Parthenolide and its Analogues: A New Potential Strategy for the Treatment of Triple-Negative Breast Tumors

Author(s): Thaise Gonçalves Araújo*, Lara Vecchi, Paula Marynella Alves Pereira Lima, Everton Allan Ferreira, Igor Moreira Campos, Douglas Cardoso Brandão, Gabriela Silva Guimarães, Matheus Alves Ribeiro, Ademar Alves da Silva Filho

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 39 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Abstract:

Triple Negative Breast Cancers (TNBC) are heterogeneous and aggressive pathologies, with distinct morphological and clinical characteristics associated with their genetic diversity, epigenetics, transcriptional changes and aberrant molecular patterns. Treatment with anti-neoplastic drugs exerts systemic effects with low specificity, and incipient improvement in overall survival due to chemoresistance and recurrence. New alternatives for TNBC treatment are urgent and parthenolide or its analogues have been explored. Parthenolide is a sesquiterpene lactone with promising antitumor effects against TNBC cell lines. This review highlights the importance of parthenolide and its analogue drugs in TNBC treatment.

Keywords: Parthenolide, triple negative breast cancer, sesquiterpene lactones, nuclear factor-κB, heterogeneity, natural products.

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[3]
Stefan, C. Will a global fund for cancer be the answer? Nat. Rev. Clin. Oncol., 2018, 15(4), 195-196.
[http://dx.doi.org/10.1038/nrclinonc.2017.211] [PMID: 29335653]
[4]
Maule, M.; Merletti, F. Cancer transition and priorities for cancer control. Lancet Oncol., 2012, 13(8), 745-746.
[http://dx.doi.org/10.1016/S1470-2045(12)70268-1] [PMID: 22846827]
[5]
Golubnitschaja, O.; Debald, M.; Yeghiazaryan, K.; Kuhn, W.; Pešta, M.; Costigliola, V.; Grech, G. Breast cancer epidemic in the early twenty-first century: evaluation of risk factors, cumulative questionnaires and recommendations for preventive measures. Tumour Biol., 2016, 37(10), 12941-12957.
[http://dx.doi.org/10.1007/s13277-016-5168-x] [PMID: 27448308]
[6]
DeSantis, C.E.; Ma, J.; Goding Sauer, A.; Newman, L.A.; Jemal, A. Breast cancer statistics 2017, racial disparity in mortality by state. CA Cancer J. Clin., 2017, 67(6), 439-448.
[http://dx.doi.org/10.3322/caac.21412] [PMID: 28972651]
[7]
Câncer, I.N.d. Estimativa 2018: Incidência de Câncer no Brasil. Availalble at: https://www.inca.gov.br/sites/ufu.sti.inca.local/files//media/document//estimativa-incidencia-de-cancer-no-brasil-2018.pdf (Accessed Date: 4th March, 2019.)
[8]
Society, A.C. Breast Cancer Facts & Figures 2017-2018, 2017.
[9]
Ford, D.; Easton, D.F. The genetics of breast and ovarian cancer. Br. J. Cancer, 1995, 72(4), 805-812.
[http://dx.doi.org/10.1038/bjc.1995.417] [PMID: 7547224]
[10]
Rowan, E.; Poll, A.; Narod, S.A. A prospective study of breast cancer risk in relatives of BRCA1/BRCA2 mutation carriers. J. Med. Genet., 2007, 44(8), e89.
[PMID: 17673443]
[11]
Apostolou, P.; Fostira, F. Hereditary breast cancer: the era of new susceptibility genes. BioMed Res. Int., 2013, 2013, 747318.
[http://dx.doi.org/10.1155/2013/747318] [PMID: 23586058]
[12]
Dieci, M.V.; Orvieto, E.; Dominici, M.; Conte, P.; Guarneri, V. Rare breast cancer subtypes: histological, molecular and clinical peculiarities. Oncologist, 2014, 19(8), 805-813.
[http://dx.doi.org/10.1634/theoncologist.2014-0108] [PMID: 24969162]
[13]
Weigelt, B.; Reis-Filho, J.S. Histological and molecular types of breast cancer: is there a unifying taxonomy? Nat. Rev. Clin. Oncol., 2009, 6(12), 718-730.
[http://dx.doi.org/10.1038/nrclinonc.2009.166] [PMID: 19942925]
[14]
Sachs, N.; de Ligt, J.; Kopper, O.; Gogola, E.; Bounova, G.; Weeber, F.; Balgobind, A.V.; Wind, K.; Gracanin, A.; Begthel, H. A living biobank of breast cancer organoids captures disease heterogeneity. Cell, 2018, 172(1-2), 373-386.
[http://dx.doi.org/10.1016/j.cell.2017.11.010]
[15]
Goldhirsch, A.; Winer, E.P.; Coates, A.S.; Gelber, R.D.; Piccart-Gebhart, M.; Thürlimann, B.; Senn, H.J. Panel members. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2013. Ann. Oncol., 2013, 24(9), 2206-2223.
[http://dx.doi.org/10.1093/annonc/mdt303] [PMID: 23917950]
[16]
Curigliano, G.; Burstein, H.J.; Winer, E.P.; Gnant, M.; Dubsky, P.; Loibl, S.; Colleoni, M.; Regan, M.M.; Piccart-Gebhart, M.; Senn, H.J.; Thürlimann, B.; André, F.; Baselga, J.; Bergh, J.; Bonnefoi, H.; Brucker, S.Y.; Cardoso, F.; Carey, L.; Ciruelos, E.; Cuzick, J.; Denkert, C.; Di Leo, A.; Ejlertsen, B.; Francis, P.; Galimberti, V.; Garber, J.; Gulluoglu, B.; Goodwin, P.; Harbeck, N.; Hayes, D.F.; Huang, C.S.; Huober, J.; Hussein, K.; Jassem, J.; Jiang, Z.; Karlsson, P.; Morrow, M.; Orecchia, R.; Osborne, K.C.; Pagani, O.; Partridge, A.H.; Pritchard, K.; Ro, J.; Rutgers, E.J.T.; Sedlmayer, F.; Semiglazov, V.; Shao, Z.; Smith, I.; Toi, M.; Tutt, A.; Viale, G.; Watanabe, T.; Whelan, T.J.; Xu, B.St. Gallen international expert consensus on the primary therapy of early breast cancer 2017. De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen international expert consensus conference on the primary therapy of early breast cancer 2017. Ann. Oncol., 2017, 28(8), 1700-1712.
[http://dx.doi.org/10.1093/annonc/mdx308] [PMID: 28838210]
[17]
Dai, X.; Xiang, L.; Li, T.; Bai, Z. Cancer hallmarks, biomarkers and breast cancer molecular subtypes. J. Cancer, 2016, 7(10), 1281-1294.
[http://dx.doi.org/10.7150/jca.13141] [PMID: 27390604]
[18]
Toft, D.J.; Cryns, V.L. Minireview: Basal-like breast cancer: from molecular profiles to targeted therapies. Mol. Endocrinol., 2011, 25(2), 199-211.
[http://dx.doi.org/10.1210/me.2010-0164] [PMID: 20861225]
[19]
Fragomeni, S.M.; Sciallis, A.; Jeruss, J.S. Molecular subtypes and local-regional control of breast cancer. Surg. Oncol. Clin. N. Am., 2018, 27(1), 95-120.
[http://dx.doi.org/10.1016/j.soc.2017.08.005] [PMID: 29132568]
[20]
Giordano, S.H.; Temin, S.; Chandarlapaty, S.; Crews, J.R.; Esteva, F.J.; Kirshner, J.J.; Krop, I.E.; Levinson, J.; Lin, N.U.; Modi, S.; Patt, D.A.; Perlmutter, J.; Ramakrishna, N.; Winer, E.P.; Davidson, N.E. Systemic therapy for patients with advanced human epidermal growth factor receptor 2-positive breast cancer: ASCO clinical practice guideline update. J. Clin. Oncol., 2018, 36(26), 2736-2740.
[http://dx.doi.org/10.1200/JCO.2018.79.2697] [PMID: 29939838]
[21]
Weigel, M.T.; Dowsett, M. Current and emerging biomarkers in breast cancer: prognosis and prediction. Endocr. Relat. Cancer, 2010, 17(4), R245-R262.
[http://dx.doi.org/10.1677/ERC-10-0136] [PMID: 20647302]
[22]
Constantinidou, A.; Smith, I. Is there a case for anti-HER2 therapy without chemotherapy in early breast cancer? Breast, 2011, 20(Suppl. 3), S158-S161.
[http://dx.doi.org/10.1016/S0960-9776(11)70316-2] [PMID: 22015286]
[23]
Kumar, M.; Sahu, R.K.; Goyal, A.; Sharma, S.; Kaur, N.; Mehrotra, R.; Singh, U.R.; Hedau, S. BRCA1 promoter methylation and expression - associations with ER+, PR+ and HER2+ subtypes of breast carcinoma. Asian Pac. J. Cancer Prev., 2017, 18(12), 3293-3299.
[http://dx.doi.org/10.22034/APJCP.2017.18.12.3293 ] [PMID: 29286222]
[24]
Criscitiello, C.; Azim, H.A. Jr.; Schouten, P.C.; Linn, S.C.; Sotiriou, C. Understanding the biology of triple-negative breast cancer. Ann. Oncol., 2012, 23(Suppl. 6), vi13-vi18.
[http://dx.doi.org/10.1093/annonc/mds188] [PMID: 23012296]
[25]
Tyanova, S.; Albrechtsen, R.; Kronqvist, P.; Cox, J.; Mann, M.; Geiger, T. Proteomic maps of breast cancer subtypes. Nat. Commun., 2016, 7, 10259.
[http://dx.doi.org/10.1038/ncomms10259] [PMID: 26725330]
[26]
Lei, J.; Rudolph, A.; Moysich, K.B.; Rafiq, S.; Behrens, S.; Goode, E.L.; Pharoah, P.P.; Seibold, P.; Fasching, P.A.; Andrulis, I.L.; Kristensen, V.N.; Couch, F.J.; Hamann, U.; Hooning, M.J.; Nevanlinna, H.; Eilber, U.; Bolla, M.K.; Dennis, J.; Wang, Q.; Lindblom, A.; Mannermaa, A.; Lambrechts, D.; García-Closas, M.; Hall, P.; Chenevix-Trench, G.; Shah, M.; Luben, R.; Haeberle, L.; Ekici, A.B.; Beckmann, M.W.; Knight, J.A.; Glendon, G.; Tchatchou, S.; Alnæs, G.I.; Borresen-Dale, A.L.; Nord, S.; Olson, J.E.; Hallberg, E.; Vachon, C.; Torres, D.; Ulmer, H.U.; Rüdiger, T.; Jager, A.; van Deurzen, C.H.; Tilanus-Linthorst, M.M.; Muranen, T.A.; Aittomäki, K.; Blomqvist, C.; Margolin, S.; Kosma, V.M.; Hartikainen, J.M.; Kataja, V.; Hatse, S.; Wildiers, H.; Smeets, A.; Figueroa, J.; Chanock, S.J.; Lissowska, J.; Li, J.; Humphreys, K.; Phillips, K.A.; Linn, S.; Cornelissen, S.; van den Broek, S.A.; Kang, D.; Choi, J.Y.; Park, S.K.; Yoo, K.Y.; Hsiung, C.N.; Wu, P.E.; Hou, M.F.; Shen, C.Y.; Teo, S.H.; Taib, N.A.; Yip, C.H.; Ho, G.F.; Matsuo, K.; Ito, H.; Iwata, H.; Tajima, K.; Dunning, A.M.; Benitez, J.; Czene, K.; Sucheston, L.E.; Maishman, T.; Tapper, W.J.; Eccles, D.; Easton, D.F.; Schmidt, M.K.; Chang-Claude, J. kConFab Investigators. Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with prognosis of estrogen receptor-negative breast cancer after chemotherapy. Breast Cancer Res., 2015, 17(1), 18.
[http://dx.doi.org/10.1186/s13058-015-0522-2] [PMID: 25849327]
[27]
Asaduzzaman, M.; Constantinou, S.; Min, H.; Gallon, J.; Lin, M-L.; Singh, P.; Raguz, S.; Ali, S.; Shousha, S.; Coombes, R.C.; Lam, E.W.; Hu, Y.; Yagüe, E. Tumour suppressor EP300, a modulator of paclitaxel resistance and stemness, is downregulated in metaplastic breast cancer. Breast Cancer Res. Treat., 2017, 163(3), 461-474.
[http://dx.doi.org/10.1007/s10549-017-4202-z] [PMID: 28341962]
[28]
Greenlee, H.; DuPont-Reyes, M.J.; Balneaves, L.G.; Carlson, L.E.; Cohen, M.R.; Deng, G.; Johnson, J.A.; Mumber, M.; Seely, D.; Zick, S.M.; Boyce, L.M.; Tripathy, D. Clinical practice guidelines on the evidence-based use of integrative therapies during and after breast cancer treatment. CA Cancer J. Clin., 2017, 67(3), 194-232.
[http://dx.doi.org/10.3322/caac.21397] [PMID: 28436999]
[29]
Jones, M.E.; Schoemaker, M.J.; Wright, L.B.; Ashworth, A.; Swerdlow, A.J. Smoking and risk of breast cancer in the Generations Study cohort. Breast Cancer Res., 2017, 19(1), 118.
[http://dx.doi.org/10.1186/s13058-017-0908-4] [PMID: 29162146]
[30]
Zakaria, N.; Mohd Yusoff, N.; Zakaria, Z.; Widera, D.; Yahaya, B.H. Inhibition of NF-κB signaling reduces the stemness characteristics of lung cancer stem cells. Front. Oncol., 2018, 8, 166.
[http://dx.doi.org/10.3389/fonc.2018.00166] [PMID: 29868483]
[31]
Ghantous, A.; Sinjab, A.; Herceg, Z.; Darwiche, N. Parthenolide: from plant shoots to cancer roots. Drug Discov. Today, 2013, 18(17-18), 894-905.
[http://dx.doi.org/10.1016/j.drudis.2013.05.005] [PMID: 23688583]
[32]
Wiedhopf, R.M.; Young, M.; Bianchi, E.; Cole, J.R. Tumor inhibitory agent from Magnolia grandiflora (Magnoliaceae). I. Parthenolide. J. Pharm. Sci., 1973, 62(2), 345.
[http://dx.doi.org/10.1002/jps.2600620244] [PMID: 4686424]
[33]
Groenewegen, W.A.; Heptinstall, S. A comparison of the effects of an extract of feverfew and parthenolide, a component of feverfew, on human platelet activity in-vitro. J. Pharm. Pharmacol., 1990, 42(8), 553-557.
[http://dx.doi.org/10.1111/j.2042-7158.1990.tb07057.x] [PMID: 1981582]
[34]
Tiuman, T.S.; Ueda-Nakamura, T.; Garcia Cortez, D.A.; Dias Filho, B.P.; Morgado-Díaz, J.A.; de Souza, W.; Nakamura, C.V. Antileishmanial activity of parthenolide, a sesquiterpene lactone isolated from Tanacetum parthenium. Antimicrob. Agents Chemother., 2005, 49(1), 176-182.
[http://dx.doi.org/10.1128/AAC.49.11.176-182.2005] [PMID: 15616293]
[35]
Schinella, G.R.; Giner, R.M.; Recio, M.C.; Mordujovich de Buschiazzo, P.; Ríos, J.L.; Máñez, S. Anti-inflammatory effects of South American tanacetum vulgare. J. Pharm. Pharmacol., 1998, 50(9), 1069-1074.
[http://dx.doi.org/10.1111/j.2042-7158.1998.tb06924.x] [PMID: 9811170]
[36]
Murphy, J.J.; Heptinstall, S.; Mitchell, J.R. Randomised double-blind placebo-controlled trial of feverfew in migraine prevention. Lancet, 1988, 2(8604), 189-192.
[http://dx.doi.org/10.1016/S0140-6736(88)92289-1] [PMID: 2899663]
[37]
Koganov, M. Parthenolide free bioactive ingredients from feverfew (Tanacetum parthenium) and processes for their production. WO 2007/098471 A3, 2007.
[38]
Baskaran, N.; Selvam, G.S.; Yuvaraj, S.; Abhishek, A. Parthenolide attenuates 7,12-dimethylbenz[a]anthracene induced hamster buccal pouch carcinogenesis. Mol. Cell. Biochem., 2018, 440(1-2), 11-22.
[http://dx.doi.org/10.1007/s11010-017-3151-5] [PMID: 28801714]
[39]
Alonso, M.R.; Anesini, C.A.; Martino, R.F. Anti-inflammatory activity in: Sesquiterpene Lactones., ; Sulsen, V.P.; Martino, V.S., Eds.; SpringerLink, 2018, pp. 325-346.
[http://dx.doi.org/10.1007/978-3-319-78274-4_14]
[40]
Benassi-Zanqueta, É.; Marques, C.F.; Nocchi, S.R.; Dias Filho, B.P.; Nakamura, C.V.; Ueda-Nakamura, T. Parthenolide Influences Herpes simplex virus 1 Replication in vitro. Intervirology, 2018, 61(1), 14-22.
[http://dx.doi.org/10.1159/000490055] [PMID: 30001535]
[41]
Xu, S.; Zhao, X.; Liu, F.; Cao, Y.; Wang, B.; Wang, X.; Yin, M.; Wang, Q.; Feng, X. Crucial role of oxidative stress in bactericidal effect of parthenolide against Xanthomonas oryzae pv. oryzae. Pest Manag. Sci., 2018, 74(12), 2716-2723.
[http://dx.doi.org/10.1002/ps.5091] [PMID: 29808556]
[42]
Jafari, N.; Nazeri, S.; Enferadi, S.T. Parthenolide reduces metastasis by inhibition of vimentin expression and induces apoptosis by suppression elongation factor α - 1 expression. Phytomedicine, 2018, 41, 67-73.
[http://dx.doi.org/10.1016/j.phymed.2018.01.022] [PMID: 29519321]
[43]
Jin, X.; Zhou, J.; Zhang, Z.; Lv, H. The combined administration of parthenolide and ginsenoside CK in long circulation liposomes with targeted tLyp-1 ligand induce mitochondria-mediated lung cancer apoptosis. Artif. Cells Nanomed. Biotechnol,, 2018, 46(sup3), S931-S942.
[http://dx.doi.org/10.1080/21691401.2018.1518913]
[44]
Yu, H.J.; Jung, J.Y.; Jeong, J.H.; Cho, S.D.; Lee, J.S. Induction of apoptosis by parthenolide in human oral cancer cell lines and tumor xenografts. Oral Oncol., 2015, 51(6), 602-609.
[http://dx.doi.org/10.1016/j.oraloncology.2015.03.003] [PMID: 25817195]
[45]
Liu, W.; Wang, X.; Sun, J.; Yang, Y.; Li, W.; Song, J. Parthenolide suppresses pancreatic cell growth by autophagy-mediated apoptosis. OncoTargets Ther., 2017, 10, 453-461.
[http://dx.doi.org/10.2147/OTT.S117250] [PMID: 28176967]
[46]
Ramachandran, C.; Resek, A.P.; Escalon, E.; Aviram, A.; Melnick, S.J. Potentiation of gemcitabine by Turmeric Force in pancreatic cancer cell lines. Oncol. Rep., 2010, 23(6), 1529-1535.
[http://dx.doi.org/10.3892/or_00000792] [PMID: 20428806]
[47]
Siveen, K.S.; Uddin, S.; Mohammad, R.M. Targeting acute myeloid leukemia stem cell signaling by natural products. Mol. Cancer, 2017, 16(1), 13.
[http://dx.doi.org/10.1186/s12943-016-0571-x] [PMID: 28137265]
[48]
Zahedpanah, M.; Shaiegan, M.; Ghaffari, S.H.; Nikbakht, M.; Nikugoftar, M.; Mohammadi, S. Parthenolide induces apoptosis in committed progenitor AML cell line U937 via reduction in osteopontin. Rep. Biochem. Mol. Biol., 2016, 4(2), 82-88.
[PMID: 27536701]
[49]
Yang, C.; Yang, Q.O.; Kong, Q.J.; Yuan, W.; O., Yang Y.P.; Parthenolide induces reactive oxygen species-mediated autophagic cell death, Y.P. parthenolide induces reactive oxygen species-mediated autophagic cell death in human osteosarcoma cells. Cell. Physiol. Biochem., 2016, 40(1-2), 146-154.
[http://dx.doi.org/10.1159/000452532] [PMID: 27855364]
[50]
Duan, D.; Zhang, J.; Yao, J.; Liu, Y.; Fang, J. Targeting thioredoxin reductase by parthenolide contributes to inducing apoptosis of HeLa cells. J. Biol. Chem., 2016, 291(19), 10021-10031.
[http://dx.doi.org/10.1074/jbc.M115.700591] [PMID: 27002142]
[51]
Jeyamohan, S.; Moorthy, R.K.; Kannan, M.K.; Arockiam, A.J. Parthenolide induces apoptosis and autophagy through the suppression of PI3K/Akt signaling pathway in cervical cancer. Biotechnol. Lett., 2016, 38(8), 1251-1260.
[http://dx.doi.org/10.1007/s10529-016-2102-7] [PMID: 27099069]
[52]
Hartman, M.L.; Talar, B.; Sztiller-Sikorska, M.; Nejc, D.; Czyz, M. Parthenolide induces MITF-M downregulation and senescence in patient-derived MITF-M(high) melanoma cell populations. Oncotarget, 2016, 7(8), 9026-9040.
[http://dx.doi.org/10.18632/oncotarget.7030] [PMID: 26824319]
[53]
George, V.C.; Kumar, D.R.; Kumar, R.A. Relative in vitro potentials of parthenolide to induce apoptosis and cell cycle arrest in skin cancer cells. Curr. Drug Discov. Technol., 2016, 13(1), 34-40.
[http://dx.doi.org/10.2174/1570163813666160224124029] [PMID: 26906908]
[54]
Morel, K.L.; Ormsby, R.J.; Solly, E.L.; Tran, L.N.K.; Sweeney, C.J.; Klebe, S.; Cordes, N.; Sykes, P.J. Chronic low dose ethanol induces an aggressive metastatic phenotype in TRAMP mice, which is counteracted by parthenolide. Clin. Exp. Metastasis, 2018, 35(7), 649-661.
[http://dx.doi.org/10.1007/s10585-018-9915-9] [PMID: 29936575]
[55]
Kawasaki, B.T.; Hurt, E.M.; Kalathur, M.; Duhagon, M.A.; Milner, J.A.; Kim, Y.S.; Farrar, W.L. Effects of the sesquiterpene lactone parthenolide on prostate tumor-initiating cells: An integrated molecular profiling approach. Prostate, 2009, 69(8), 827-837.
[http://dx.doi.org/10.1002/pros.20931] [PMID: 19204913]
[56]
Hayashi, S.; Koshiba, K.; Hatashita, M.; Sato, T.; Jujo, Y.; Suzuki, R.; Tanaka, Y.; Shioura, H. Thermosensitization and induction of apoptosis or cell-cycle arrest via the MAPK cascade by parthenolide, an NF-κB inhibitor, in human prostate cancer androgen-independent cell lines. Int. J. Mol. Med., 2011, 28(6), 1033-1042.
[http://dx.doi.org/10.3892/ijmm.2011.760] [PMID: 21805026]
[57]
Mendonca, M.S.; Turchan, W.T.; Alpuche, M.E.; Watson, C.N.; Estabrook, N.C.; Chin-Sinex, H.; Shapiro, J.B.; Imasuen-Williams, I.E.; Rangel, G.; Gilley, D.P.; Huda, N.; Crooks, P.A.; Shapiro, R.H. DMAPT inhibits NF-κB activity and increases sensitivity of prostate cancer cells to X-rays in vitro and in tumor xenografts in vivo. Free Radic. Biol. Med., 2017, 112, 318-326.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.08.001] [PMID: 28782644]
[58]
Ghorbani-Abdi-Saedabad, A.; Hanafi-Bojd, M.Y.; Parsamanesh, N.; Tayarani-Najaran, Z.; Mollaei, H.; Hoshyar, R. Anticancer and apoptotic activities of parthenolide in combination with epirubicin in MDA-MB-468 breast cancer cells. Mol. Biol. Rep., 2020, 47(8), 5807-5815.
[http://dx.doi.org/10.1007/s11033-020-05649-3] [PMID: 32686017]
[59]
Sufian, H.B. Studying the anticancer properties of Parthenolide (PTL) in MCF-7 breast cancer cells, 2018.
[60]
Al-Fatlawi, A.A.; Al-Fatlawi, A.A.; Irshad, M. Rahisuddin.; Ahmad, A. Effect of parthenolide on growth and apoptosis regulatory genes of human cancer cell lines. Pharm. Biol., 2015, 53(1), 104-109.
[http://dx.doi.org/10.3109/13880209.2014.911919] [PMID: 25289524]
[61]
Carlisi, D.; Buttitta, G.; Di Fiore, R.; Scerri, C.; Drago-Ferrante, R.; Vento, R.; Tesoriere, G. Parthenolide and DMAPT exert cytotoxic effects on breast cancer stem-like cells by inducing oxidative stress, mitochondrial dysfunction and necrosis. Cell Death Dis., 2016, 7(4), e2194.
[http://dx.doi.org/10.1038/cddis.2016.94]
[62]
Ge, W.; Hao, X.; Han, F.; Liu, Z.; Wang, T.; Wang, M.; Chen, N.; Ding, Y.; Chen, Y.; Zhang, Q. Synthesis and structure-activity relationship studies of parthenolide derivatives as potential anti-triple negative breast cancer agents. Eur. J. Med. Chem., 2019, 166, 445-469.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.058] [PMID: 30739826]
[63]
Lamture, G.; Crooks, P.A.; Borrelli, M.J. Actinomycin-D and dimethylamino-parthenolide synergism in treating human pancreatic cancer cells. Drug Dev. Res., 2018, 79(6), 287-294.
[http://dx.doi.org/10.1002/ddr.21441] [PMID: 30295945]
[64]
Schneider, B.P.; Winer, E.P.; Foulkes, W.D.; Garber, J.; Perou, C.M.; Richardson, A.; Sledge, G.W.; Carey, L.A. Triple-negative breast cancer: risk factors to potential targets. Clin. Cancer Res., 2008, 14(24), 8010-8018.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1208] [PMID: 19088017]
[65]
Blows, F.M.; Driver, K.E.; Schmidt, M.K.; Broeks, A.; van Leeuwen, F.E.; Wesseling, J.; Cheang, M.C.; Gelmon, K.; Nielsen, T.O.; Blomqvist, C.; Heikkilä, P.; Heikkinen, T.; Nevanlinna, H.; Akslen, L.A.; Bégin, L.R.; Foulkes, W.D.; Couch, F.J.; Wang, X.; Cafourek, V.; Olson, J.E.; Baglietto, L.; Giles, G.G.; Severi, G.; McLean, C.A.; Southey, M.C.; Rakha, E.; Green, A.R.; Ellis, I.O.; Sherman, M.E.; Lissowska, J.; Anderson, W.F.; Cox, A.; Cross, S.S.; Reed, M.W.; Provenzano, E.; Dawson, S.J.; Dunning, A.M.; Humphreys, M.; Easton, D.F.; García-Closas, M.; Caldas, C.; Pharoah, P.D.; Huntsman, D. Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med., 2010, 7(5), e1000279.
[http://dx.doi.org/10.1371/journal.pmed.1000279] [PMID: 20520800]
[66]
Gadi, V.K.; Davidson, N.E. Practical approach to triple-negative breast cancer. J. Oncol. Pract., 2017, 13(5), 293-300.
[http://dx.doi.org/10.1200/JOP.2017.022632] [PMID: 28489980]
[67]
Bauer, K.R.; Brown, M.; Cress, R.D.; Parise, C.A.; Caggiano, V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer, 2007, 109(9), 1721-1728.
[http://dx.doi.org/10.1002/cncr.22618] [PMID: 17387718]
[68]
Howell, A.; Anderson, A.S.; Clarke, R.B.; Duffy, S.W.; Evans, D.G.; Garcia-Closas, M.; Gescher, A.J.; Key, T.J.; Saxton, J.M.; Harvie, M.N. Risk determination and prevention of breast cancer. Breast Cancer Res., 2014, 16(5), 446.
[http://dx.doi.org/10.1186/s13058-014-0446-2] [PMID: 25467785]
[69]
Kashi, A.S.Y.; Yazdanfar, S.; Akbari, M.-E.; Rakhsha, A. Triple negative breast cancer in iranian women: clinical profile and survival study. Int J Cancer Manag., 2017, 10(8)
[http://dx.doi.org/10.5812/ijcm.10471]
[70]
Li, X.; Yang, J.; Peng, L.; Sahin, A.A.; Huo, L.; Ward, K.C.; O’Regan, R.; Torres, M.A.; Meisel, J.L. Triple-negative breast cancer has worse overall survival and cause-specific survival than non-triple-negative breast cancer. Breast Cancer Res. Treat., 2017, 161(2), 279-287.
[http://dx.doi.org/10.1007/s10549-016-4059-6] [PMID: 27888421]
[71]
Urru, S.A.M.; Gallus, S.; Bosetti, C.; Moi, T.; Medda, R.; Sollai, E.; Murgia, A.; Sanges, F.; Pira, G.; Manca, A.; Palmas, D.; Floris, M.; Asunis, A.M.; Atzori, F.; Carru, C.; D’Incalci, M.; Ghiani, M.; Marras, V.; Onnis, D.; Santona, M.C.; Sarobba, G.; Valle, E.; Canu, L.; Cossu, S.; Bulfone, A.; Rocca, P.C.; De Miglio, M.R.; Orrù, S. Clinical and pathological factors influencing survival in a large cohort of triple-negative breast cancer patients. BMC Cancer, 2018, 18(1), 56.
[http://dx.doi.org/10.1186/s12885-017-3969-y] [PMID: 29310602]
[72]
Haffty, B.G.; Yang, Q.; Reiss, M.; Kearney, T.; Higgins, S.A.; Weidhaas, J.; Harris, L.; Hait, W.; Toppmeyer, D. Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J. Clin. Oncol., 2006, 24(36), 5652-5657.
[http://dx.doi.org/10.1200/JCO.2006.06.5664] [PMID: 17116942]
[73]
Gray, J.M.; Rasanayagam, S.; Engel, C.; Rizzo, J. State of the evidence 2017: an update on the connection between breast cancer and the environment. Environ. Health, 2017, 16(1), 94.
[http://dx.doi.org/10.1186/s12940-017-0287-4] [PMID: 28865460]
[74]
Tischkowitz, M.; Brunet, J.S.; Bégin, L.R.; Huntsman, D.G.; Cheang, M.C.; Akslen, L.A.; Nielsen, T.O.; Foulkes, W.D. Use of immunohistochemical markers can refine prognosis in triple negative breast cancer. BMC Cancer, 2007, 7, 134.
[http://dx.doi.org/10.1186/1471-2407-7-134] [PMID: 17650314]
[75]
Gulzar, F.; Akhtar, M.S.; Sadiq, R.; Bashir, S.; Jamil, S.; Baig, S.M. Identifying the reasons for delayed presentation of Pakistani breast cancer patients at a tertiary care hospital. Cancer Manag. Res., 2019, 11, 1087-1096.
[http://dx.doi.org/10.2147/CMAR.S180388] [PMID: 30774437]
[76]
Bayraktar, S.; Glück, S. Molecularly targeted therapies for metastatic triple-negative breast cancer. Breast Cancer Res. Treat., 2013, 138(1), 21-35.
[http://dx.doi.org/10.1007/s10549-013-2421-5] [PMID: 23358903]
[77]
Perou, C.M. Molecular stratification of triple-negative breast cancers. Oncologist, 2010, 15(Suppl. 5), 39-48.
[http://dx.doi.org/10.1634/theoncologist.2010-S5-39] [PMID: 21138954]
[78]
Garrido-Castro, A.C.; Lin, N.U.; Polyak, K. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov., 2019, 9(2), 176-198.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1177] [PMID: 30679171]
[79]
Judes, G.; Rifaï, K.; Daures, M.; Dubois, L.; Bignon, Y.J.; Penault-Llorca, F.; Bernard-Gallon, D. High-throughput «Omics» technologies: new tools for the study of triple-negative breast cancer. Cancer Lett., 2016, 382(1), 77-85.
[http://dx.doi.org/10.1016/j.canlet.2016.03.001] [PMID: 26965997]
[80]
Hosseini, S.; Behjati, F.; Rahimi, M.; Taheri, N.; Khoram Khorshid, H.; Aghakhani Moghaddam, F.; Ghasemi, S.; Karimlou, M.; Sirati, F.; Keyhani, E. Relationship between PIK3CA amplification and P110α and CD34 tissue expression as angiogenesis markers in iranian women with sporadic breast cancer. Iran. J. Pathol., 2018, 13(4), 447-453.
[PMID: 30774684]
[81]
Peng, Y. Potential prognostic tumor biomarkers in triple-negative breast carcinoma. Beijing da xue xue bao Yi xue ban, 2012, 44(5), 666-672.
[PMID: 23073572]
[82]
Bosch, A.; Eroles, P.; Zaragoza, R.; Viña, J.R.; Lluch, A. Triple-negative breast cancer: molecular features, pathogenesis, treatment and current lines of research. Cancer Treat. Rev., 2010, 36(3), 206-215.
[http://dx.doi.org/10.1016/j.ctrv.2009.12.002] [PMID: 20060649]
[83]
Moinfar, F. Is ‘basal-like’ carcinoma of the breast a distinct clinicopathological entity? A critical review with cautionary notes. Pathobiology, 2008, 75(2), 119-131.
[http://dx.doi.org/10.1159/000123850] [PMID: 18544967]
[84]
De Francesco, E.; Maggiolini, M.; Musti, A. Crosstalk between Notch, HIF-1α and GPER in Breast Cancer EMT. Int. J. Mol. Sci., 2018, 19(7), 2011.
[http://dx.doi.org/10.3390/ijms19072011]
[85]
Prat, A.; Parker, J.S.; Karginova, O.; Fan, C.; Livasy, C.; Herschkowitz, J.I.; He, X.; Perou, C.M. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res., 2010, 12(5), R68.
[http://dx.doi.org/10.1186/bcr2635] [PMID: 20813035]
[86]
Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest., 2011, 121(7), 2750-2767.
[http://dx.doi.org/10.1172/JCI45014] [PMID: 21633166]
[87]
Wagle, N.; Painter, C.; Anastasio, E.; Dunphy, M.; McGillicuddy, M.; Stoddard, R.E.; Jain, E.; Kim, D.; Lascio, S.D.; Tompson, B.N.; Balch, S.; Thomas, B.; Kumari, P.; Johnson, S.F.; Holloway, J.N.; Cohen, O.; Knelson, E.; Larkin, K.; Pollock, S.; Wong, A.; Bahl, S.; Maiwald, S.; Zimmer, A.; Baker, E.O.; Lapan, J.H.; Sutherland, S.; Sassone, S.; Adalsteinsson, V.; Lander, E.; Golub, T. The metastatic breast cancer project: Partnering with patients to accelerate progress in cancer research; AACR, 2018, pp. 5371-5371.
[http://dx.doi.org/10.1158/1538-7445.AM2018-5371]
[88]
Evans, D.G.; Harkness, E.F.; Howel, S.; Woodward, E.R.; Howell, A.; Lalloo, F. Young age at first pregnancy does protect against early onset breast cancer in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res. Treat., 2018, 167(3), 779-785.
[http://dx.doi.org/10.1007/s10549-017-4557-1] [PMID: 29116468]
[89]
Xu, L.Z.; Li, S.S.; Zhou, W.; Kang, Z.J.; Zhang, Q.X.; Kamran, M.; Xu, J.; Liang, D.P.; Wang, C.L.; Hou, Z.J.; Wan, X.B.; Wang, H.J.; Lam, E.W.; Zhao, Z.W.; Liu, Q. p62/SQSTM1 enhances breast cancer stem-like properties by stabilizing MYC mRNA. Oncogene, 2017, 36(3), 304-317.
[http://dx.doi.org/10.1038/onc.2016.202] [PMID: 27345399]
[90]
Sutton, L.M.; Han, J.S.; Molberg, K.H.; Sarode, V.R.; Cao, D.; Rakheja, D.; Sailors, J.; Peng, Y. Intratumoral expression level of epidermal growth factor receptor and cytokeratin 5/6 is significantly associated with nodal and distant metastases in patients with basal-like triple-negative breast carcinoma. Am. J. Clin. Pathol., 2010, 134(5), 782-787.
[http://dx.doi.org/10.1309/AJCPRMD3ARUO5WPN] [PMID: 20959661]
[91]
Maximov, P.Y.; Abderrahman, B.; Curpan, R.F.; Hawsawi, Y.M.; Fan, P.; Jordan, V.C. A unifying biology of sex steroid-induced apoptosis in prostate and breast cancers. Endocr. Relat. Cancer, 2018, 25(2), R83-R113.
[http://dx.doi.org/10.1530/ERC-17-0416] [PMID: 29162647]
[92]
Nichols, H.B.; Schoemaker, M.J.; Wright, L.B.; McGowan, C.; Brook, M.N.; McClain, K.M.; Jones, M.E.; Adami, H-O.; Agnoli, C.; Baglietto, L.; Bernstein, L.; Bertrand, K.A.; Blot, W.J.; Boutron-Ruault, M.C.; Butler, L.; Chen, Y.; Doody, M.M.; Dossus, L.; Eliassen, A.H.; Giles, G.G.; Gram, I.T.; Hankinson, S.E.; Hoffman-Bolton, J.; Kaaks, R.; Key, T.J.; Kirsh, V.A.; Kitahara, C.M.; Koh, W.P.; Larsson, S.C.; Lund, E.; Ma, H.; Merritt, M.A.; Milne, R.L.; Navarro, C.; Overvad, K.; Ozasa, K.; Palmer, J.R.; Peeters, P.H.; Riboli, E.; Rohan, T.E.; Sadakane, A.; Sund, M.; Tamimi, R.M.; Trichopoulou, A.; Vatten, L.; Visvanathan, K.; Weiderpass, E.; Willett, W.C.; Wolk, A.; Zeleniuch-Jacquotte, A.; Zheng, W.; Sandler, D.P.; Swerdlow, A.J. The premenopausal breast cancer collaboration: a pooling project of studies participating in the national cancer institute cohort consortium. Cancer Epidemiol. Biomarkers Prev., 2017, 26(9), 1360-1369.
[http://dx.doi.org/10.1158/1055-9965.EPI-17-0246] [PMID: 28600297]
[93]
Peto, R.; Davies, C.; Godwin, J.; Gray, R.; Pan, H.C.; Clarke, M.; Cutter, D.; Darby, S.; McGale, P.; Taylor, C.; Wang, Y.C.; Bergh, J.; Di Leo, A.; Albain, K.; Swain, S.; Piccart, M.; Pritchard, K. Early breast cancer trialists’ collaborative group (EBCTCG). Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet, 2012, 379(9814), 432-444.
[http://dx.doi.org/10.1016/S0140-6736(11)61625-5] [PMID: 22152853]
[94]
Ichikawa, Y.; Ghanefar, M.; Bayeva, M.; Wu, R.; Khechaduri, A.; Naga Prasad, S.V.; Mutharasan, R.K.; Naik, T.J.; Ardehali, H. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J. Clin. Invest., 2014, 124(2), 617-630.
[http://dx.doi.org/10.1172/JCI72931] [PMID: 24382354]
[95]
André, F.; Zielinski, C.C. Optimal strategies for the treatment of metastatic triple-negative breast cancer with currently approved agents. Ann. Oncol., 2012, 23(Suppl. 6), vi46-vi51.
[http://dx.doi.org/10.1093/annonc/mds195] [PMID: 23012302]
[96]
Kalimutho, M.; Parsons, K.; Mittal, D.; López, J.A.; Srihari, S.; Khanna, K.K. Targeted therapies for triple-negative breast cancer: combating a stubborn disease. Trends Pharmacol. Sci., 2015, 36(12), 822-846.
[http://dx.doi.org/10.1016/j.tips.2015.08.009] [PMID: 26538316]
[97]
Janganati, V.; Ponder, J.; Balasubramaniam, M.; Bhat-Nakshatri, P.; Bar, E.E.; Nakshatri, H.; Jordan, C.T.; Crooks, P.A. MMB triazole analogs are potent NF-κB inhibitors and anti-cancer agents against both hematological and solid tumor cells. Eur. J. Med. Chem., 2018, 157, 562-581.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.010] [PMID: 30121494]
[98]
Sun, X.; Wang, M.; Wang, M.; Yao, L.; Li, X.; Dong, H.; Li, M.; Li, X.; Liu, X.; Xu, Y. Exploring the metabolic vulnerabilities of epithelial-mesenchymal transition in breast cancer. Front. Cell Dev. Biol., 2020, 8, 655.
[http://dx.doi.org/10.3389/fcell.2020.00655] [PMID: 32793598]
[99]
D’Anneo, A.; Carlisi, D.; Lauricella, M.; Puleio, R.; Martinez, R.; Di Bella, S.; Di Marco, P.; Emanuele, S.; Di Fiore, R.; Guercio, A.; Vento, R.; Tesoriere, G. Parthenolide generates reactive oxygen species and autophagy in MDA-MB231 cells. A soluble parthenolide analogue inhibits tumour growth and metastasis in a xenograft model of breast cancer. Cell Death Dis., 2013, 4(10), e891.
[http://dx.doi.org/10.1038/cddis.2013.415] [PMID: 24176849]
[100]
Li, C.J.; Guo, S.F.; Shi, T.M. Culture supernatants of breast cancer cell line MDA-MB-231 treated with parthenolide inhibit the proliferation, migration, and lumen formation capacity of human umbilical vein endothelial cells. Chin. Med. J. (Engl.), 2012, 125(12), 2195-2199.
[PMID: 22884152]
[101]
Idris, A.I.; Libouban, H.; Nyangoga, H.; Landao-Bassonga, E.; Chappard, D.; Ralston, S.H. Pharmacologic inhibitors of IkappaB kinase suppress growth and migration of mammary carcinosarcoma cells in vitro and prevent osteolytic bone metastasis in vivo. Mol. Cancer Ther., 2009, 8(8), 2339-2347.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0133] [PMID: 19671767]
[102]
Kim, S.L.; Kim, S.H.; Park, Y.R.; Liu, Y.C.; Kim, E.M.; Jeong, H.J.; Kim, Y.N.; Seo, S.Y.; Kim, I.H.; Lee, S.O.; Lee, S.T.; Kim, S.W. Combined parthenolide and balsalazide have enhanced antitumor efficacy through blockade of NF-κB activation. Mol. Cancer Res., 2017, 15(2), 141-151.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0101] [PMID: 28108625]
[103]
Li, X.; Payne, D.; Ampolu, B.; Bland, N.; Brown, J.T.; Dutton, M.; Fitton, C.; Guliver, A.; Hale, L.; Hamza, D. Derivatisation of parthenolide to address chemoresistant chronic lymphocytic leukaemia. ChemRxiv, 2019, 10(8), 1379-1390.
[http://dx.doi.org/10.1039/C9MD00297A] [PMID: 32952998]
[104]
Anesini, C.A.; Alonso, M.R.; Martino, R.F. Antiproliferative and cytotoxic activities in: Sesquiterpene Lactones. ; Sulsen, V.P.; Martino, S.P., Eds.; Springer Link, 2018, pp. 303-323.
[http://dx.doi.org/10.1007/978-3-319-78274-4_13 ]
[105]
Diakos, C.I.; Charles, K.A.; McMillan, D.C.; Clarke, S.J. Cancer-related inflammation and treatment effectiveness. Lancet Oncol., 2014, 15(11), e493-e503.
[http://dx.doi.org/10.1016/S1470-2045(14)70263-3] [PMID: 25281468]
[106]
Morrow, R.J.; Etemadi, N.; Yeo, B.; Ernst, M. Challenging a misnomer? The role of inflammatory pathways in inflammatory breast cancer. Mediators Inflamm., 2017, 2017, 4754827.
[http://dx.doi.org/10.1155/2017/4754827] [PMID: 28607534]
[107]
Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther., 2017, 2, 17023.
[http://dx.doi.org/10.1038/sigtrans.2017.23] [PMID: 29158945]
[108]
Arutla, V.; Punganuru, S.R.; Madala, H.; Srivenugopal, K.S. Design and develpomentof a parthenolidecombretastatin hybrid drug (VA-11) with highly potent antimicrotubule and NF-kB inhibitory activities. AACR, 2018, 1667-1667.
[http://dx.doi.org/10.1158/1538-7445.AM2018-1667]
[109]
Pajak, B.; Gajkowska, B.; Orzechowski, A. Molecular basis of parthenolide-dependent proapoptotic activity in cancer cells. Folia Histochem. Cytobiol., 2008, 46(2), 129-135.
[http://dx.doi.org/10.2478/v10042-008-0019-2] [PMID: 18519227]
[110]
Wladis, E.J.; Lau, K.W.; Adam, A.P. Nuclear factor kappa-β is enriched in eyelid specimens of rosacea: implications for pathogenesis and therapy. Am. J. Ophthalmol., 2019, 201, 72-81.
[http://dx.doi.org/10.1016/j.ajo.2019.01.018] [PMID: 30703356]
[111]
Saber, S.; Khalil, R.M.; Abdo, W.S.; Nassif, D.; El-Ahwany, E. Olmesartan ameliorates chemically-induced ulcerative colitis in rats via modulating NFκB and Nrf-2/HO-1 signaling crosstalk. Toxicol. Appl. Pharmacol., 2019, 364, 120-132.
[http://dx.doi.org/10.1016/j.taap.2018.12.020] [PMID: 30594690]
[112]
Terrinoni, M.; Holmgren, J.; Lebens, M.; Larena, M. Proteomic analysis of cholera toxin adjuvant-stimulated human monocytes identifies Thrombospondin-1 and Integrin-β1 as strongly upregulated molecules involved in adjuvant activity. Sci. Rep., 2019, 9(1), 2812.
[http://dx.doi.org/10.1038/s41598-019-38726-0] [PMID: 30808871]
[113]
Sun, S.C.; Ley, S.C. New insights into NF-kappaB regulation and function. Trends Immunol., 2008, 29(10), 469-478.
[http://dx.doi.org/10.1016/j.it.2008.07.003] [PMID: 18775672]
[114]
Dede, F.; Karadenizli, S.; Ozsoy, O.D.; Eraldemir, F.C.; Sahin, D.; Ates, N. Antagonism of adenosinergic system decrease SWD occurrence via an increment in thalamic NFkB and IL-6 in absence epilepsy. J. Neuroimmunol., 2019, 326, 1-8.
[http://dx.doi.org/10.1016/j.jneuroim.2018.11.004] [PMID: 30423516]
[115]
Saber, S.; Goda, R.; El-Tanbouly, G.S.; Ezzat, D. Lisinopril inhibits nuclear transcription factor kappa B and augments sensitivity to silymarin in experimental liver fibrosis. Int. Immunopharmacol., 2018, 64, 340-349.
[http://dx.doi.org/10.1016/j.intimp.2018.09.021] [PMID: 30243070]
[116]
Li, Y.; Liu, S.; Zhang, Y.; Gao, Q.; Sun, W.; Fu, L.; Cao, J. Histone demethylase JARID1B regulates proliferation and migration of pulmonary arterial smooth muscle cells in mice with chronic hypoxia-induced pulmonary hypertension via nuclear factor-kappa B (NFkB). Cardiovasc. Pathol., 2018, 37, 8-14.
[http://dx.doi.org/10.1016/j.carpath.2018.07.004] [PMID: 30172777]
[117]
Hayden, M.S.; Ghosh, S. Shared principles in NF-kappaB signaling. Cell, 2008, 132(3), 344-362.
[http://dx.doi.org/10.1016/j.cell.2008.01.020] [PMID: 18267068]
[118]
Carlisi, D.; De Blasio, A.; Drago-Ferrante, R.; Di Fiore, R.; Buttitta, G.; Morreale, M.; Scerri, C.; Vento, R.; Tesoriere, G. Parthenolide prevents resistance of MDA-MB231 cells to doxorubicin and mitoxantrone: the role of Nrf2. Cell Death Discov., 2017, 3, 17078.
[http://dx.doi.org/10.1038/cddiscovery.2017.78] [PMID: 29354292]
[119]
Kim, J.Y.; Jung, H.H.; Ahn, S.; Bae, S.; Lee, S.K.; Kim, S.W.; Lee, J.E.; Nam, S.J.; Ahn, J.S.; Im, Y.H.; Park, Y.H. The relationship between nuclear factor (NF)-κB family gene expression and prognosis in triple-negative breast cancer (TNBC) patients receiving adjuvant doxorubicin treatment. Sci. Rep., 2016, 6, 31804.
[http://dx.doi.org/10.1038/srep31804] [PMID: 27545642]
[120]
García-Piñeres, A.J.; Lindenmeyer, M.T.; Merfort, I. Role of cysteine residues of p65/NF-kappaB on the inhibition by the sesquiterpene lactone parthenolide and N-ethyl maleimide, and on its transactivating potential. Life Sci., 2004, 75(7), 841-856.
[http://dx.doi.org/10.1016/j.lfs.2004.01.024] [PMID: 15183076]
[121]
Koprowska, K.; Czyz, M. [Molecular mechanisms of parthenolide's action: Old drug with a new face] Postepy Hig. Med. Dosw., 2010, 64, 100-114.
[PMID: 20354259]
[122]
Cieslar-Pobuda, A.; Yue, J.; Lee, H.C. ROS and oxidative stress in stem cells. Oxid. Med. Cell. Longev., 2017, 2017, 5047168.
[http://dx.doi.org/10.1155/2017/5047168] [PMID: 29018510]
[123]
Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov., 2009, 8(7), 579-591.
[http://dx.doi.org/10.1038/nrd2803] [PMID: 19478820]
[124]
Carlisi, D.; D’Anneo, A.; Martinez, R.; Emanuele, S.; Buttitta, G.; Di Fiore, R.; Vento, R.; Tesoriere, G.; Lauricella, M. The oxygen radicals involved in the toxicity induced by parthenolide in MDA-MB-231 cells. Oncol. Rep., 2014, 32(1), 167-172.
[http://dx.doi.org/10.3892/or.2014.3212] [PMID: 24859613]
[125]
Copple, I.M.; Dinkova-Kostova, A.T.; Kensler, T.W.; Liby, K.T.; Wigley, W.C. NRF2 as an emerging therapeutic target. Oxid. Med. Cell. Longev., 2017, 2017, 8165458.
[http://dx.doi.org/10.1155/2017/8165458] [PMID: 28250892]
[126]
Lu, C.; Zhou, L.Y.; Xu, H.J.; Chen, X.Y.; Tong, Z.S.; Liu, X.D.; Jia, Y.S.; Chen, Y. RIP3 overexpression sensitizes human breast cancer cells to parthenolide in vitro via intracellular ROS accumulation. Acta Pharmacol. Sin., 2014, 35(7), 929-936.
[http://dx.doi.org/10.1038/aps.2014.31] [PMID: 24909514]
[127]
Otto, T.; Sicinski, P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer, 2017, 17(2), 93-115.
[http://dx.doi.org/10.1038/nrc.2016.138] [PMID: 28127048]
[128]
Carlisi, D.; Lauricella, M.; D’Anneo, A.; Buttitta, G.; Emanuele, S.; di Fiore, R.; Martinez, R.; Rolfo, C.; Vento, R.; Tesoriere, G. The synergistic effect of SAHA and parthenolide in MDA-MB231 breast cancer cells. J. Cell. Physiol., 2015, 230(6), 1276-1289.
[http://dx.doi.org/10.1002/jcp.24863] [PMID: 25370819]
[129]
Saxton, R.A.; Sabatini, D.M. mTOR signaling in growth, metabolism and disease. Cell, 2017, 168(6), 960-976.
[http://dx.doi.org/10.1016/j.cell.2017.02.004] [PMID: 28283069]
[130]
van Haaften, C.; van Eendenburg, J.; Boot, A.; Corver, W.E.; Haans, L.; van Wezel, T.; Trimbos, J.B. Chemosensitivity of BRCA1-mutated ovarian cancer cells and established cytotoxic agents. Int. J. Gynecol. Cancer, 2017, 27(8), 1571-1578.
[http://dx.doi.org/10.1097/IGC.0000000000001052] [PMID: 28604461]
[131]
Guzman, M.L.; Rossi, R.M.; Neelakantan, S.; Li, X.; Corbett, C.A.; Hassane, D.C.; Becker, M.W.; Bennett, J.M.; Sullivan, E.; Lachowicz, J.L.; Vaughan, A.; Sweeney, C.J.; Matthews, W.; Carroll, M.; Liesveld, J.L.; Crooks, P.A.; Jordan, C.T. An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood, 2007, 110(13), 4427-4435.
[http://dx.doi.org/10.1182/blood-2007-05-090621] [PMID: 17804695]
[132]
Alwaseem, H.; Frisch, B.J.; Fasan, R. Anticancer activity profiling of parthenolide analogs generated via P450-mediated chemoenzymatic synthesis. Bioorg. Med. Chem., 2018, 26(7), 1365-1373.
[http://dx.doi.org/10.1016/j.bmc.2017.08.009] [PMID: 28826596]
[133]
Long, J.; Ding, Y.H.; Wang, P.P.; Zhang, Q.; Chen, Y. Protection-group-free semisyntheses of parthenolide and its cyclopropyl analogue. J. Org. Chem., 2013, 78(20), 10512-10518.
[http://dx.doi.org/10.1021/jo401606q] [PMID: 24047483]
[134]
Nasim, S.; Pei, S.; Hagen, F.K.; Jordan, C.T.; Crooks, P.A. Melampomagnolide B: a new antileukemic sesquiterpene. Bioorg. Med. Chem., 2011, 19(4), 1515-1519.
[http://dx.doi.org/10.1016/j.bmc.2010.12.045] [PMID: 21273084]
[135]
Kruk, P.J. Beneficial effect of additional treatment with widely available anticancer agents in advanced small lung cell carcinoma: a case report. Mol. Clin. Oncol., 2018, 9(6), 647-650.
[http://dx.doi.org/10.3892/mco.2018.1736] [PMID: 30546895]
[136]
Konstat-Korzenny, E.; Ascencio-Aragón, J.A.; Niezen-Lugo, S.; Vázquez-López, R. Artemisinin and its synthetic derivatives as a possible therapy for cancer. Med. Sci. (Basel), 2018, 6(1), E19.
[http://dx.doi.org/10.3390/medsci6010019] [PMID: 29495461]
[137]
Patel, N.M.; Nozaki, S.; Shortle, N.H.; Bhat-Nakshatri, P.; Newton, T.R.; Rice, S.; Gelfanov, V.; Boswell, S.H.; Goulet, R.J. Jr.; Sledge, G.W.Jr.; Nakshatri, H. Paclitaxel sensitivity of breast cancer cells with constitutively active NF-kappaB is enhanced by IkappaBalpha super-repressor and parthenolide. Oncogene, 2000, 19(36), 4159-4169.
[http://dx.doi.org/10.1038/sj.onc.1203768] [PMID: 10962577]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 39
Year: 2020
Page: [6628 - 6642]
Pages: 15
DOI: 10.2174/0929867326666190816230121
Price: $65

Article Metrics

PDF: 17
HTML: 4