Preparation of TiO2 and SiO2 Nanoparticles and their Effect on Epoxy Resin Nanocomposites

Author(s): Gagi Tauhidur Rahman, Moumita Tasnim Meem, Md. Abdul Gafur, Abu Mahmud, Md. Asadul Hoque*

Journal Name: Micro and Nanosystems

Volume 12 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Polymer matrix-based composites are the workhorse of the composite industries. Besides, the idea of modifying the polymer matrix by various inorganic fillers has greatly drawn the attention of materials engineers due to their diversified applications and advanced properties.

Objective: The objective of this work was to prepare and characterize Titania (TiO2) and Silica (SiO2) nanoparticles and develop 1wt%, 3wt%, 5wt% and 10wt% TiO2 and SiO2 incorporated epoxy-based nanocomposites. Here, we used TiO2 incorporated epoxy composites as a model to compare the effectiveness and contribution of locally available nano SiO2 in the epoxy matrix.

Method: The TiO2 nanoparticles were prepared by most famous and conventional sol-gel method and SiO2 nanoparticles were extracted from Padma river (silica) sand obtained from Rajshahi city, Bangladesh from a very easy and inexpensive route. Both TiO2/epoxy and SiO2/epoxy nanocomposites (approximately 1.3-1.5 mm thick) were prepared via a solution casting method incorporating the TiO2 and SiO2 nanofillers in the epoxy matrix.

Results: The XRD patterns and SEM image ensure the formation of TiO2 and SiO2 nanoparticles. A number of tests reveal that mechanical properties especially hardness and young’s modulus of the nanocomposites have increased while decreasing the tensile and flexural strength than neat epoxy due to the incorporation of nanofiller. It is visible that, TiO2/epoxy nanocomposites have shown better performance than the virgin epoxy but surprisingly in most cases, nano SiO2 exhibited comparable and even better contribution than TiO2/epoxy nanocomposites. This indicates that the use of TiO2 in epoxy might be replaced by inexpensive nano SiO2 to be used in various structural sectors.

Conclusion: The TiO2 and SiO2 nanoparticles were synthesized successfully. The preliminary experiments predict that the addition of nanoparticles (TiO2, SiO2) converts the composite from being ductile into a brittle material where SiO2/epoxy shows comparable performance with TiO2/epoxy nanocomposites.

Keywords: Epoxy resins, nanoparticles, nanocomposites, mechanical properties, solution casting, SiO2, TiO2.

