Inhibition of 2C Coxsackie B Virus Protein to Decrease Pathogenicity of Diabetes Mellitus Type 1

Author(s): Amina Amin, Muhammad A. Rasheed*, Rana A. Diwan, Muhammad Shahid, Saddia Bano, Adnan Riaz, Muhammad N. Iqbal, Muhammad W. Sajid

Journal Name: Current Computer-Aided Drug Design

Volume 16 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Insulin-dependent Diabetes Mellitus Type 1 (T1D) also referred to as autoimmune diabetes. T1D is a chronic disease which is characterized by way of insulin deficiency. The deficiency is due to the loss of pancreatic β cells and leads to hyperglycemia. There are many factors which play a significant role in T1D disease pathogenicity including genetic predisposition, the immune system, and environmental factors. The environmental factors may include Coxsackie B4 virus, a small RNA virus.

Objective: The objective of current in silico study is to identify active lead compounds against Coxsackie B4 virus, a small RNA virus which has been reported in diabetic patients after PCR. There is a need to predict inhibitors against TID caused by Coxsackie B4 viral protein that may be used as a drug against TID in the future.

Methods: For this purpose, different bioinformatics databases and tools were used. The protein structure generation and validation, retrieval of ligands and their properties analysis were performed by different databases, web servers, and software tools. Moreover, the docking tools were used to identify the target site of the protein and interaction of different inhibitors with the target protein molecule.

Results: Based on the analysis, two lead compounds ZINC00034488 and ZINC00034585 were selected as potential drugs. These compounds are non-toxic and have best interaction energy and fulfill Lipinski rule, Veber rule, Ghose Rule, Weighted QED, Unweighted QED and BBB likeness parameters.

Conclusion: Our work will help researchers to get an idea about the understanding of chemicals against Coxsackie B4 Viruses and helpful to design a drug and test these chemicals to overcome Diabetes Mellitus Type 1 caused by Coxsackie B4 virus.

Keywords: Coxsackie B4, drug designing, enterovirus, environmental factors, lead compounds, Type 1 diabetes.

