The Development of an Antimicrobial Contact Lens – From the Laboratory to the Clinic

Author(s): Mark D.P. Willcox*, R. Chen, P. Kalaiselvan, M. Yasir, R. Rasul, N. Kumar, D. Dutta

Journal Name: Current Protein & Peptide Science

Volume 21 , Issue 4 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Contact lens wear is generally safe and provides excellent vision. However, contact lens wear is often associated with the risk of developing ocular surface infection and inflammation, and in severe cases, the infection can result in loss of vision. Antimicrobial peptide-coated contact lenses have been made to help reduce the incidence of infection and inflammation. This paper reviews the research progress from conception, through the laboratory and preclinical tests to the latest information on clinical testing of an antimicrobial contact lens. We provide insights into the pathways followed and pitfalls that have been encountered. The journey has not always been linear or smooth, but has resulted in some of the first published clinical testing of antimicrobial peptide-coated contact lenses in humans. We hope this may help lead to the development and commercialisation of antimicrobial contact lenses in the future.

Keywords: Contact lens, keratitis, antimicrobial peptide, clinical trial, melamine, MeL4.

[1]
Lin, T.Y.; Yeh, L.K.; Ma, D.H.; Chen, P.Y.; Lin, H.C.; Sun, C.C.; Tan, H.Y.; Chen, H.C.; Chen, S.Y.; Hsiao, C.H. Risk factors and microbiological features of patients hospitalized for microbial keratitis: A 10-year study in a referral center in Taiwan. Medicine (Baltimore), 2015, 94(43), e1905
[http://dx.doi.org/10.1097/MD.0000000000001905] [PMID: 26512612]
[2]
Ng, A.L.; To, K.K.; Choi, C.C.; Yuen, L.H.; Yim, S.M.; Chan, K.S.; Lai, J.S.; Wong, I.Y. Predisposing factors, microbial characteristics, and clinical outcome of microbial keratitis in a tertiary centre in Hong Kong: A 10-year experience. J. Ophthalmol., 2015, 2015, 769436
[http://dx.doi.org/10.1155/2015/769436] [PMID: 26167295]
[3]
Ni, N.; Nam, E.M.; Hammersmith, K.M.; Nagra, P.K.; Azari, A.A.; Leiby, B.E.; Dai, Y.; Cabrera, F.A.; Ma, J.F.; Lambert, C.E., Jr; Honig, S.E.; Rapuano, C.J. Seasonal, geographic, and antimicrobial resistance patterns in microbial keratitis: 4-year experience in eastern Pennsylvania. Cornea, 2015, 34(3), 296-302.
[http://dx.doi.org/10.1097/ICO.0000000000000352] [PMID: 25603231]
[4]
Truong, D.T.; Bui, M.T.; Cavanagh, H.D. Epidemiology and outcome of microbial keratitis: Private university versus urban public hospital care. Eye Contact Lens, 2018, 44(S1)(Suppl. 1), S82-S86.
[PMID: 27755163]
[5]
Yildiz, E.H.; Airiani, S.; Hammersmith, K.M.; Rapuano, C.J.; Laibson, P.R.; Virdi, A.S.; Hongyok, T.; Cohen, E.J. Trends in contact lens-related corneal ulcers at a tertiary referral center. Cornea, 2012, 31(10), 1097-1102.
[http://dx.doi.org/10.1097/ICO.0b013e318221cee0] [PMID: 22902490]
[6]
Young, A. L.; Leung, K. S.; Tsim, N.; Hui, M.; Jhanji, V. Risk factors, microbiological profile, and treatment outcomes of pediatric microbial keratitis in a tertiary care hospital in Hong Kong. Am J. Ophthalmol., 2013, 156(5), 1040-1044. e2
[http://dx.doi.org/10.1016/j.ajo.2013.06.019]
[7]
Willcox, M.D.; Naduvilath, T.J.; Vaddavalli, P.K.; Holden, B.A.; Ozkan, J.; Zhu, H. Corneal erosions, bacterial contamination of contact lenses, and microbial keratitis. Eye Contact Lens, 2010, 36(6), 340-345.