[1]
Bittmann, B.; Haupert, F.; Schlarb, A.K. Preparation of TiO2 epoxy nanocomposites by ultrasonic dispersion and resulting properties. J. Appl. Polym. Sci., 2012, 124(3), 1906-1911.
[http://dx.doi.org/10.1002/app.34493]
[2]
Afzal, A.; Siddiqi, H.M.; Saeed, S.; Ahmad, Z. Exploring resin viscosity effects in solventless processing of nano-SiO2/epoxy polymer hybrids. RSC Advances, 2013, 3(12), 3885-3892.
[http://dx.doi.org/10.1039/c3ra21150a]
[3]
Ochi, M.; Nii, D.; Suzuki, Y.; Harada, M. Thermal and optical properties of epoxy/zirconia hybrid materials synthesized via in situ polymerization. J. Mater. Sci., 2010, 45(10), 2655-2661.
[http://dx.doi.org/10.1007/s10853-010-4244-7]
[4]
Lu, S.R.; Zhang, H.L.; Wang, X.Y. Wear and mechanical properties of epoxy/ SiO2-TiO2 composites. J. Mater. Sci., 2005, 40, 2815-2821.
[http://dx.doi.org/10.1007/s10853-005-2437-2]
[5]
Afzal, A.; Siddiqi, H.M.; Iqbal, N.; Ahmad, Z. The effect of SiO2 filler content and its organic compatibility on thermal stability of epoxy resin. J. Therm. Anal. Calorim., 2013, 111(1), 247-252.
[http://dx.doi.org/10.1007/s10973-012-2267-9]
[6]
Chau, J.L.H.; Tung, C.T.; Lin, Y.M.; Li, A.K. Preparation and optical properties of titania/epoxy nanocomposite coatings. Mater. Lett., 2008, 62(19), 3416-3418.
[http://dx.doi.org/10.1016/j.matlet.2008.02.058]
[7]
Yuen, S.M.; Ma, C.C.M.; Chuang, C.Y.; Hsiao, Y.H.; Chiang, C.L.; Yu, A.D. Preparation, morphology, mechanical and electrical properties of TiO2 coated multiwalled carbon nanotube/epoxy composites. Ozean J. Appl. Sci., 2008, 39(1), 119-125.
[http://dx.doi.org/10.1016/j.compositesa.2007.08.021]
[8]
Kamil, F.; Hubiter, K.A.; Abed, T.K.; Al-Amiery, A.A. Synthesis of aluminum and titanium oxides nanoparticles via sol-gel method: Optimization for the minimum size. J. Nanosci. Nanotechnol., 2016, 2, 37-39.
[9]
Nachit, W.; Touhtouh, S.; Ramzi, Z.; Zbair, M.; Eddiai, A.; Rguiti, M.; Bouchikhi, A. Synthesis of nanosized TiO2 powder by sol gel method at low temperature. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2016, 627, 170-175.
[http://dx.doi.org/10.1080/15421406.2015.1137135]
[10]
Gupta, S.M.; Tripathi, M. A review on the synthesis of TiO2 nanoparticles by solution route. Cent. Eur. J. Chem., 2012, 10(2), 279-294.
[11]
Chemistry, H. Pure Silicon Dioxide from Sand., Available from:. https://hobbychemistry.wordpress.com/2015/04/11/pure-silicondioxide-from-sand/ (Accessed on: Aprill 11, 2015).
[12]
Intertek, Moisture Absorption of Matrix Composites by ASTM D5229. Available from:. http://www.intertek.com/polymers/composites/d5229/
[13]
Antić, Ž.; Krsmanović, R.M.; Nikolić, M.G.; Marinović-Cincović, M.; Mitrić, M.; Polizzi, S.; Dramićanin, M.D. Multisite luminescence of rare earth doped TiO2 anatase nanoparticles. Mater. Chem. Phys., 2012, 135, 1064-1069.
[http://dx.doi.org/10.1016/j.matchemphys.2012.06.016]
[14]
Morris, M.C. Standard X-ray diffraction powder patterns: Section 16--data for 86 substances; Department of Commerce, National Bureau of Standards: US, 1979.
[15]
Rangari, V. Polymer nanocomposite materials for structural applications. Advances in Nanocomposites: Synthesis; Characterization and Industrial Applications, 2011, pp. 61-84.
[16]
Merad, L.; Benyoucef, B.; Abadie, M.J.A.; Charles, J.P. Characterization and mechanical properties of epoxy resin reinforced with TiO2 nanoparticles. J. Eng. Appl. Sci. (Asian Res. Publ. Netw.), 2011, 6, 205-209.
[http://dx.doi.org/10.3923/jeasci.2011.205.209]
[17]
Hsieh, T.H.; Kinloch, A.J.; Masania, K.; Taylor, A.C.; Sprenger, S. The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles. Polymer (Guildf.), 2010, 51, 6284-6294.
[http://dx.doi.org/10.1016/j.polymer.2010.10.048]
[18]
Ikram, A. Al-Ajaj; Muhannad M. Abd; Harith I. Jaffer. Mechanical properties of micro and nano TiO2/epoxy composites. Int. J. Miner. Metall. Mater., 2013, 1, 2320-4060.
[19]
Ibrahim, A.A.; Hassan, M.F. Study the mechanical properties of epoxy resin reinforced with silica (quartz) and alumina particles. Iraqi J. Mech. Mater. Eng., 2011, 11(3), 486-506.
[20]
Chow, W.S. Water absorption of epoxy/glass fiber/organomontmorillonite nanocomposites. Express Polym. Lett., 2007, 1(2), 104-108.
[http://dx.doi.org/10.3144/expresspolymlett.2007.18]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 12
ISSUE: 2
Year: 2020
Page: [135 - 141]
Pages: 7
DOI: 10.2174/1876402911666190809141557

Article Metrics

PDF: 20
HTML: 2