Exploring Antimicrobials from the Flora and Fauna of Marine: Opportunities and Limitations

Author(s): Krishnamoorthy Venkateskumar, Subramani Parasuraman*, Leow Y. Chuen, Veerasamy Ravichandran, Subramani Balamurgan

Journal Name: Current Drug Discovery Technologies

Volume 17 , Issue 4 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


About 95% of earth living space lies deep below the ocean’s surface and it harbors extraordinary diversity of marine organisms. Marine biodiversity is an exceptional reservoir of natural products, bioactive compounds, nutraceuticals and other potential compounds of commercial value. Timeline for the development of the drug from a plant, synthetic and other alternative sources is too lengthy. Exploration of the marine environment for potential bioactive compounds has gained focus and huge opportunity lies ahead for the exploration of such vast resources in the ocean. Further, the evolution of superbugs with increasing resistance to the currently available drugs is alarming and it needs coordinated efforts to resolve them. World Health Organization recommends the need and necessity to develop effective bioactive compounds to combat problems associated with antimicrobial resistance. Based on these factors, it is imperative to shift the focus towards the marine environment for potential bioactive compounds that could be utilized to tackle antimicrobial resistance. Current research trends also indicate the huge strides in research involving marine environment for drug discovery. The objective of this review article is to provide an overview of marine resources, recently reported research from marine resources, challenges, future research prospects in the marine environment.

Keywords: Antimicrobials, drug discovery, marine, flora, fauna, bioactive compounds.

Thakur NL, Thakur AN, Muller WEG. Marine natural products in drug discovery. Nat Prod Radiance 2005; 4: 471-7.
Torne L, Binns R. Drug development and therapeutic solutions in the digital age. Drug Discov Today 2018; 23(12): 1922-4.
[http://dx.doi.org/10.1016/j.drudis.2018.09.005] [PMID: 30227241]
Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 2015; 109(7): 309-18.
[http://dx.doi.org/10.1179/2047773215Y.0000000030] [PMID: 26343252]
Marshall LJ, Austin CP, Casey W, Fitzpatrick SC, Willett C. Recommendations toward a human pathway-based approach to disease research. Drug Discov Today 2018; 23(11): 1824-32.
[http://dx.doi.org/10.1016/j.drudis.2018.05.038] [PMID: 29870792]
Malve H. Exploring the ocean for new drug developments: Marine pharmacology. J Pharm Bioallied Sci 2016; 8(2): 83-91.
[http://dx.doi.org/10.4103/0975-7406.171700] [PMID: 27134458]
Arizza V. Marine biodiversity as source of new drugs. Ital J Zool (Modena) 2013; 80(3): 317-8.
Molinski TF, Dalisay DS, Lievens SL, Saludes JP. Drug development from marine natural products. Nat Rev Drug Discov 2009; 8(1): 69-85.
[http://dx.doi.org/10.1038/nrd2487] [PMID: 19096380]
Bhatnagar I, Kim SK. Marine antitumor drugs: status, shortfalls and strategies. Mar Drugs 2010; 8(10): 2702-20.
[http://dx.doi.org/10.3390/md8102702] [PMID: 21116415]
Mayer AM, Glaser KB, Cuevas C, et al. The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol Sci 2010; 31(6): 255-65.
[http://dx.doi.org/10.1016/j.tips.2010.02.005] [PMID: 20363514]
Roch P, Hubert F, van Der Knaap W, Noël T. Present knowledge on the molecular basis of cytotoxicity, antibacterial activity and stress response in marine bivalves. Ital J Zool (Modena) 1996; 63: 311-6.
Jensen PR, Fenical W. Marine microorganisms and drug discovery: current status and future potential. Drugs from the Sea. Karger Publish-ers 2000; pp. 6-29.
Amador ML, Jimeno J, Paz-Ares L, Cortes-Funes H, Hidalgo M. Progress in the development and acquisition of anticancer agents from marine sources. Ann Oncol 2003; 14(11): 1607-15.
[http://dx.doi.org/10.1093/annonc/mdg443] [PMID: 14581267]
Newman DJ, Cragg GM. Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod 2004; 67(8): 1216-38.
[http://dx.doi.org/10.1021/np040031y] [PMID: 15332835]
Grienke U, Silke J, Tasdemir D. Bioactive compounds from marine mussels and their effects on human health. Food Chem 2014; 142: 48-60.
[http://dx.doi.org/10.1016/j.foodchem.2013.07.027] [PMID: 24001811]
Chatterjee A, Modarai M, Naylor NR, et al. Quantifying drivers of antibiotic resistance in humans: a systematic review. Lancet Infect Dis 2018; 18(12): e368-78.
[http://dx.doi.org/10.1016/S1473-3099(18)30296-2] [PMID: 30172580]
Lai PS, Bebell LM, Meney C, Valeri L, White MC. Epidemiology of antibiotic-resistant wound infections from six countries in Africa. BMJ Glob Health 2018; 2(Suppl. 4). e000475
[http://dx.doi.org/10.1136/bmjgh-2017-000475] [PMID: 29588863]
Travis A, Chernova O, Chernov V, Aminov R. Antimicrobial drug discovery: lessons of history and future strategies. Expert Opin Drug Discov 2018; 13(11): 983-5.
[http://dx.doi.org/10.1080/17460441.2018.1515910] [PMID: 30136874]
Lindequist U. Marine-Derived Pharmaceuticals - Challenges and Opportunities. Biomol Ther (Seoul) 2016; 24(6): 561-71.
[http://dx.doi.org/10.4062/biomolther.2016.181] [PMID: 27795450]
Silber J, Kramer A, Labes A, Tasdemir D. From Discovery to Production: Biotechnology of marine fungi for the production of new antibi-otics. Mar Drugs 2016; 14(7) E137
[http://dx.doi.org/10.3390/md14070137] [PMID: 27455283]
Demain AL, Zhang J. Cephalosporin C production by Cephalosporium acremonium: the methionine story. Crit Rev Biotechnol 1998; 18(4): 283-94.
[http://dx.doi.org/10.1080/0738-859891224176] [PMID: 9887506]
Burkholder PR, Pfister RM, Leitz FH. Production of a pyrrole antibiotic by a marine bacterium. Appl Microbiol 1966; 14(4): 649-53.
[http://dx.doi.org/10.1128/AEM.14.4.649-653.1966] [PMID: 4380876]
Doshi GM, Aggarwal GV, Martins EA, Shanbhag PP. Novel antibiotics from marine sources. Int J Pharm Sci Nanotech 2011; 4: 1446-61.
Klochko VV. Ecology, Systematics and Antibiotic Activity of Pseudomonas batumici and Alteromonas macleodii in Connection with Analysis of their Genome Structure. Mikrobiol Z 2016; 78(6): 50-9.
[http://dx.doi.org/10.15407/microbiolj78.06.050] [PMID: 30141883]
Shimizu Y, Ogasawara Y, Matsumoto A, Dairi T. Aplasmomycin and boromycin are specific inhibitors of the futalosine pathway. J Antibiot (Tokyo) 2018; 71(11): 968-70.
[http://dx.doi.org/10.1038/s41429-018-0087-2] [PMID: 30089869]
Fitzner A, Frauendorf H, Laatsch H, Diederichsen U. Formation of gutingimycin: analytical investigation of trioxacarcin A-mediated alkylation of dsDNA. Anal Bioanal Chem 2008; 390(4): 1139-47.
[http://dx.doi.org/10.1007/s00216-007-1737-6] [PMID: 18210096]
Maskey RP, Helmke E, Kayser O, et al. Anti-cancer and antibacterial trioxacarcins with high anti-malaria activity from a marine Streptomycete and their absolute stereochemistry. J Antibiot (Tokyo) 2004; 57(12): 771-9.
[http://dx.doi.org/10.7164/antibiotics.57.771] [PMID: 15745111]
Namikoshi M, Negishi R, Nagai H, Dmitrenok A, Kobayashi H. Three new chlorine containing antibiotics from a marine-derived fungus Aspergillus ostianus collected in Pohnpei. J Antibiot (Tokyo) 2003; 56(9): 755-61.
[http://dx.doi.org/10.7164/antibiotics.56.755] [PMID: 14632284]
Kito K, Ookura R, Yoshida S, Namikoshi M, Ooi T, Kusumi T. Pentaketides relating to aspinonene and dihydroaspyrone from a marine-derived fungus, Aspergillus ostianus. J Nat Prod 2007; 70(12): 2022-5.
[http://dx.doi.org/10.1021/np070301n] [PMID: 17994702]
Acebal C, Alcazar R, Cañedo LM, et al. Two marine Agrobacterium producers of sesbanimide antibiotics. J Antibiot (Tokyo) 1998; 51(1): 64-7.
[http://dx.doi.org/10.7164/antibiotics.51.64] [PMID: 9580130]
Fingerman M, Nagabhushanam R. Recent Advances in Marine Biotechnology. CRC Press 2002. ISBN: 1578081351
Popović-Djordjević JB, Klaus AS, Žižak ŽS, Matić IZ, Drakulić BJ. Antiproliferative and antibacterial activity of some glutarimide derivatives. J Enzyme Inhib Med Chem 2016; 31(6): 915-23.
[http://dx.doi.org/10.3109/14756366.2015.1070844] [PMID: 26247353]
Acebal C, Cañedo LM, Puentes JL, et al. Agrochelin, a new cytotoxic antibiotic from a marine Agrobacterium. Taxonomy, fermentation, isolation, physico-chemical properties and biological activity. J Antibiot (Tokyo) 1999; 52(11): 983-7.
[http://dx.doi.org/10.7164/antibiotics.52.983] [PMID: 10656570]
Brinkhoff T, Bach G, Heidorn T, Liang L, Schlingloff A, Simon M. Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Appl Environ Microbiol 2004; 70(4): 2560-5.
[http://dx.doi.org/10.1128/AEM.70.4.2560-2565.2003] [PMID: 15066861]
Prol García MJ, D’Alvise PW, Rygaard AM, Gram L. Biofilm formation is not a prerequisite for production of the antibacterial compound tropodithietic acid in Phaeobacter inhibens DSM17395. J Appl Microbiol 2014; 117(6): 1592-600.
[http://dx.doi.org/10.1111/jam.12659] [PMID: 25284322]
Handayani D, Edrada RA, Proksch P, et al. Four new bioactive polybrominated diphenyl ethers of the sponge Dysidea herbacea from West Sumatra, Indonesia. J Nat Prod 1997; 60(12): 1313-6.
[http://dx.doi.org/10.1021/np970271w] [PMID: 9463111]
Attaway DH, Zaborsky OR, Eds. Pharmaceutical and bioactive natural products. Springer Science & Business Media 2013.
Asagabaldan MA, Ayuningrum D, Kristiana R, Sabdono A, Radjasa OK, Trianto A. Identification and antibacterial activity of bacteria isolated from marine sponge Haliclona (Reniera) sp. against multi-drug resistant human pathogen. nIOP Conference Series: Earth and Environmental Science 55(1)
Rao KV, Kasanah N, Wahyuono S, Tekwani BL, Schinazi RF, Hamann MT. Three new manzamine alkaloids from a common Indonesian sponge and their activity against infectious and tropical parasitic diseases. J Nat Prod 2004; 67(8): 1314-8.
[http://dx.doi.org/10.1021/np0400095] [PMID: 15332848]
Zonder JA, Shields AF, Zalupski M, et al. A phase II trial of bryostatin 1 in the treatment of metastatic colorectal cancer. Clin Cancer Res 2001; 7(1): 38-42.
[PMID: 11205915]
Russo P, Kisialiou A, Lamonaca P, Moroni R, Prinzi G, Fini M. New drugs from marine organisms in Alzheimer’s disease. Mar Drugs 2015; 14(1): 5.
[http://dx.doi.org/10.3390/md14010005] [PMID: 26712769]
Yanagihara M, Sasaki-Takahashi N, Sugahara T, et al. Leptosins isolated from marine fungus Leptoshaeria species inhibit DNA topoisomerases I and/or II and induce apoptosis by inactivation of Akt/protein kinase B. Cancer Sci 2005; 96(11): 816-24.
[http://dx.doi.org/10.1111/j.1349-7006.2005.00117.x] [PMID: 16271076]
Yoon WJ, Heo SJ, Han SC, et al. Anti-inflammatory effect of sargachromanol G isolated from Sargassum siliquastrum in RAW 264.7 cells. Arch Pharm Res 2012; 35(8): 1421-30.
[http://dx.doi.org/10.1007/s12272-012-0812-5] [PMID: 22941485]
Desbois AP, Mearns-Spragg A, Smith VJ. A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Mar Biotechnol (NY) 2009; 11(1): 45-52.
[http://dx.doi.org/10.1007/s10126-008-9118-5] [PMID: 18575935]
Kim TK, Hewavitharana AK, Shaw PN, Fuerst JA. Discovery of a new source of rifamycin antibiotics in marine sponge actinobacteria by phylogenetic prediction. Appl Environ Microbiol 2006; 72(3): 2118-25.
[http://dx.doi.org/10.1128/AEM.72.3.2118-2125.2006] [PMID: 16517661]
Di Stefano AF, Rusca A, Loprete L, Dröge MJ, Moro L, Assandri A. Systemic absorption of rifamycin SV MMX administered as modified-release tablets in healthy volunteers. Antimicrob Agents Chemother 2011; 55(5): 2122-8.
[http://dx.doi.org/10.1128/AAC.01504-10] [PMID: 21402860]
Faulkner DJ. Marine natural products: metabolites of marine algae and herbivorous marine molluscs. Nat Prod Rep 1984; 1: 251-80.
bou-El-Wafa GS, Shaaban M, Shaaban KA, et al. Pachydictyols B and C: new diterpenes from Dictyota dicho-toma Hudson. Mar Drugs 2013; 11(9): 3109-3123
[http://dx.doi.org/10.3390/md11093109] [PMID: 23975221]
Ireland C, Faulkner DJ. The defensive secretion of the opisthobranch mollusc Onchidella binneyi. Bioorg Chem 1978; 7(2): 125-31.
Hay ME, Fenical W, Gustafson K. Chemical defense against diverse coral-reef herbivores. Ecology 1987; 68(6): 1581-91.
[http://dx.doi.org/10.2307/1939850] [PMID: 29357158]
Fan X, Xu NJ, Shi JG. Bromophenols from the red alga Rhodomela confervoides. J Nat Prod 2003; 66(3): 455-8.
[http://dx.doi.org/10.1021/np020528c] [PMID: 12662116]
Zhang W, Zhang X, Cao X, et al. Optimizing the formation of in vitro sponge primmorphs from the Chinese sponge Stylotella agminata (Ridley). J Biotechnol 2003; 100(2): 161-8.
[http://dx.doi.org/10.1016/S0168-1656(02)00255-9] [PMID: 12423910]
Belarbi H, Contreras Gómez A, Chisti Y, García Camacho F, Molina Grima E. Producing drugs from marine sponges. Biotechnol Adv 2003; 21(7): 585-98.
[http://dx.doi.org/10.1016/S0734-9750(03)00100-9] [PMID: 14516872]
Dembitsky VM, Gloriozova TA, Poroikov VV. Novel antitumor agents: marine sponge alkaloids, their synthetic analogs and derivatives. Mini Rev Med Chem 2005; 5(3): 319-36.
[http://dx.doi.org/10.2174/1389557053175362] [PMID: 15777266]
Rashid ZM, Lahaye E, Defer D, et al. Isolation of a sulphated polysaccharide from a recently discovered sponge species (Celtodoryx girardae) and determination of its anti-herpetic activity. Int J Biol Macromol 2009; 44(3): 286-93.
[http://dx.doi.org/10.1016/j.ijbiomac.2009.01.002] [PMID: 19263508]
Harris JR, Markl J. Keyhole limpet hemocyanin (KLH): a biomedical review. Micron 1999; 30(6): 597-623.
[http://dx.doi.org/10.1016/S0968-4328(99)00036-0] [PMID: 10544506]
Zhu J, Warren JD, Danishefsky SJ. Synthetic carbohydrate-based anticancer vaccines: the Memorial Sloan-Kettering experience. Expert Rev Vaccines 2009; 8(10): 1399-413.
[http://dx.doi.org/10.1586/erv.09.95] [PMID: 19803761]
Miles D, Roché H, Martin M, et al. Phase III multicenter clinical trial of the sialyl-TN (STn)-keyhole limpet hemocyanin (KLH) vaccine for metastatic breast cancer. Oncologist 2011; 16(8): 1092-100.
[http://dx.doi.org/10.1634/theoncologist.2010-0307] [PMID: 21572124]
Hardoim CC, Costa R. Microbial communities and bioactive compounds in marine sponges of the family irciniidae-a review. Mar Drugs 2014; 12(10): 5089-122.
[http://dx.doi.org/10.3390/md12105089] [PMID: 25272328]
Visamsetti A, Ramachandran SS, Kandasamy D. Penicillium chrysogenum DSOA associated with marine sponge (Tedania anhelans) exhibit antimycobacterial activity. Microbiol Res 2016; 185: 55-60.
[http://dx.doi.org/10.1016/j.micres.2015.11.001] [PMID: 26717859]
Dellai A, Laroche-Clary A, Mhadhebi L, Robert J, Bouraoui A. Anti-inflammatory and antiproliferative activities of crude extract and its fractions of the defensive secretion from the mediteranean sponge, Spongia officinalis. Drug Dev Res 2010; 71: 412-8.
Ben Kahla-Nakbi A, Haouas N, El Ouaer A, Guerbej H, Ben Mustapha K, Babba H. Screening of antileishmanial activity from marine sponge extracts collected off the Tunisian coast. Parasitol Res 2010; 106(6): 1281-6.
[http://dx.doi.org/10.1007/s00436-010-1818-x] [PMID: 20358229]
Martinez MA, Robledo RSM, Muñoz HDL, Blair TS, Higuita DE, Echeverri PE, et al. Antiparasitic activity of methanol extracts and isolat-ed fractions from Caribbean sponges. Vitae 2001; 8(1-2): 71-81.
Kaweetripob W, Mahidol C, Tuntiwachwuttikul P, Ruchirawat S, Prawat H. Cytotoxic Sesterterpenes from thai marine sponge hyrtios erec-tus. Mar Drugs 2018; 16(12): 474.
[http://dx.doi.org/10.3390/md16120474] [PMID: 30487463]
Brasseur L, Hennebert E, Fievez L, et al. The roles of Spinochromes in four shallow water tropical sea urchins and their potential as bio-active pharmacological agents. Mar Drugs 2017; 15(6)E179
[http://dx.doi.org/10.3390/md15060179] [PMID: 28621734]
Jiao H, Shang X, Dong Q, et al. Polysaccharide constituents of three types of sea urchin shells and their anti-inflammatory activities. Mar Drugs 2015; 13(9): 5882-900.
[http://dx.doi.org/10.3390/md13095882] [PMID: 26389925]
Cirino P, Brunet C, Ciaravolo M, et al. The sea urchin Arbacia lixula: A novel natural source of astaxanthin. Mar Drugs 2017; 15(6) E187
[http://dx.doi.org/10.3390/md15060187] [PMID: 28635649]
Burnett KG, Burnett LE. Respiratory and metabolic impacts of crustacean immunity: are there implications for the insects? Integr Comp Biol 2015; 55(5): 856-68.
[http://dx.doi.org/10.1093/icb/icv094] [PMID: 26223773]
Rosa RD, Barracco MA. Antimicrobial peptides in crustaceans. Invertebrate Surviv J 2010; 7(2): 262-84.
Kang HK, Seo CH, Park Y. Marine peptides and their anti-infective activities. Mar Drugs 2015; 13(1): 618-54.
[http://dx.doi.org/10.3390/md13010618] [PMID: 25603351]
Gao B, Peng C, Yang J, Yi Y, Zhang J, Shi Q. Cone Snails: A big store of conotoxins for novel drug discovery. Toxins (Basel) 2017; 9(12) E397
[http://dx.doi.org/10.3390/toxins9120397] [PMID: 29215605]
Fu Y, Li C, Dong S, Wu Y, Zhangsun D, Luo S. Discovery methodology of novel conotoxins from Conus species. Mar Drugs 2018; 16(11): 417.
[http://dx.doi.org/10.3390/md16110417] [PMID: 30380764]
Skov MJ, Beck JC, de Kater AW, Shopp GM. Nonclinical safety of ziconotide: an intrathecal analgesic of a new pharmaceutical class. Int J Toxicol 2007; 26(5): 411-21.
[http://dx.doi.org/10.1080/10915810701582970] [PMID: 17963128]
Sreejamole KL, Radhakrishnan CK, Padikkala J. Anti-inflammatory activities of aqueous/ethanol and methanol extracts of Perna viridis Linn. in mice. Inflammopharmacology 2011; 19(6): 335-41.
[http://dx.doi.org/10.1007/s10787-010-0075-z] [PMID: 21359864]
Beaulieu L, Thibodeau J, Bonnet C, Bryl P, Carbonneau ME. Evidence of anti-proliferative activities in blue mussel (Mytilus edulis) by-products. Mar Drugs 2013; 11(4): 975-90.
[http://dx.doi.org/10.3390/md11040975] [PMID: 23535393]
Ngo DH, Vo TS, Ngo DN, Wijesekara I, Kim SK. Biological activities and potential health benefits of bioactive peptides derived from marine organisms. Int J Biol Macromol 2012; 51(4): 378-83.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.06.001] [PMID: 22683669]
Mangoni ML, McDermott AM, Zasloff M. Antimicrobial peptides and wound healing: biological and therapeutic considerations. Exp Dermatol 2016; 25(3): 167-73.
[http://dx.doi.org/10.1111/exd.12929] [PMID: 26738772]
Chandran B, Rameshkumar G, Ravichandran S. Antimicrobial activity from the gill extraction of Perna viridis (Linnaeus, 1758). Glob J Biotech Biochem 2009; 4(2): 88-92.
Wang J, Xiao H, Qian ZG, Zhong JJ. Bioproduction of Antibody-Drug Conjugate Payload Precursors by Engineered Cell Factories. Trends Biotechnol 2017; 35(5): 466-78.
[http://dx.doi.org/10.1016/j.tibtech.2017.03.001] [PMID: 28363408]
Murphy C, Hotchkiss S, Worthington J, McKeown SR. The potential of seaweed as a source of drugs for use in cancer chemotherapy. J Appl Phycol 2014; 26(5): 2211-64.
Abdussalam S. Drugs from seaweeds. Med Hypotheses 1990; 32(1): 33-5.
[http://dx.doi.org/10.1016/0306-9877(90)90064-L] [PMID: 2190066]
Smith VJ, Desbois AP, Dyrynda EA. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar Drugs 2010; 8(4): 1213-62.
[http://dx.doi.org/10.3390/md8041213] [PMID: 20479976]
Sathasivam R, Ki JS. A review of the biological activities of Microalgal carotenoids and their potential use in healthcare and cosmetic in-dustries. Mar Drugs 2018; 16(1) E26
[http://dx.doi.org/10.3390/md16010026] [PMID: 29329235]
Romano I, Bellitti MR, Nicolaus B, et al. Lipid profile: a useful chemotaxonomic marker for classification of a new cyanobacterium in Spirulina genus. Phytochemistry 2000; 54(3): 289-94.
[http://dx.doi.org/10.1016/S0031-9422(00)00090-X] [PMID: 10870183]
Costa JAC, Morais MG. Microalgae for food production Fermentation Process Engineering in the Food Industry. Taylor & Francis 2013; p. 486.
de Morais MG, Vaz Bda S, de Morais EG, Costa JA. Biologically Active Metabolites Synthesized by Microalgae. BioMed Res Int 2015; 2015835761
[http://dx.doi.org/10.1155/2015/835761] [PMID: 26339647]
Pereira RB, Andrade PB, Valentão P. Chemical diversity and biological properties of secondary metabolites from sea Hares of Aplysia genus. Mar Drugs 2016; 14(2): 39.
[http://dx.doi.org/10.3390/md14020039] [PMID: 26907303]
Ciavatta ML, Lefranc F, Carbone M, et al. Marine mollusk-derived agents with antiproliferative activity as promising anticancer agents to overcome chemotherapy resistance. Med Res Rev 2017; 37(4): 702-801.
[http://dx.doi.org/10.1002/med.21423] [PMID: 27925266]
Kumar V, Roy S. Aquaculture drugs: sources, active ingredients, pharmaceutic preparations and methods of administration. J Aquac Res Dev 2017; 8(9): 510.
Kiuru P. DʼAuria MV, Muller CD, Tammela P, Vuorela H, Yli-Kauhaluoma J. Exploring marine resources for bioactive compounds. Planta Med 2014; 80(14): 1234-46.
[http://dx.doi.org/10.1055/s-0034-1383001] [PMID: 25203732]
Martins A, Vieira H, Gaspar H, Santos S. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar Drugs 2014; 12(2): 1066-101.
[http://dx.doi.org/10.3390/md12021066] [PMID: 24549205]
Mayer AM, Nguyen M, Kalwajtys P, Kerns H, Newman DJ, Glaser KB. The marine pharmacology and pharmaceuticals pipeline in 2016. FASEB J 2017; 31(1): 811-8.
Gerwick WH, Moore BS. Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol 2012; 19(1): 85-98.
[http://dx.doi.org/10.1016/j.chembiol.2011.12.014] [PMID: 22284357]
Gerwick WH, Fenner AM. Drug discovery from marine microbes. Microb Ecol 2013; 65(4): 800-6.
[http://dx.doi.org/10.1007/s00248-012-0169-9] [PMID: 23274881]
König GM, Wright AD. Marine natural products research: current directions and future potential. Planta Med 1996; 62(3): 193-211.
[http://dx.doi.org/10.1055/s-2006-957861] [PMID: 8693030]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 07 September, 2020
Page: [507 - 514]
Pages: 8
DOI: 10.2174/1570163816666190819141344
Price: $65

Article Metrics

PDF: 22