[http://dx.doi.org/10.1097/ICL.0b013e3181f57b05] [PMID: 20935567]
[8]
Kaye, S.; Tuft, S.; Neal, T.; Tole, D.; Leeming, J.; Figueiredo, F.; Armstrong, M.; McDonnell, P.; Tullo, A.; Parry, C. Bacterial susceptibility to topical antimicrobials and clinical outcome in bacterial keratitis. Invest. Ophthalmol. Vis. Sci., 2010, 51(1), 362-368.
[http://dx.doi.org/10.1167/iovs.09-3933] [PMID: 19684005]
[9]
Stapleton, F.; Keay, L.; Jalbert, I.; Cole, N. The epidemiology of contact lens related infiltrates. Optom. Vis. Sci., 2007, 84(4), 257-272.
[http://dx.doi.org/10.1097/OPX.0b013e3180485d5f] [PMID: 17435509]
[10]
Chalmers, R.L.; Wagner, H.; Mitchell, G.L.; Lam, D.Y.; Kinoshita, B.T.; Jansen, M.E.; Richdale, K.; Sorbara, L.; McMahon, T.T. Age and other risk factors for corneal infiltrative and inflammatory events in young soft contact lens wearers from the Contact Lens Assessment in Youth (CLAY) study. Invest. Ophthalmol. Vis. Sci., 2011, 52(9), 6690-6696.
[http://dx.doi.org/10.1167/iovs.10-7018] [PMID: 21527379]
[11]
Szczotka-Flynn, L.; Lass, J.H.; Sethi, A.; Debanne, S.; Benetz, B.A.; Albright, M.; Gillespie, B.; Kuo, J.; Jacobs, M.R.; Rimm, A. Risk factors for corneal infiltrative events during continuous wear of silicone hydrogel contact lenses. Invest. Ophthalmol. Vis. Sci., 2010, 51(11), 5421-5430.
[http://dx.doi.org/10.1167/iovs.10-5456] [PMID: 20538985]
[12]
Szczotka-Flynn, L.; Chalmers, R. Incidence and epidemiologic associations of corneal infiltrates with silicone hydrogel contact lenses. Eye Contact Lens, 2013, 39(1), 49-52.
[http://dx.doi.org/10.1097/ICL.0b013e318271d3dc] [PMID: 23172319]
[13]
Willcox, M.; Sharma, S.; Naduvilath, T.J.; Sankaridurg, P.R.; Gopinathan, U.; Holden, B.A. External ocular surface and lens microbiota in contact lens wearers with corneal infiltrates during extended wear of hydrogel lenses. Eye Contact Lens, 2011, 37(2), 90-95.
[http://dx.doi.org/10.1097/ICL.0b013e31820d12db] [PMID: 21301348]
[14]
Holden, B.A.; La Hood, D.; Grant, T.; Newton-Howes, J.; Baleriola-Lucas, C.; Willcox, M.D.; Sweeney, D.F. Gram-negative bacteria can induce contact lens related acute red eye (CLARE) responses. CLAO J., 1996, 22(1), 47-52.
[PMID: 8835069]
[15]
Jalbert, I.; Willcox, M.D.; Sweeney, D.F. Isolation of Staphylococcus aureus from a contact lens at the time of a contact lens-induced peripheral ulcer: case report. Cornea, 2000, 19(1), 116-120.
[http://dx.doi.org/10.1097/00003226-200001000-00023] [PMID: 10632021]
[16]
Sankaridurg, P.R.; Sharma, S.; Willcox, M.; Naduvilath, T.J.; Sweeney, D.F.; Holden, B.A.; Rao, G.N. Bacterial colonization of disposable soft contact lenses is greater during corneal infiltrative events than during asymptomatic extended lens wear. J. Clin. Microbiol., 2000, 38(12), 4420-4424.
[PMID: 11101574]
[17]
Sankaridurg, P.R.; Sharma, S.; Willcox, M.; Sweeney, D.F.; Naduvilath, T.J.; Holden, B.A.; Rao, G.N. Colonization of hydrogel lenses with Streptococcus pneumoniae: risk of development of corneal infiltrates. Cornea, 1999, 18(3), 289-295.
[http://dx.doi.org/10.1097/00003226-199905000-00008] [PMID: 10336030]
[18]
Sankaridurg, P.R.; Willcox, M.D.; Sharma, S.; Gopinathan, U.; Janakiraman, D.; Hickson, S.; Vuppala, N.; Sweeney, D.F.; Rao, G.N.; Holden, B.A. Haemophilus influenzae adherent to contact lenses associated with production of acute ocular inflammation. J. Clin. Microbiol., 1996, 34(10), 2426-2431.
[PMID: 8880493]
[19]
Radford, C.F.; Minassian, D.; Dart, J.K.; Stapleton, F.; Verma, S. Risk factors for nonulcerative contact lens complications in an ophthalmic accident and emergency department: a case-control study. Ophthalmology, 2009, 116(3), 385-392.
[http://dx.doi.org/10.1016/j.ophtha.2008.09.053] [PMID: 19167088]
[20]
Chalmers, R.L.; Keay, L.; Long, B.; Bergenske, P.; Giles, T.; Bullimore, M.A. Risk factors for contact lens complications in US clinical practices. Optom. Vis. Sci., 2010, 87(10), 725-735.
[http://dx.doi.org/10.1097/OPX.0b013e3181f31f68] [PMID: 20729772]
[21]
Chalmers, R.L.; Keay, L.; McNally, J.; Kern, J. Multicenter case-control study of the role of lens materials and care products on the development of corneal infiltrates. Optom. Vis. Sci., 2012, 89(3), 316-325.
[http://dx.doi.org/10.1097/OPX.0b013e318240c7ff] [PMID: 22227912]
[22]
Hoddenbach, J.G.; Boekhoorn, S.S.; Wubbels, R.; Vreugdenhil, W.; Van Rooij, J.; Geerards, A.J. Clinical presentation and morbidity of contact lens-associated microbial keratitis: a retrospective study. Graefes Arch. Clin. Exp. Ophthalmol., 2014, 252(2), 299-306.
[http://dx.doi.org/10.1007/s00417-013-2514-1] [PMID: 24281783]
[23]
Tabbara, K.F.; El-Sheikh, H.F.; Aabed, B. Extended wear contact lens related bacterial keratitis. Br. J. Ophthalmol., 2000, 84(3), 327-328.
[http://dx.doi.org/10.1136/bjo.84.3.327] [PMID: 10684847]
[24]
Houang, E.; Lam, D.; Fan, D.; Seal, D. Microbial keratitis in Hong Kong: relationship to climate, environment and contact-lens disinfection. Trans. R. Soc. Trop. Med. Hyg., 2001, 95(4), 361-367.
[http://dx.doi.org/10.1016/S0035-9203(01)90180-4] [PMID: 11579873]
[25]
van der Meulen, I.J.; van Rooij, J.; Nieuwendaal, C.P.; Van Cleijnenbreugel, H.; Geerards, A.J.; Remeijer, L. Age-related risk factors, culture outcomes, and prognosis in patients admitted with infectious keratitis to two Dutch tertiary referral centers. Cornea, 2008, 27(5), 539-544.
[http://dx.doi.org/10.1097/ICO.0b013e318165b200] [PMID: 18520502]
[26]
Konda, N.; Motukupally, S.R.; Garg, P.; Sharma, S.; Ali, M.H.; Willcox, M.D. Microbial analyses of contact lens-associated microbial keratitis. Optom. Vis. Sci., 2014, 91(1), 47-53.
[http://dx.doi.org/10.1097/OPX.0000000000000082] [PMID: 24212183]
[27]
Moriyama, A.S.; Hofling-Lima, A.L. Contact lens-associated microbial keratitis. Arq. Bras. Oftalmol., 2008, 71(6)(Suppl.), 32-36.
[http://dx.doi.org/10.1590/S0004-27492008000700007] [PMID: 19274408]
[28]
Stapleton, F.; Keay, L.J.; Sanfilippo, P.G.; Katiyar, S.; Edwards, K.P.; Naduvilath, T. Relationship between climate, disease severity, and causative organism for contact lens-associated microbial keratitis in Australia. Am. J. Ophthalmol., 2007, 144(5), 690-698.
[http://dx.doi.org/10.1016/j.ajo.2007.06.037] [PMID: 17727808]
[29]
Zimmerman, A.B.; Nixon, A.D.; Rueff, E.M. Contact lens associated microbial keratitis: practical considerations for the optometrist. Clin Optom (Auckl), 2016, 8, 1-12.
[http://dx.doi.org/10.2147/OPTO.S66424] [PMID: 30214344]
[30]
Joslin, C.E.; Tu, E.Y.; McMahon, T.T.; Passaro, D.J.; Stayner, L.T.; Sugar, J. Epidemiological characteristics of a Chicago-area Acanthamoeba keratitis outbreak. Am. J. Ophthalmol., 2006, 142(2), 212-217.
[http://dx.doi.org/10.1016/j.ajo.2006.04.034] [PMID: 16876498]
[31]
Gower, E.W.; Keay, L.J.; Oechsler, R.A.; Iovieno, A.; Alfonso, E.C.; Jones, D.B.; Colby, K.; Tuli, S.S.; Patel, S.R.; Lee, S.M.; Irvine, J.; Stulting, R.D.; Mauger, T.F.; Schein, O.D. Trends in fungal keratitis in the United States, 2001 to 2007. Ophthalmology, 2010, 117(12), 2263-2267.
[http://dx.doi.org/10.1016/j.ophtha.2010.03.048] [PMID: 20591493]
[32]
Lee, M.H.; Abell, R.G.; Mitra, B.; Ferdinands, M.; Vajpayee, R.B. Risk factors, demographics and clinical profile of Acanthamoeba keratitis in Melbourne: an 18-year retrospective study. Br. J. Ophthalmol., 2018, 102(5), 687-691.
[http://dx.doi.org/10.1136/bjophthalmol-2017-310428] [PMID: 28844988]
[33]
Maycock, N.J.; Jayaswal, R. Update on acanthamoeba keratitis: diagnosis, treatment, and outcomes. Cornea, 2016, 35(5), 713-720.
[http://dx.doi.org/10.1097/ICO.0000000000000804] [PMID: 26989955]
[34]
Williams, T.J.; Schneider, R.P.; Willcox, M.D. The effect of protein-coated contact lenses on the adhesion and viability of gram negative bacteria. Curr. Eye Res., 2003, 27(4), 227-235.
[http://dx.doi.org/10.1076/ceyr.27.4.227.16602] [PMID: 14562174]
[35]
Williams, T.J.; Willcox, M.D.; Schneider, R.P. Interactions of bacteria with contact lenses: the effect of soluble protein and carbohydrate on bacterial adhesion to contact lenses. Optom. Vis. Sci., 1998, 75(4), 266-271.
[http://dx.doi.org/10.1097/00006324-199804000-00023] [PMID: 9586751]
[36]
Subbaraman, L.N.; Borazjani, R.; Zhu, H.; Zhao, Z.; Jones, L.; Willcox, M.D. Influence of protein deposition on bacterial adhesion to contact lenses. Optom. Vis. Sci., 2011, 88(8), 959-966.
[http://dx.doi.org/10.1097/OPX.0b013e31821ffccb] [PMID: 21602733]
[37]
Willcox, M.; Williams, T. J.; Schneider, R. P.; Vanderlaan, D. Biomedical devices with antimicrobial coatings. US6592814B2. 1998.
[38]
Flanagan, J.L.; Willcox, M.D. Role of lactoferrin in the tear film. Biochimie, 2009, 91(1), 35-43.
[http://dx.doi.org/10.1016/j.biochi.2008.07.007] [PMID: 18718499]
[39]
Ashby, B.; Garrett, Q.; Willcox, M. Bovine lactoferrin structures promoting corneal epithelial wound healing in vitro. Invest. Ophthalmol. Vis. Sci., 2011, 52(5), 2719-2726.
[http://dx.doi.org/10.1167/iovs.10-6352] [PMID: 21282581]
[40]
Gifford, J.L.; Hunter, H.N.; Vogel, H.J. Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell. Mol. Life Sci., 2005, 62(22), 2588-2598.
[http://dx.doi.org/10.1007/s00018-005-5373-z] [PMID: 16261252]
[41]
Aliwarga, Y.; Hume, E.B.; Lan, J.; Willcox, M.D. Antimicrobial peptides: a potential role in ocular therapy. Clin. Exp. Ophthalmol., 2001, 29(3), 157-160.
[http://dx.doi.org/10.1046/j.1442-9071.2001.00406.x] [PMID: 11446458]
[42]
DeGrado, W.F.; Musso, G.F.; Lieber, M.; Kaiser, E.T.; Kézdy, F.J. Kinetics and mechanism of hemolysis induced by melittin and by a synthetic melittin analogue. Biophys. J., 1982, 37(1), 329-338.
[http://dx.doi.org/10.1016/S0006-3495(82)84681-X] [PMID: 7055625]
[43]
Juvvadi, P.; Vunnam, S.; Merrifield, E.L.; Boman, H.G.; Merrifield, R.B. Hydrophobic effects on antibacterial and channel-forming properties of cecropin A-melittin hybrids. J. Pept. Sci., 1996, 2(4), 223-232.
[PMID: 9231329]
[44]
Boman, H.G.; Wade, D.; Boman, I.A.; Wåhlin, B.; Merrifield, R.B. Antibacterial and antimalarial properties of peptides that are cecropin-melittin hybrids. FEBS Lett., 1989, 259(1), 103-106.
[http://dx.doi.org/10.1016/0014-5793(89)81505-4] [PMID: 2689223]
[45]
Willcox, M.D.; Hume, E.B.; Aliwarga, Y.; Kumar, N.; Cole, N. A novel cationic-peptide coating for the prevention of microbial colonization on contact lenses. J. Appl. Microbiol., 2008, 105(6), 1817-1825.
[http://dx.doi.org/10.1111/j.1365-2672.2008.03942.x] [PMID: 19016975]
[46]
Willcox, M.; Hume, E.; Cole, N.; Aliwarga, Y.; Zanini, D. Biomedical devices with antimicrobial coatings. US7282214B2, 2004.
[47]
Kreil, G. Structure of melittin isolated from two species of honey bees. FEBS Lett., 1973, 33, 214-244.
[http://dx.doi.org/10.1016/0014-5793(73)80202-9]
[48]
Tan, Y.X.; Chen, C.; Wang, Y.L.; Lin, S.; Wang, Y.; Li, S.B.; Jin, X.P.; Gao, H.W.; Du, F.S.; Gong, F.; Ji, S.P. Truncated peptides from melittin and its analog with high lytic activity at endosomal pH enhance branched polyethylenimine-mediated gene transfection. J. Gene Med., 2012, 14(4), 241-250.
[http://dx.doi.org/10.1002/jgm.2609] [PMID: 22328546]
[49]
Hoffmann, J.A.; Chance, R.E.; Johnson, M.G. Purification and analysis of the major components of chum salmon protamine contained in insulin formulations using high-performance liquid chromatography. Protein Expr. Purif., 1990, 1(2), 127-133.
[http://dx.doi.org/10.1016/1046-5928(90)90005-J] [PMID: 2136234]
[50]
Rasul, R.; Cole, N.; Balasubramanian, D.; Chen, R.; Kumar, N.; Willcox, M.D. Interaction of the antimicrobial peptide melimine with bacterial membranes. Int. J. Antimicrob. Agents, 2010, 35(6), 566-572.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.02.005] [PMID: 20227248]
[51]
Dutta, D.; Kumar, N.; D P Willcox, M. Antimicrobial activity of four cationic peptides immobilised to poly-hydroxyethylmethacrylate. Biofouling, 2016, 32(4), 429-438.
[http://dx.doi.org/10.1080/08927014.2015.1129533] [PMID: 26934297]
[52]
Berry, T.; Dutta, D.; Chen, R.; Leong, A.; Wang, H.; Donald, W.A.; Parviz, M.; Cornell, B.; Willcox, M.; Kumar, N.; Cranfield, C.G. Lipid membrane interactions of the cationic antimicrobial peptide chimeras melimine and cys-melimine. Langmuir, 2018, 34(38), 11586-11592.
[http://dx.doi.org/10.1021/acs.langmuir.8b01701] [PMID: 30119612]
[53]
Kuppusamy, R.; Yasir, M.; Berry, T.; Cranfield, C.G.; Nizalapur, S.; Yee, E.; Kimyon, O.; Taunk, A.; Ho, K.K.K.; Cornell, B.; Manefield, M.; Willcox, M.; Black, D.S.; Kumar, N. Design and synthesis of short amphiphilic cationic peptidomimetics based on biphenyl backbone as antibacterial agents. Eur. J. Med. Chem., 2018, 143, 1702-1722.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.066] [PMID: 29133052]
[54]
Flamm, R.K.; Rhomberg, P.R.; Simpson, K.M.; Farrell, D.J.; Sader, H.S.; Jones, R.N. In vitro spectrum of pexiganan activity when tested against pathogens from diabetic foot infections and with selected resistance mechanisms. Antimicrob. Agents Chemother., 2015, 59(3), 1751-1754.
[http://dx.doi.org/10.1128/AAC.04773-14] [PMID: 25583717]
[55]
Oo, T.Z.; Cole, N.; Garthwaite, L.; Willcox, M.D.; Zhu, H. Evaluation of synergistic activity of bovine lactoferricin with antibiotics in corneal infection. J. Antimicrob. Chemother., 2010, 65(6), 1243-1251.
[http://dx.doi.org/10.1093/jac/dkq106] [PMID: 20375033]
[56]
Giangaspero, A.; Sandri, L.; Tossi, A. Amphipathic alpha helical antimicrobial peptides. Eur. J. Biochem., 2001, 268(21), 5589-5600.
[http://dx.doi.org/10.1046/j.1432-1033.2001.02494.x] [PMID: 11683882]
[57]
Deslouches, B.; Steckbeck, J.D.; Craigo, J.K.; Doi, Y.; Mietzner, T.A.; Montelaro, R.C. Rational design of engineered cationic antimicrobial peptides consisting exclusively of arginine and tryptophan, and their activity against multidrug-resistant pathogens. Antimicrob. Agents Chemother., 2013, 57(6), 2511-2521.
[http://dx.doi.org/10.1128/AAC.02218-12] [PMID: 23507278]
[58]
Chan, D.I.; Prenner, E.J.; Vogel, H.J. Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim. Biophys. Acta, 2006, 1758(9), 1184-1202.
[http://dx.doi.org/10.1016/j.bbamem.2006.04.006] [PMID: 16756942]
[59]
Yasir, M.; Dutta, D.; Willcox, M.D.P. Comparative mode of action of the antimicrobial peptide melimine and its derivative Mel4 against Pseudomonas aeruginosa. Sci. Rep., 2019, 9(1), 7063.
[http://dx.doi.org/10.1038/s41598-019-42440-2] [PMID: 31068610]
[60]
Sohlenkamp, C.; Geiger, O. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol. Rev., 2016, 40(1), 133-159.
[http://dx.doi.org/10.1093/femsre/fuv008] [PMID: 25862689]
[61]
Chen, R.; Willcox, M.D.; Cole, N.; Ho, K.K.; Rasul, R.; Denman, J.A.; Kumar, N. Characterization of chemoselective surface attachment of the cationic peptide melimine and its effects on antimicrobial activity. Acta Biomater., 2012, 8(12), 4371-4379.
[http://dx.doi.org/10.1016/j.actbio.2012.07.029] [PMID: 22842034]
[62]
Rasul, R. Novel antimicrobial biomaterials; University of New South Wales: Sydney, 2010.
