Effect of Fruit Secondary Metabolites on Melanoma: A Systematic Review of In vitro Studies

Author(s): Chirle de O. Raphaelli, Jéssica G. Azevedo, Gabriel O. Dalmazo*, Juliana R. Vinholes, Elizandra Braganhol, Márcia Vizzotto, Leonardo Nora

Journal Name: Current Bioactive Compounds

Volume 16 , Issue 7 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Melanoma is a highly aggressive form of skin cancer and is responsible for the majority of the deaths related to this pathology. Recently, different studies have identified naturally occurring compounds of fruits with chemopreventive action. This systematic review aims to investigate the protective role of fruit phytochemicals against melanoma skin cancer from in vitro studies.

Methods: The articles were selected using the search terms string "skin neoplasms" OR “melanoma” AND “fruit” in the following databases: Pubmed/Medline, Bireme, Web of Science and ScienceDirect.

Results: Out of an initial database search of 391 titles and/or abstracts, 115 full-text articles were eligible and after final evaluation 49 were selected for further assessment. Almost all analysed articles reveal that compounds of different classes (alkaloid, alkane, benzopyrone, cyclopenta[b]benzofuran, ester, flavonoid, tocotrienols, phenolic, phenylpropanoid, phloroglucinol derivative, terpenoids and betalain) possess anti-melanoma in vitro activity. The benzopyrone (α-mangostin) and stilbene (resveratrol) were effective in inhibiting melanoma cell metastasis, essential to stop the progression of malignant cells.

Conclusion: Phytochemicals that possess anticancer properties are present in both, common and exotic fruits. Some of these novel compounds are considered as promising starting points for the discovery of effective new drugs.

Keywords: Fruits, in vitro, melanoma, phytochemicals, benzopyrone, phenylpropanoid.

Shaharyar, M.; Abdullah, M.M.; Bakht, M.A.; Majeed, J. Pyrazoline bearing benzimidazoles: Search for anticancer agent. Eur. J. Med. Chem., 2010, 45(1), 114-119.
[http://dx.doi.org/10.1016/j.ejmech.2009.09.032 ] [PMID: 19883957]
Tentori, L.; Lacal, P.M.; Graziani, G. Challenging resistance mechanisms to therapies for metastatic melanoma. Trends Pharmacol. Sci., 2013, 34(12), 656-666.
[http://dx.doi.org/10.1016/j.tips.2013.10.003 ] [PMID: 24210882]
Jerant, A.F.; Johnson, J.T.; Sheridan, C.D.; Caffrey, T.J. Early detection and treatment of skin cancer. Am. Fam. Physician, 2000, 62(2), 381-382.
[PMID: 10929700]
Kodet, O.; Lacina, L.; Krejčí, E.; Dvořánková, B.; Grim, M.; Štork, J.; Kodetová, D.; Vlček, Č.; Šáchová, J.; Kolář, M.; Strnad, H.; Smetana, K. Melanoma cells influence the differentiation pattern of human epidermal keratinocytes. Mol. Cancer, 2015, 14, 1.
[http://dx.doi.org/10.1186/1476-4598-14-1 ] [PMID: 25560632]
Zbytek, B.; Carlson, J.A.; Granese, J.; Ross, J.; Mihm, M.C., Jr; Slominski, A. Current concepts of metastasis in melanoma. Expert. Rev. Dermatol., 2008, 3(5), 569-585.
[http://dx.doi.org/10.1586/17469872.3.5.569 ] [PMID: 19649148]
Koprowska, K.; Czyż, M. Dacarbazine, a chemotherapeutic against metastatic melanoma and a reference drug for new treatment modalities. Postepy Hig. Med. Dosw., 2011, 65, 734-751.
Canto, A.C.M.; Oliveira, J. Cutaneous Melanoma: Curable disease? Literature review and presentation of an organogram of investigation and treatment. Rev AMRIGS, 2007, 51, 312-316.
Andreu-Pérez, P.; Hernandez-Losa, J.; Moliné, T.; Gil, R.; Grueso, J.; Pujol, A.; Cortés, J.; Avila, M.A.; Recio, J.A. Methylthioadenosine (MTA) inhibits melanoma cell proliferation and in vivo tumor growth. BMC Cancer, 2010, 10, 265.
[http://dx.doi.org/10.1186/1471-2407-10-265 ] [PMID: 20529342]
Robert, C.; Mateus, C.; Routier, E.; Thomas, M.; Boussemart, L.; Eggermont, A.M. Metastatic melanoma: New paradigms of treatment and new toxicities. EJC Suppl, 2013, 11(2), 278-280.
[http://dx.doi.org/10.1016/j.ejcsup.2013.07.046 ] [PMID: 26217144]
Russak, J.E.; Rigel, D.S. Risk factors for the development of primary cutaneous melanoma. Dermatol. Clin., 2012, 30(3), 363-368.
[http://dx.doi.org/10.1016/j.det.2012.05.002 ] [PMID: 22800544]
de Souza, C.F.; Morais, A.S.; Jasiulionis, M.G. Biomarkers as key contributors in treating malignant melanoma metastases. Dermatol. Res. Pract., 2012, 2012, 156068
[http://dx.doi.org/10.1155/2012/156068 ] [PMID: 22110486]
Dick, O.W.; Santos, M.d.L.R. d.; Santos, F.d. A.R.; Frischenbruder, J.A.; Costa, P.G. Rocha, V.H.B. Malignant melanoma: Age vs. clinical stage - Retrospective study of 161 cases. An. Bras. Dermatol., 1989, 64, 151-153.
Dimatos, D.C.; Duarte, F.O.; Machado, R.S.; Vieira, V.J.; Vasconcellos, Z.A.A. Binsely, J.; Neves, R. de E. Skin Melanoma in Brazil. Arq. Catarinenses Med., 2009, 38, 14-19.
Dummer, R.; Siano, M.; Hunger, R.E.; Lindenblatt, N.; Braun, R.; Michielin, O.; Mihic-Probst, D.; von Moos, R.; Najafi, Y.; Guckenberger, M.; Arnold, A. The updated Swiss guidelines 2016 for the treatment and follow-up of cutaneous melanoma. Swiss Med. Wkly., 2016, 146, w14279
Garbe, C.; Peris, K.; Hauschild, A.; Saiag, P.; Middleton, M.; Spatz, A.; Grob, J-J.; Malvehy, J.; Newton-Bishop, J.; Stratigos, A.; Pehamberger, H.; Eggermont, A.M. European Dermatology Forum; European Association of Dermato-Oncology; European Organization of Research and Treatment of Cancer. Diagnosis and treatment of melanoma. European consensus-based interdisciplinary guideline-Update 2012. Eur. J. Cancer, 2012, 48(15), 2375-2390.
[http://dx.doi.org/10.1016/j.ejca.2012.06.013 ] [PMID: 22981501]
Göppner, D.; Leverkus, M. Prognostic parameters for the primary care of melanoma patients: What is really risky in melanoma? J. Skin Cancer, 2011, 2011, 521947
[http://dx.doi.org/10.1155/2011/521947 ] [PMID: 22007305]
Markovic, S.N.; Erickson, L.A.; Rao, R.D.; Weenig, R.H.; Pockaj, B.A.; Bardia, A.; Vachon, C.M.; Schild, S.E.; McWilliams, R.R.; Hand, J.L.; Laman, S.D.; Kottschade, L.A.; Maples, W.J.; Pittelkow, M.R.; Pulido, J.S.; Cameron, J.D.; Creagan, E.T. Melanoma Study Group of the Mayo Clinic Cancer Center. Malignant melanoma in the 21st century, part 1: Epidemiology, risk factors, screening, prevention, and diagnosis. Mayo Clin. Proc., 2007, 82(3), 364-380.
[http://dx.doi.org/10.1016/S0025-6196(11)61033-1 ] [PMID: 17352373]
Nakayama, K. Growth and progression of melanoma and non-melanoma skin cancers regulated by ubiquitination. Pigment Cell Melanoma Res., 2010, 23(3), 338-351.
[http://dx.doi.org/10.1111/j.1755-148X.2010.00692.x ] [PMID: 20230483]
Pratheeshkumar, P.; Raphael, T.J.; Kuttan, G. Nomilin inhibits metastasis via induction of apoptosis and regulates the activation of transcription factors and the cytokine profile in B16F-10 cells. Integr. Cancer Ther., 2012, 11(1), 48-60.
[http://dx.doi.org/10.1177/1534735411403307 ] [PMID: 21665879]
Schadendorf, D.; Thompson, J.F.; Flaherty, K.T.; Griewank, K.G.; Murali, R.; Scolyer, R.A. Genetic alterations and personalized medicine in melanoma: Progress and future prospects. J. Natl. Cancer Inst., 2014, 106, djt435
Zheng, W.; Wang, S.Y. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem., 2001, 49(11), 5165-5170.
[http://dx.doi.org/10.1021/jf010697n ] [PMID: 11714298]
Katiyar, S.K. Silymarin and skin cancer prevention: Anti inflammatory, antioxidant and immunomodulatory effects. Int. J. Oncol., 2005, 26(1), 169-176.
[http://dx.doi.org/10.3892/ijo.26.1.169 ] [PMID: 15586237]
Fabiani, R.; Minelli, L.; Rosignoli, P. Apple intake and cancer risk: A systematic review and meta-analysis of observational studies. Public Health Nutr., 2016, 19(14), 2603-2617.
[http://dx.doi.org/10.1017/S136898001600032X ] [PMID: 27000627]
Donaldson, M.S. Nutrition and cancer: A review of the evidence for an anti-cancer diet. Nutr. J., 2004, 3, 19.
[http://dx.doi.org/10.1186/1475-2891-3-19 ] [PMID: 15496224]
Afaq, F.; Katiyar, S.K. Polyphenols: Skin photoprotection and inhibition of photocarcinogenesis. Mini Rev. Med. Chem., 2011, 11(14), 1200-1215.
[PMID: 22070679]
Miura, K.; Green, A.C. Dietary antioxidants and melanoma: Evidence from cohort and intervention studies. Nutr. Cancer, 2015, 67(6), 867-876.
[http://dx.doi.org/10.1080/01635581.2015.1053499 ] [PMID: 26147450]
Piotrowska, H.; Myszkowski, K.; Ziółkowska, A.; Kulcenty, K.; Wierzchowski, M.; Kaczmarek, M.; Murias, M.; Kwiatkowska-Borowczyk, E.; Jodynis-Liebert, J. Resveratrol analogue 3,4,4′,5-tetramethoxystilbene inhibits growth, arrests cell cycle and induces apoptosis in ovarian SKOV-3 and A-2780 cancer cells. Toxicol. Appl. Pharmacol., 2012, 263(1), 53-60.
[http://dx.doi.org/10.1016/j.taap.2012.05.023 ] [PMID: 22687606]
Wu, S.; Powers, S.; Zhu, W.; Hannun, Y.A. Substantial contribution of extrinsic risk factors to cancer development. Nature, 2016, 529(7584), 43-47.
[http://dx.doi.org/10.1038/nature16166 ] [PMID: 26675728]
Kucinska, M.; Giron, M-D.; Piotrowska, H.; Lisiak, N.; Granig, W.H.; Lopez-Jaramillo, F-J.; Salto, R.; Murias, M.; Erker, T. Novel promising estrogenic receptor modulators: cytotoxic and estrogenic activity of benzanilides and dithiobenzanilides. PLoS One, 2016, 11(1), e0145615
[http://dx.doi.org/10.1371/journal.pone.0145615 ] [PMID: 26730945]
Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med., 2009, 6(7), e1000097-e1000097.
[http://dx.doi.org/10.1371/journal.pmed.1000097 ] [PMID: 19621072]
Woguem, V.; Maggi, F.; Fogang, H.P.D.; Tapondjoua, L.A.; Womeni, H.M.; Luana, Q.; Bramuccic, M.; Vitali, L.A.; Petrelli, D.; Lupidi, G.; Papa, F.; Vittori, S.; Barboni, L. Antioxidant, antiproliferative and antimicrobial activities of the volatile oil from the wild pepper Piper capense used in Cameroon as a culinary spice. Nat. Prod. Commun., 2013, 8(12), 1791-1796.
[http://dx.doi.org/10.1177/1934578X1300801234 ] [PMID: 24555300]
Xu, J.; Guo, Y.Q.; Li, X.; Wei, K.; Zhao, X.; Zhang, S. Cytotoxic β-dihydroagarofuran sesquiterpenoids from the fruits of Celastrus orbiculatus. Z. Natforsch. C J. Biosci., 2008, 63(7-8), 515-518.
[http://dx.doi.org/10.1515/znc-2008-7-808 ] [PMID: 18810994]
Xu, J.; Guo, Y-Q.; Li, X.; Wei, K.; Zhao, X-J. Cytotoxic sesquiterpenoids from the ethanol extract of fruits of Celastrus orbiculatus. J. Ethnopharmacol., 2008, 117(1), 175-177.
[http://dx.doi.org/10.1016/j.jep.2008.01.028 ] [PMID: 18337031]
Song, D.H.; Jo, Y.H.; Ahn, J.H.; Kim, S.B.; Yun, C.Y.; Kim, Y.; Hwang, B.Y.; Lee, M.K. Sesquiterpenes from fruits of Torilis japonica with inhibitory activity on melanin synthesis in B16 cells. J. Nat. Med., 2018, 72(1), 155-160.
[http://dx.doi.org/10.1007/s11418-017-1123-4 ] [PMID: 28823078]
Manse, Y.; Ninomiya, K.; Nishi, R.; Hashimoto, Y.; Chaipech, S.; Muraoka, O.; Morikawa, T. Labdane-Type Diterpenes, galangalditerpenes A-C, with melanogenesis inhibitory activity from the fruit of Alpinia galanga. Molecules, 2017, 22(12), 1-11.
[http://dx.doi.org/10.3390/molecules22122279 ] [PMID: 29261124]
Li, G-Q.; Zhang, Y-B.; Wu, P.; Chen, N-H.; Wu, Z-N.; