Recent Patents on Impact of Lipopeptide on the Biofilm Formation onto Titanium and Stainless Steel Surfaces

Author(s): Mauro Ezio Eustáquio Pires, Adriano Guimarães Parreira, Tuânia Natacha Lopes Silva, Heloísa Carneiro Colares, José Antonio da Silva, Juliana Teixeira de Magalhães, Alexsandro Sobreira Galdino, Daniel Bonoto Gonçalves, José Mauro Granjeiro*, Paulo Afonso Granjeiro*

Journal Name: Recent Patents on Biotechnology

Volume 14 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Numerous causes of infection in arthroplasties are related to biofilm formation on implant surfaces. In order to circumvent this problem, new alternatives to prevent bacterial adhesion biosurfactants-based are emerging due to low toxicity, biodegradability and antimicrobial activity of several biosurfactants. We revised all patents relating to biosurfactants of applicability in orthopedic implants.

Methods: This work aims to evaluate the capability of a lipopeptide produced by Bacillus subtilis ATCC 19659 isolates acting as inhibitors of the adhesion of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213 onto titanium and stainless steel surfaces and its antimicrobial activity.

Results: The adhesion of the strains to the stainless-steel surface was higher than that of titanium. Preconditioning of titanium and stainless-steel surfaces with 10 mg mL-1 lipopeptide reduced the adhesion of E. coli by up to 93% and the adhesion of S. aureus by up to 99.9%, suggesting the strong potential of lipopeptides in the control of orthopedic infections. The minimal inhibitory concentration and minimum bactericidal concentration were 10 and 240 µg mL-1 for E. coli and S. aureus, respectively.

Conclusion: The lipopeptide produced by Bacillus subtilis ATCC 19659 presented high biotechnological application in human health against orthopedic implants infections.

Keywords: Lipopeptide, Bacillus subtilis, titanium, stainless steel, biofilm, arthroplasties.

[1]
Montanaro L, Speziale P, Campoccia D, Ravaioli S, Cangini I, Pietrocola G, et al. Scenery of Staphylococcus implant infections in orthopedics. Future Microbiol 2011; 6(11): 1329-49.
[http://dx.doi.org/10.2217/fmb.11.117] [PMID: 22082292]
[2]
Pandya J, Johnson T, Low AK. Shoulder replacement for osteoarthritis: a review of surgical management. Maturitas 2018; 108: 71-6.
[http://dx.doi.org/10.1016/j.maturitas.2017.11.013] [PMID: 29290218]
[3]
Zhang BGX, Myers DE, Wallace GG, Brandt M, Choong PF. Bioactive coatings for orthopaedic implants-recent trends in development of implant coatings. Int J Mol Sci 2014; 15(7): 11878-921.
[http://dx.doi.org/10.3390/ijms150711878] [PMID: 25000263]
[4]
Hackett DJ, Rothenberg AC, Chen AF, Gutowski C, Jaekel D, Tomek IM, et al. The economic significance of orthopaedic infections. J Am Acad Orthop Surg 2015; 23(1)(Suppl.): S1-7.
[http://dx.doi.org/10.5435/JAAOS-D-14-00394] [PMID: 25808964]
[5]
Bhattacharya M, Wozniak DJ, Stoodley P, Hall-Stoodley L. Prevention and treatment of Staphylococcus aureus biofilms. Expert Rev Anti Infect Ther 2015; 13(12): 1499-516.
[http://dx.doi.org/10.1586/14787210.2015.1100533] [PMID: 26646248]
[6]
Otto M. Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu Rev Med 2013; 64: 175-88.
[http://dx.doi.org/10.1146/annurev-med-042711-140023] [PMID: 22906361]
[7]
Ricciardi BF, Muthukrishnan G, Masters E, Ninomiya M, Lee CC, Schwarz EM. Staphylococcus aureus evasion of host immunity in the setting of prosthetic joint infection: biofilm and beyond. Curr Rev Musculoskelet Med 2018; 11(3): 389-400.
[http://dx.doi.org/10.1007/s12178-018-9501-4] [PMID: 29987645]
[8]
Peel TN. Studying biofilm and clinical issues in orthopedics. Front Microbiol 2019; 10: 359.
[http://dx.doi.org/10.3389/fmicb.2019.00359] [PMID: 30863390]
[9]
Foster TJ, Geoghegan JA, Ganesh VK, Höök M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 2014; 12(1): 49-62.
[http://dx.doi.org/10.1038/nrmicro3161] [PMID: 24336184]
[10]
Oliveira WF, Silva PMS, Silva RCS, Silva GMM, Machado G, Coelho LCBB, et al. Staphylococcus aureus and Staphylococcus epidermidis infections on implants. J Hosp Infect 2018; 98(2): 111-7.
[http://dx.doi.org/10.1016/j.jhin.2017.11.008] [PMID: 29175074]
[11]
Zhao Q, Liu Y, Wang C, Wang S, Peng N, Jeynes C. Reduction of bacterial adhesion on ion-implanted stainless steel surfaces. Med Eng Phys 2008; 30(3): 341-9.
[http://dx.doi.org/10.1016/j.medengphy.2007.04.004] [PMID: 17544806]
[12]
Klibanov AM. Permanently microbicidal materials coatings. J Mater Chem 2007; 17(24): 2479-82.
[http://dx.doi.org/10.1039/b702079a]
[13]
Hanawa T. Research and development of metals for medical devices based on clinical needs. Sci Technol Adv Mater 2012; 13(6) 064102
[http://dx.doi.org/10.1088/1468-6996/13/6/064102] [PMID: 27877526]
[14]
Kammerer PW, Pabst AM, Dau M, Staedt H, Al-Nawas B, Heller M. Immobilization of bmp-2, bmp-7 and alendronic acid on titanium surfaces: adhesion, proliferation and differentiation of bone marrow-derived stem cells. J Biomed Mater Res A 2020; 108(2): 212-20.
[http://dx.doi.org/10.3390/ijms150711878] [PMID: 25000263]
[15]
Deo DI, Gautrot JE, Sukhorukov GB, Wang W. Biofunctionalization of PEGylated microcapsules for exclusive binding to protein substrates. Biomacromolecules 2014; 15(7): 2555-62.
[http://dx.doi.org/10.1021/bm500412d]
[16]
Liu H, Elkin I, Chen J, Klibanov AM. Why do some immobilized N-alkylated polyethylenimines far surpass others in inactivating influenza viruses? Biomacromolecules 2015; 16(1): 351-6.
[http://dx.doi.org/10.1021/bm5015427] [PMID: 25486335]
[17]
Hanawa T. Surface treatment and modification of metals to add biofunction. Dent Mater J 2017; 36(5): 533-8.
[http://dx.doi.org/10.4012/dmj.2017-154] [PMID: 28835601]
[18]
Yasir M, Willcox MDP, Dutta D. Action of antimicrobial peptides against bacterial biofilms. Materials 2018; 11(12): 1-15.
[http://dx.doi.org/10.3390/ma11122468] [PMID: 30563067]
[19]
Cao Y, Su B, Chinnaraj S, Jana S, Bowen L, Charlton S, et al. Nanostructured titanium surfaces exhibit recalcitrance towards Staphylococcus epidermidis biofilm formation. Sci Rep 2018; 8(1): 1071.
[http://dx.doi.org/10.1038/s41598-018-19484-x] [PMID: 29348582]
[20]
Arango-Santander S, Pelaez-Vargas A, Freitas SC, García C. A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography. Sci Rep 2018; 8(1): 15818.
[http://dx.doi.org/10.1038/s41598-018-34198-w] [PMID: 30361619]
[21]
Janson O, Gururaj S, Pujari-Palmer S, Ott MK, Strømme M, Engqvist H, et al. Titanium surface modification to enhance antibacterial and bioactive properties while retaining biocompatibility. Mater Sci Eng C 2019; 96: 272-9.
[http://dx.doi.org/10.1016/j.msec.2018.11.021] [PMID: 30606532]
[22]
Ceresa C, Rinaldi M, Chiono V, Carmagnola I, Allegrone G, Fracchia L. Lipopeptides from Bacillus subtilis AC7 inhibit adhesion and biofilm formation of Candida albicans on silicone. Antonie van Leeuwenhoek 2016; 109(10): 1375-88.
[http://dx.doi.org/10.1007/s10482-016-0736-z] [PMID: 27444239]
[23]
Artini M, Cicatiello P, Ricciardelli A, Papa R, Selan L, Dardano P, et al. Hydrophobin coating prevents Staphylococcus epidermidis biofilm formation on different surfaces. Biofouling 2017; 33(7): 601-11.