[63]
Chen, R.; Cole, N.; Willcox, M.D.; Park, J.; Rasul, R.; Carter, E.; Kumar, N. Synthesis, characterization and in vitro activity of a surface-attached antimicrobial cationic peptide. Biofouling, 2009, 25(6), 517-524.
[http://dx.doi.org/10.1080/08927010902954207] [PMID: 19408136]
[64]
Dutta, D.; Cole, N.; Kumar, N.; Willcox, M.D. Broad spectrum antimicrobial activity of melimine covalently bound to contact lenses. Invest. Ophthalmol. Vis. Sci., 2013, 54(1), 175-182.
[http://dx.doi.org/10.1167/iovs.12-10989] [PMID: 23211820]
[65]
Dutta, D.; Ozkan, J.; Willcox, M.D. Biocompatibility of antimicrobial melimine lenses: rabbit and human studies. Optom. Vis. Sci., 2014, 91(5), 570-581.
[http://dx.doi.org/10.1097/OPX.0000000000000232] [PMID: 24759327]
[66]
Willcox, M.; Sankaridurg, P.; Lan, J.; Pearce, D.; Thakur, A.; Zhu, H.; Keay, L.; Stapleton, F. Inflammation and infection and effects of the closed eye.Silicone Hydrogels: the rebirth of continuous wear contact lenses, 1st ed; Sweeney, D.F., Ed.; Butterworth-Heinemann: Oxford, 2000, pp. 45-75.
[67]
Wu, P.; Stapleton, F.; Willcox, M.D. The causes of and cures for contact lens-induced peripheral ulcer. In:Eye Contact Lens; , 2003, pp. (1 Suppl)S63-6. discussion. S83-4, S192-4.
[http://dx.doi.org/10.1097/00140068-200301001-00018]
[68]
Dutta, D.; Vijay, A.K.; Kumar, N.; Willcox, M.D. Melimine-coated antimicrobial contact lenses reduce microbial keratitis in an animal model. Invest. Ophthalmol. Vis. Sci., 2016, 57(13), 5616-5624.
[http://dx.doi.org/10.1167/iovs.16-19882] [PMID: 27768798]
[69]
Cole, N.; Hume, E.B.; Vijay, A.K.; Sankaridurg, P.; Kumar, N.; Willcox, M.D. In vivo performance of melimine as an antimicrobial coating for contact lenses in models of CLARE and CLPU. Invest. Ophthalmol. Vis. Sci., 2010, 51(1), 390-395.
[http://dx.doi.org/10.1167/iovs.09-4068] [PMID: 19710414]
[70]
Vijay, A.K.; Fadli, Z.; Lakkis, C.; Coles-Brennan, C.; Willcox, M.D.P. In Vitro Compatibility of Contact Lenses With Corneal Epithelial Cells. Eye Contact Lens, 2018, 44(Suppl. 1), S283-S290.
[PMID: 28727605]
[71]
Jones, L.; MacDougall, N.; Sorbara, L.G. Asymptomatic corneal staining associated with the use of balafilcon silicone-hydrogel contact lenses disinfected with a polyaminopropyl biguanide-preserved care regimen. Optom. Vis. Sci., 2002, 79(12), 753-761.
[http://dx.doi.org/10.1097/00006324-200212000-00007] [PMID: 12512683]
[72]
Landolt-Marticorena, C.; Williams, K.A.; Deber, C.M.; Reithmeier, R.A. Non-random distribution of amino acids in the transmembrane segments of human type I single span membrane proteins. J. Mol. Biol., 1993, 229(3), 602-608.
[http://dx.doi.org/10.1006/jmbi.1993.1066] [PMID: 8433362]
[73]
Reithmeier, R.A. Characterization and modeling of membrane proteins using sequence analysis. Curr. Opin. Struct. Biol., 1995, 5(4), 491-500.
[http://dx.doi.org/10.1016/0959-440X(95)80034-4] [PMID: 8528765]
[74]
Christiaens, B.; Symoens, S.; Verheyden, S.; Engelborghs, Y.; Joliot, A.; Prochiantz, A.; Vandekerckhove, J.; Rosseneu, M.; Vanloo, B. Tryptophan fluorescence study of the interaction of penetratin peptides with model membranes. Eur. J. Biochem., 2002, 269(12), 2918-2926.
[http://dx.doi.org/10.1046/j.1432-1033.2002.02963.x] [PMID: 12071955]
[75]
Dutta, D.; Zhao, T.; Cheah, K.B.; Holmlund, L.; Willcox, M.D.P. Activity of a melimine derived peptide Mel4 against Stenotrophomonas, Delftia, Elizabethkingia, Burkholderia and biocompatibility as a contact lens coating. Cont. Lens Anterior Eye, 2017, 40(3), 175-183.
[http://dx.doi.org/10.1016/j.clae.2017.01.002] [PMID: 28118996]
[76]
Willcox, M.D.; Carnt, N.; Diec, J.; Naduvilath, T.; Evans, V.; Stapleton, F.; Iskandar, S.; Harmis, N.; de la Jara, P.L.; Holden, B.A. Contact lens case contamination during daily wear of silicone hydrogels. Optom. Vis. Sci., 2010, 87(7), 456-464.
[http://dx.doi.org/10.1097/OPX.0b013e3181e19eda] [PMID: 20436374]
[77]
Kilvington, S.; Shovlin, J.; Nikolic, M. Identification and susceptibility to multipurpose disinfectant solutions of bacteria isolated from contact lens storage cases of patients with corneal infiltrative events. Cont. Lens Anterior Eye, 2013, 36(6), 294-298.
[http://dx.doi.org/10.1016/j.clae.2013.02.001] [PMID: 23466175]
[78]
Sahly, H.; Schubert, S.; Harder, J.; Rautenberg, P.; Ullmann, U.; Schröder, J.; Podschun, R. Burkholderia is highly resistant to human Beta-defensin 3. Antimicrob. Agents Chemother., 2003, 47(5), 1739-1741.
[http://dx.doi.org/10.1128/AAC.47.5.1739-1741.2003] [PMID: 12709350]
[79]
Devine, D.A. Antimicrobial peptides in defence of the oral and respiratory tracts. Mol. Immunol., 2003, 40(7), 431-443.
[http://dx.doi.org/10.1016/S0161-5890(03)00162-7] [PMID: 14568389]
[80]
Dutta, D.; Kamphuis, B.; Ozcelik, B.; Thissen, H.; Pinarbasi, R.; Kumar, N.; Willcox, M.D.P. Development of silicone hydrogel antimicrobial contact lenses with Mel4 peptide coating. Optom. Vis. Sci., 2018, 95(10), 937-946.
[http://dx.doi.org/10.1097/OPX.0000000000001282] [PMID: 30234828]
[81]
Kalaiselvan, P.; Dutta, D.; Konda, N.; Sharma, S.; Vaddavalli, P.; Stapleton, F.; Willcox, M. Comfort and biocompatibility during extended melimine antimicrobial contact lens (MACL) wear clinical trial. In American Academy of Optometry, San Antonio, TX, USA, 2018; p Board #151;;
[82]
Kalaiselvan, P.; Willcox, M.; Konda, N.; Sharma, S.; Vaddavalli, P.; Stapleton, F.; Dutta, D. Does extended melimine antimicrobial contact lens (MACL) wear effect the ocular microbiota?; In American Academy of Optometry: San Antonio, TX, USA, 2018.
[83]
Dutta, D.; Kalaiselvan, P.; Konda, N.; Sharma, S.; Vaddavalli, P.; Stapleton, F.; Willcox, M. Contact lens-induced corneal infiltrative events during extended melimine antimicrobial contact lens (MACL) wear clinical trial; In American Academy of Optometry: San Antonio, TX, USA, 2018.


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 4
Year: 2020
Published on: 28 April, 2020
Page: [357 - 368]
Pages: 12
DOI: 10.2174/1389203720666190820152508

Article Metrics

PDF: 26
HTML: 5
EPUB: 1
PRC: 1