[1]
Roep, B.O. The role of T-cells in the pathogenesis of Type 1 diabetes: from cause to cure. Diabetologia, 2003, 46(3), 305-321.
[http://dx.doi.org/10.1007/s00125-003-1089-5] [PMID: 12687328]
[2]
Gamble, D.R.; Kinsley, M.L.; FitzGerald, M.G.; Bolton, R.; Taylor, K.W. Viral antibodies in diabetes mellitus. BMJ, 1969, 3(5671), 627-630.
[http://dx.doi.org/10.1136/bmj.3.5671.627] [PMID: 5811681]
[3]
Dotta, F.; Censini, S.; van Halteren, A.G.; Marselli, L.; Masini, M.; Dionisi, S.; Mosca, F.; Boggi, U.; Muda, A.O.; Del Prato, S.; Elliott, J.F.; Covacci, A.; Rappuoli, R.; Roep, B.O.; Marchetti, P. Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc. Natl. Acad. Sci. USA, 2007, 104(12), 5115-5120.
[http://dx.doi.org/10.1073/pnas.0700442104] [PMID: 17360338]
[4]
Yeung, W.C.; Rawlinson, W.D.; Craig, M.E. Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies. BMJ, 2011, 342, d35.
[http://dx.doi.org/10.1136/bmj.d35] [PMID: 21292721]
[5]
Haller, M.J.; Atkinson, M.A.; Schatz, D. Type 1 diabetes mellitus: etiology, presentation, and management. Pediatr. Clin. North Am., 2005, 52(6), 1553-1578.
[http://dx.doi.org/10.1016/j.pcl.2005.07.006] [PMID: 16301083]
[6]
Forouhi, N.G.; Wareham, N.J. Epidemiology of diabetes. Medicine (Abingdon), 2014, 42(12), 698-702.
[http://dx.doi.org/10.1016/j.mpmed.2014.09.007] [PMID: 25568613]
[7]
Songini, M.; Lombardo, C. The Sardinian way to type 1 diabetes. J. Diabetes Sci. Technol., 2010, 4(5), 1248-1255.
[http://dx.doi.org/10.1177/193229681000400526] [PMID: 20920447]
[8]
Hober, D.; Sauter, P. Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host. Nat. Rev. Endocrinol., 2010, 6(5), 279-289.
[http://dx.doi.org/10.1038/nrendo.2010.27] [PMID: 20351698]
[9]
Oberste, M.S.; Maher, K.; Kilpatrick, D.R.; Pallansch, M.A. Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J. Virol., 1999, 73(3), 1941-1948.
[http://dx.doi.org/10.1128/JVI.73.3.1941-1948.1999] [PMID: 9971773]
[10]
Hankaniemi, M.M.; Laitinen, O.H.; Stone, V.M.; Sioofy-Khojine, A.; Määttä, J.A.E.; Larsson, P.G.; Marjomäki, V.; Hyöty, H.; Flodström-Tullberg, M.; Hytönen, V.P. Optimized production and purification of Coxsackievirus B1 vaccine and its preclinical evaluation in a mouse model. Vaccine, 2017, 35(30), 3718-3725.
[http://dx.doi.org/10.1016/j.vaccine.2017.05.057] [PMID: 28579231]
[11]
Stone, V.M.; Hankaniemi, M.M.; Svedin, E.; Sioofy-Khojine, A.; Oikarinen, S.; Hyöty, H.; Laitinen, O.H.; Hytönen, V.P.; Flodström-Tullberg, M. A Coxsackievirus B vaccine protects against virus-induced diabetes in an experimental mouse model of type 1 diabetes. Diabetologia, 2018, 61(2), 476-481.
[http://dx.doi.org/10.1007/s00125-017-4492-z] [PMID: 29151123]
[12]
Oikarinen, M.; Tauriainen, S.; Oikarinen, S.; Honkanen, T.; Collin, P.; Rantala, I.; Mäki, M.; Kaukinen, K.; Hyöty, H. Type 1 diabetes is associated with enterovirus infection in gut mucosa. Diabetes, 2012, 61(3), 687-691.
[http://dx.doi.org/10.2337/db11-1157] [PMID: 22315304]
[13]
Jenson, A.B.; Rosenberg, H.S.; Notkins, A.L. Pancreatic islet-cell damage in children with fatal viral infections. Lancet, 1980, 2(8190), 354-358.
[PMID: 6105486]
[14]
Fohlman, J.; Friman, G. Is juvenile diabetes a viral disease? Ann. Med., 1993, 25(6), 569-574.
[http://dx.doi.org/10.1080/07853890.1993.12088586] [PMID: 8292308]
[15]
Bairoch, A.; Apweiler, R.; Wu, C.H.; Barker, W.C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R.; Magrane, M.; Martin, M.J.; Natale, D.A.; O’Donovan, C.; Redaschi, N.; Yeh, L.S. The Universal Protein Resource (UniProt). Nucleic Acids Res., 2005, 33(Database issue), D154-D159.
[http://dx.doi.org/10.1093/nar/gki070] [PMID: 15608167]
[16]
Yang, J.; Zhang, Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res., 2015, 43(W1)W174-81
[http://dx.doi.org/10.1093/nar/gkv342] [PMID: 25883148]
[17]
Ramachandran, G.N.; Ramakrishnan, C.; Sasisekharan, V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol., 1963, 7, 95-99.
[http://dx.doi.org/10.1016/S0022-2836(63)80023-6] [PMID: 13990617]
[18]
Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[19]
Robert Kiss, M.S.; Ferenc, A. Szalai A public web service for drug discovery. Journal of. Cheminformatics,, http://Mcule.com 2012(1), 17
[20]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[21]
Sandeep, G.; Nagasree, K.P.; Hanisha, M.; Kumar, M.M. AUDocker LE: A GUI for virtual screening with AUTODOCK Vina. BMC Res. Notes, 2011, 4, 445.
[http://dx.doi.org/10.1186/1756-0500-4-445] [PMID: 22026969]
[22]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[23]
Wolber, G.; Langer, T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model., 2005, 45(1), 160-169.
[http://dx.doi.org/10.1021/ci049885e] [PMID: 15667141]
[24]
Parasuraman, S. Toxicological screening. J. Pharmacol. Pharmacother., 2011, 2(2), 74-79.
[http://dx.doi.org/10.4103/0976-500X.81895] [PMID: 21772764]
[25]
Vreugdenhil, G.R.; Schloot, N.C.; Hoorens, A.; Rongen, C.; Pipeleers, D.G.; Melchers, W.J.; Roep, B.O.; Galama, J.M. Acute onset of type I diabetes mellitus after severe echovirus 9 infection: putative pathogenic pathways. Clin. Infect. Dis., 2000, 31(4), 1025-1031.
[http://dx.doi.org/10.1086/318159] [PMID: 11049787]
[26]
Yoon, J.W.; London, W.T.; Curfman, B.L.; Brown, R.L.; Notkins, A.L. Coxsackie virus B4 produces transient diabetes in nonhuman primates. Diabetes, 1986, 35(6), 712-716.
[http://dx.doi.org/10.2337/diab.35.6.712] [PMID: 3011574]
[27]
Tang, Z.; Roberts, C.C.; Chang, C.A. Understanding ligand-receptor non-covalent binding kinetics using molecular modeling. Front. Biosci., 2017, 22, 960-981.
[http://dx.doi.org/10.2741/4527] [PMID: 27814657]
[28]
Pan, A.C.; Borhani, D.W.; Dror, R.O.; Shaw, D.E. Molecular determinants of drug-receptor binding kinetics. Drug Discov. Today, 2013, 18(13-14), 667-673.
[http://dx.doi.org/10.1016/j.drudis.2013.02.007] [PMID: 23454741]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 3
Year: 2020
Page: [318 - 326]
Pages: 9
DOI: 10.2174/1573409915666190820154422
Price: $65

Article Metrics

PDF: 15
HTML: 1