[http://dx.doi.org/10.1080/08927014.2017.1338690] [PMID: 28686037]
[24]
Casillo A, Papa R, Ricciardelli A, Sannino F, Ziaco M, Tilotta M, et al. Anti-biofilm activity of a long-chain fatty aldehyde from Antarctic Pseudoalteromonas haloplanktis TAC125 against Staphylococcus epidermidis biofilm. Front Cell Infect Microbiol 2017; 7(46): 46.
[http://dx.doi.org/10.3389/fcimb.2017.00046] [PMID: 28280714]
[25]
Ciandrini E, Campana R, Casettari L, Perinelli DR, Fagioli L, Manti A, et al. Characterization of biosurfactants produced by Lactobacillus spp. and their activity against oral Streptococci biofilm. Appl Microbiol Biotechnol 2016; 100(15): 6767-77.
[http://dx.doi.org/10.1007/s00253-016-7531-7] [PMID: 27102127]
[26]
Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 2017; 15(12): 740-55.
[http://dx.doi.org/10.1038/nrmicro.2017.99] [PMID: 28944770]
[27]
Adlhart C, Verran J, Azevedo NF, Olmez H, Keinänen-Toivolae MM, Gouveia I, et al. Surface modifications for antimicrobial effects in the healthcare setting: a critical overview. J Hosp Infec 2018; (2): 1-11.
[28]
Otzen DE. Biosurfactants and surfactants interacting with membranes and proteins: same but different? Biochim Biophys Acta Biomembr 2017; 1859(4): 639-49.
[http://dx.doi.org/10.1016/j.bbamem.2016.09.024] [PMID: 27693345]
[29]
Jiang X, Cao Y, Jørgensen LVG, Strobel BW, Hansen HCB, Cedergreen N. Where does the toxicity come from in saponin extract? Chemosphere 2018; 204: 243-50.
[http://dx.doi.org/10.1016/j.chemosphere.2018.04.044] [PMID: 29660537]
[30]
Inès M, Dhouha G. Lipopeptide surfactants: production, recovery and pore forming capacity. Peptides 2015; 71: 100-12.
[http://dx.doi.org/10.1016/j.peptides.2015.07.006] [PMID: 26189973]
[31]
Dimkić I, Stanković S, Nišavić M, Petković M, Ristivojević P, et al. The profile and antimicrobial activity of Bacillus lipopeptide extracts of five potential biocontrol strains. Front Microbiol 2017; 8: 925.
[http://dx.doi.org/10.3389/fmicb.2017.00925] [PMID: 28588570]
[32]
de Cássia FS, Silva R, Almeida DG, et al. Applications of biosurfactants in the petroleum industry and the remediation of oil spills. Int J Mol Sci 2014; 15(7): 12523-42.
[http://dx.doi.org/10.3390/ijms150712523] [PMID: 25029542]
[33]
Shaligram NS, Singhal RS. Surfactin - A review on biosynthesis, fermentation, purification and applications. Food Technol Biotechnol 2010; 48: 119-34.
[34]
Mnif I, Hammami I, Triki MA, Azabou MC, Ellouze-Chaabouni S, Ghribi D. Antifungal efficiency of a lipopeptide biosurfactant derived from Bacillus subtilis SPB1 versus the phytopathogenic fungus, Fusarium solani. Environ Sci Pollut Res Int 2015; 22(22): 18137-47.
[http://dx.doi.org/10.1007/s11356-015-5005-6] [PMID: 26178831]
[35]
Torres MJ, Petroselli G, Daz M, Erra-Balsells R, Audisio MC. Bacillus subtilis subsp. subtilis CBMDC3f with antimicrobial activity against Gram-positive foodborne pathogenic bacteria: UV-MALDI-TOF MS analysis of its bioactive compounds. World J Microbiol Biotechnol 2015; 31(6): 929-40.
[http://dx.doi.org/10.1007/s11274-015-1847-9] [PMID: 25820813]
[36]
Meena KR, Kanwar SS. Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. BioMed Res Int 2015; 2015 473050
[http://dx.doi.org/10.1155/2015/473050] [PMID: 25632392]
[37]
Duarte C, Gudiña EJ, Lima CF, Rodrigues LR. Effects of biosurfactants on the viability and proliferation of human breast cancer cells. AMB Express 2014; 4: 40.
[http://dx.doi.org/10.1186/s13568-014-0040-0] [PMID: 24949273]
[38]
Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS. Environmental applications of biosurfactants: recent advances. Int J Mol Sci 2011; 12(1): 633-54.
[http://dx.doi.org/10.3390/ijms12010633] [PMID: 21340005]
[39]
Campos JM, Stamford TLM, Sarubbo LA, de Luna JM, Rufino RD, Banat IM. Microbial biosurfactants as additives for food industries. Biotechnol Prog 2013; 29(5): 1097-108.
[http://dx.doi.org/10.1002/btpr.1796] [PMID: 23956227]
[40]
Nitschke M, Silva SSE. Recent food applications of microbial surfactants. Crit Rev Food Sci Nutr 2018; 58(4): 631-8.
[http://dx.doi.org/10.1080/10408398.2016.1208635] [PMID: 27437564]
[41]
Elshikh M, Moya-Ramírez I, Moens H, Roelants S, Soetaert W, Marchant R, et al. Rhamnolipids and lactonic sophorolipids: natural antimicrobial surfactants for oral hygiene. J Appl Microbiol 2017; 123(5): 1111-23.
[http://dx.doi.org/10.1111/jam.13550] [PMID: 28766815]
[42]
Braem A, Van Mellaert L, Mattheys T, Hofmans D, De Waelheyns E, Geris L, et al. Staphylococcal biofilm growth on smooth and porous titanium coatings for biomedical applications. J Biomed Mater Res A 2014; 102(1): 215-24.
[http://dx.doi.org/10.1002/jbm.a.34688] [PMID: 23661274]
[43]
Hajfarajollah H, Mokhtarani B, Noghabi KA. Newly antibacterial and antiadhesive lipopeptide biosurfactant secreted by a probiotic strain, Propionibacterium freudenreichii. Appl Biochem Biotechnol 2014; 174(8): 2725-40.
[http://dx.doi.org/10.1007/s12010-014-1221-7] [PMID: 25216696]
[44]
Granjeiro PA, Parreira AG, Pires MEE, Gonçalves B, Bastos CG, Magalhães J. Process for the production of surfactin by Bacillus subtilis ATCC 19659 and use in biofilm disruption BR1020140141855. 2014.
[45]
Granjeiro PA, Gonçalves DB, Silva JA, Segura MEC, Galdino AS, Guimaraes PP, et al. Isolates from Bacillus Subtilis ATCC 19659 and its use to prevent bacterial adhesion on titanium and catheters BR10201602067. 2016.
[46]
Twomey CL, Saliwanchik DR. Materials and methods for the control of biofilm WO2018/081411, A2. 2018.
[47]
Seitz A, Edwards MJ, Gulbins E. Sphingolipid coatings and process for manufacturing sphingolipid coatings effective for inhibiting biofilm formation US2018/0353656A1. 2018.
[48]
Banat IM, Samarah N, Murad M, Horne R, Banerjee S. Biosurfactant production and use in oil tank clean-up. World J Microbiol Biotechnol 1991; 7(1): 80-8.
[http://dx.doi.org/10.1007/BF02310921] [PMID: 24424870]
[49]
Folmsbee MJ, McInerney MJ, Nagle DP. Anaerobic growth of Bacillus mojavensis and Bacillus subtilis requires deoxyribonucleosides or DNA. Appl Environ Microbiol 2004; 70(9): 5252-7.
[http://dx.doi.org/10.1128/AEM.70.9.5252-5257.2004] [PMID: 15345407]
[50]
Bodour AA, Miller-Maier RM. Application of a modified drop-collapse technique for surfactant quantitation and screening of biossurfactant-producing microorganisms. J Microbiol Methods 1998; 32: 273-80.
[http://dx.doi.org/10.1016/S0167-7012(98)00031-1]
[51]
Cooper DG, Zajic JE, Gerson DF. Production of surface- active lipids by Corynebacterium lepus. Appl Environ Microbiol 1979; 37(1): 4-10.
[PMID: 760639]
[52]
Rivardo F, Turner RJ, Allegrone G, Ceri H, Martinotti MG. Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnol 2009; 83(3): 541-53.
[http://dx.doi.org/10.1007/s00253-009-1987-7] [PMID: 19343338]
[53]
CLSI (2015) Performance Standards for Antimicrobial Susceptibility Testing. Twent - Fifth Informational Supplement; Approved Standard – Twelfth Edition.CLSI document M07-A10. [ISBN 1-56238- 990-4]
[54]
Wei Y, Chu I. Mn2+ improves surfactin production by Bacillus subtilis. Biotechnol Lett 2002; 24(6): 479-82.
[http://dx.doi.org/10.1023/A:1014534021276]
[55]
Jiao S, Li X, Yu H, Yang H, Li X, Shen Z. In situ enhancement of surfactin biosynthesis in Bacillus subtilis using novel artificial inducible promoters. Biotechnol Bioeng 2017; 114(4): 832-42.
[http://dx.doi.org/10.1002/bit.26197] [PMID: 27723092]
[56]
Zhao H, Shao D, Jiang C, Shi J, Li Q, Huang Q, et al. Biological activity of lipopeptides from Bacillus. Appl Microbiol Biotechnol 2017; 101(15): 5951-60.
[http://dx.doi.org/10.1007/s00253-017-8396-0] [PMID: 28685194]
[57]
Nithya C, Aravindraja C, Pandian SK. Bacillus pumilus of Palk Bay origin inhibits quorum-sensing-mediated virulence factors in Gram-negative bacteria. Res Microbiol 2010; 161(4): 293-304.
[http://dx.doi.org/10.1016/j.resmic.2010.03.002] [PMID: 20381609]
[58]
Abdel-Mawgoud AM, Aboulwafa MM, Hassouna NAH. Characterization of surfactin produced by Bacillus subtilis isolate BS5. Appl Biochem Biotechnol 2008; 150(3): 289-303.
[http://dx.doi.org/10.1007/s12010-008-8153-z] [PMID: 18437297]
[59]
Mulligan CN. Environmental applications for biosurfactants. Environ Pollut 2005; 133(2): 183-98.
[http://dx.doi.org/10.1016/j.envpol.2004.06.009] [PMID: 15519450]
[60]
Luna JM, Rufino RD, Sarubbo LA, Campos-Takaki GM. Characterisation, surface properties and biological activity of a biosurfactant produced from industrial waste by Candida sphaerica UCP0995 for application in the petroleum industry. Colloids Surf B Biointerfaces 2013; 102: 202-9.
[http://dx.doi.org/10.1016/j.colsurfb.2012.08.008] [PMID: 23006562]
[61]
Xu H-M, Rong Y-J, Zhao M-X, Song B, Chi Z-M. Antibacterial activity of the lipopetides produced by Bacillus amyloliquefaciens M1 against multidrug-resistant Vibrio spp. isolated from diseased marine animals. Appl Microbiol Biotechnol 2014; 98(1): 127-36.
[http://dx.doi.org/10.1007/s00253-013-5291-1] [PMID: 24132666]
[62]
Herman-Bausier P, Formosa-Dague C, Feuillie C, Valotteau C, Dufrêne YF. Forces guiding staphylococcal adhesion. J Struct Biol 2017; 197(1): 65-9.
[http://dx.doi.org/10.1016/j.jsb.2015.12.009] [PMID: 26707623]
[63]
Pace JL, Rupp M, Finch RG. Biofilms, infection, and antimicrobial therapy biofilms, infection, and antimicrobial therapy. Boca Raton, FL, USA: Ed. Taylor & Francis Group 2006.
[64]
Katsikogianni M, Missirlis YF. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur Cell Mater 2004; 8(3): 37-57.
[http://dx.doi.org/10.22203/eCM.v008a05] [PMID: 15593018]
[65]
Sjollema J, Van Der Mei HC, Uyen HMW, Busscher HJ. The influence of collector and bacterial cell surface properties on the deposition of oral Streptococci in a parallel plate flow cell. J Adhes Sci Technol 1990; 4(1): 765-77.
[http://dx.doi.org/10.1163/156856190X00658]
[66]
Ammar Y, Swailes D, Bridgens B, Chen J. Influence of surface roughness on the initial formation of biofilm. Surf Coat Tech 2015; 284: 410-6.
[http://dx.doi.org/10.1016/j.surfcoat.2015.07.062]
[67]
Krasowska A, Sigler K. How microorganisms use hydrophobicity and what does this mean for human needs? Front Cell Infect Microbiol 2014; 4(112): 112.
[http://dx.doi.org/10.3389/fcimb.2014.00112] [PMID: 25191645]
[68]
Osman RB, Swain MV. A critical review of dental implants with an emphasis on titanium versus zirconia. Materials 2015; 8(3): 932-58.
[http://dx.doi.org/10.3390/ma8030932] [PMID: 28787980]
[69]
Malhotra R, Dhawan B, Garg B, Shankar V, Nag TC. A comparison of bacterial adhesion and biofilm formation on commonly used orthopaedic metal implant materials: an in vitro study. Indian J Orthop 2019; 53(1): 148-53.
[http://dx.doi.org/10.4103/ortho.IJOrtho_66_18] [PMID: 30905995]
[70]
De Zoysa GH, Sarojini V. A feasibility study exploring the potential of novel battacin lipopeptides as antimicrobial coatings. ACS Appl Mater Interfaces 2017; 9(2): 1373-83.
[http://dx.doi.org/10.1021/acsami.6b15859] [PMID: 27992168]
[71]
Scott MJ, Jones MN. The biodegradation of surfactants in the environment. Biochim Biophys Acta 2000; 1508(1-2): 235-51.
[http://dx.doi.org/10.1016/S0304-4157(00)00013-7] [PMID: 11090828]
[72]
Cloete TE, Jacobs L. Surfactants and the attachment of Pseudomonas aeruginosa to 3CR12 stainless steel and glass. Water SA 2001; 27(1): 21-6.
[73]
Braem A, De Brucker K, Delattin N, Killian MS, Roeffaers MB, Yoshioka T, et al. Alternating current electrophoretic deposition for the immobilization of antimicrobial agents on titanium implant surfaces. ACS Appl Mater Interfaces 2017; 9(10): 8533-46.
[http://dx.doi.org/10.1021/acsami.6b16433] [PMID: 28211996]
[74]
Dusane DH, Nancharaiah YV, Zinjarde SS, Venugopalan VP. Rhamnolipid mediated disruption of marine Bacillus pumilus biofilms. Colloids Surf B Biointerfaces 2010; 81(1): 242-8.
[http://dx.doi.org/10.1016/j.colsurfb.2010.07.013] [PMID: 20688490]
[75]
Mireles JR II, Toguchi A, Harshey RM. Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol 2001; 183(20): 5848-54.
[http://dx.doi.org/10.1128/JB.183.20.5848-5854.2001] [PMID: 11566982]
[76]
Rodrigues L, van der Mei HC, Teixeira J, Oliveira R. Influence of biosurfactants from probiotic bacteria on formation of biofilms on voice prostheses. Appl Environ Microbiol 2004; 70(7): 4408-10.
[http://dx.doi.org/10.1128/AEM.70.7.4408-4410.2004] [PMID: 15240331]
[77]
Korenblum E, de Araujo LV, Guimarães CR, de Souza LM, Sassaki G, Abreu F, et al. Purification and characterization of a surfactin-like molecule produced by Bacillus sp. H2O-1 and its antagonistic effect against sulfate reducing bacteria. BMC Microbiol 2012; 12: 252.
[http://dx.doi.org/10.1186/1471-2180-12-252] [PMID: 23131170]
[78]
Deleu M, Paquot M, Nylander T. Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophys J 2008; 94(7): 2667-79.
[http://dx.doi.org/10.1529/biophysj.107.114090] [PMID: 18178659]
[79]
Simões M, Simões LC, Vieira JMA. Review of current and emergent biofilm control strategies. Food Sci Tech 2010; 43: 573-83.
[http://dx.doi.org/10.1016/j.lwt.2009.12.008]
[80]
Carrillo C, Teruel JA, Aranda FJ, Ortiz A. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta 2003; 1611(1-2): 91-7.
[http://dx.doi.org/10.1016/S0005-2736(03)00029-4] [PMID: 12659949]
[81]
Fracchia L, Cavallo M, Martinotti MG, Banat IM. Biosurfactants and bioemulsifiers biomedical and related applications present status and future potentials. Biomed Sci Eng Technol 2012; pp. 325-70.
[http://dx.doi.org/10.5772/23821]
[82]
Janek T, Łukaszewicz M, Krasowska A. Antiadhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. BMC Microbiol 2012; 12(24): 24.
[http://dx.doi.org/10.1186/1471-2180-12-24] [PMID: 22360895]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 14
ISSUE: 1
Year: 2020
Page: [49 - 62]
Pages: 14
DOI: 10.2174/1872208313666190822150323
Price: $65

Article Metrics

PDF: 15
HTML: 3