev., 2016, 20, 1388-1391.
Ana, R.; Cruz, D. Water and carbon dioxide, green solvents for the extraction of collagen/gelatin from marine sponges. ACS Sustain. Chem. Eng., 2015, 3, 254-260.
Francesco, F.; Oriana, P.; Ferdinando, P. One-pot synthesis of 7-Hydroxy-3-carboxycoumarin in water. J. Chem. Educ., 2004, 81, 674-876.
Tarfah, I.A.; Hassan, M.A.A.; Ayman, E. Recent development in peptide coupling reagents. J. Saudi Chem. Soc., 2012, 16, 97-116.
So-Yeop, H.; Young-Ah, K. Recent development of peptide coupling reagents in organic synthesis. Tetrahedron, 2004, 60, 2447-2467.
Ali, R.; Fatemeh, Z.; Nasrabadi, A.R.; Morteza, R.; Hamideh, A.; Pegah, A.A.; Sang, W.J.; Katarzyna, ´S.; Tadeusz, L. Synthesis of N-acylurea derivatives from carboxylic acids and N, N-dialkyl carbodiimides in water. J. Chem. Sci., 2015, 127, 2269-2282.
Izdebski, J.; Pachulska, M.; Orłowska, A. N-cyclohexyl-N'-isopropylcarbodiimide: a hybrid that combines the structural features of DCC and DIC. Int. J. Pept. Protein Res., 1994, 44(5), 414-419.
[http://dx.doi.org/10.1111/j.1399-3011.1994.tb00176.x] [PMID: 7896498]
Yahya, E.J.; Sherine, N.K.; Beatriz, G.T.; Thavendran, G.; Hendrik, G.K.; Ayman, E.; Fernando, A. EDC.HCl and potassium salts of oxyma and oxyma-B as superior coupling cocktails for peptide. Eur. J. Org. Chem., 2017, 25, 2251.
(a) Kantharaju, K.; Santosh, Y.K. Microwave accelerated synthesis of 2-Amino-4H –chromenes catalyzed by WELFSA: A green protocol. ChemistrySelect, 2018, 3, 5016-5024.
(b) Santosh, Y.K.; Kantharaju, K. Microwave accelerated synthesis of 2-Oxo-2H-chromene-3-carboxylic acid using WELFSA. Curr. Microw. Chem., 2018, 5, 206-214.
(c) Sudarshan, N.S.; Suresh Babu, V.V. Microwave accelerated high speed solution synthesis of peptides employing HATU/HOAt. Indian J. Chem., 2005, 44B, 1509-1511.
(d) Gunasekera, S.; Aboye, T.L.; Madian, W.A.; El-Seedi, H.R.; Göransson, U. El-S; Goransson, U; Making ends meet: microwave-accelerated synthesis of cyclic and disulfide rich proteins via in situ thioesterification and native chemical ligation. Int. J. Pept. Res. Ther., 2013, 19(1), 43-54.
[http://dx.doi.org/10.1007/s10989-012-9331-y] [PMID: 23504256]
(e) Park, M-S.; Hyun, S.O.; Hyeongjin, C.; Lee, K.H. Microwave-assisted solid-phase synthesis of pseudo peptides containing reduced amide bond. Tetrahedron Lett., 2007, 48, 1053-1057.
(f) Roodbeen, R.; Pedersen, S.L.; Hosseini, M.; Jensen, K. J. microwave heating in the solid-phase synthesis of N-methylated peptides: When is room temperature better. Eur. J. Org. Chem., 2012, 7106-7111.
(g) Sathishkumar, M.; Nagarajan, S.; Velan, P.S.; Dinesh, M.; Ponnuswamy, A. Microwave-assisted clean synthesis of amides via aza-wittig reaction under solvent-free condition. J. Braz. Chem. Soc., 2011, 22, 2065-2069.
(h) Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L. Rousel, The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett., 1986, 27, 279-282.
(i) Kappe, C.O.; Dallinger, D. The impact of microwave synthesis on drug discovery. Nature reviews, 2006, 5, 51-63.
(j) Sureshbhabu, V.V.; Kantharaju, K.; Krishna, G.C. Microwave irradiation accelerated rapid, efficient and high yield esterification of Boc-amino acid to Merrifield resin mediated by KF. Indian J. Chem., 2007, 46B, 1466-1449.
(k) Surati, M.A.; Jauhari, S.; Desai, K.R. A brief review: Microwave assisted organic reaction. Arch. Appl. Sci. Res., 2012, 4, 645-661.
Sabari, G.; Asim, B.; John, M.; Amit, M.; Sumita, S.; Chhanda, M. Direct amide bond formation from carboxylic acids and amines using activated alumina balls as a new, convenient, clean, reusable and low cost heterogeneous catalyst. Green Chem., 2012, 14, 3220-3229.
(a) Saikia, E.; Bora, S.J.; Chetia, B. H2O2 in WERSA: An efficient green protocol for ipso-hydroxylation of aryl/heteroarylboronic acid. RSC Advances, 2015, 5, 102723-102726.
(b) Saikia, B.; Borah, P. A new avenue to Dakin reaction in H2O2-WERSA. RSC Advances, 2015, 5, 105583-105586.
(c) Boruah, P.R.; Ali, A.A.; Chetia, M.; Saikia, B.; Sarm, D. Pd(OAc)2 in WERSA: A novel green catalytic system for Suzuki-Miyaura cross-coupling reactions at room temperature. Chem. Commun., 2015, 51, 11489-11492.
(d) Sarmah, M.; Dewan, A.; Mondal, M.; Thakur, A.J.; Bora, U. Analysis of the water extract of waste papaya bark ash and its implications as an in situ base in the ligand-free recyclable Suzuki–Miyaura coupling reaction. RSC Advances, 2016, 6, 28981-28985.
Hemanta, M.R.; Mane, V.K.; Bhagwat, B. Analysis of traditional food additive kolakhar for its physico-chemical parameters and antimicrobial activity., 2014, 5, 1-2.
(a) Badathala, V. Clay Catalysts in Organic Synthesis. Synlett., 2004, 2, 0388-0389.
(b) Kumar, B.S.; Dhakshinamoorthy, A.; Pitchumani, K. K10 Montmorillonite clays as environmentally benign catalysts for organic reactions. Catal. Sci. Technol., 2014, 4, 2378-2396.
(c) Rhodes, C.J. Properties and applications of zeolites. Sci. Prog., 2010, 93(Pt 3), 223-284.
[http://dx.doi.org/10.3184/003685010X12800828155007] [PMID: 21047018]
(d) Wang, Q.L.; Yudao, M.; Zuo, B. Knoevenagel condensation catalyzed by USY zeolite. Synth. Commun., 1997, 27, 4107-4110.

open access plus

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [50 - 59]
Pages: 10
DOI: 10.2174/2213335606666190828114344

Article Metrics

PDF: 17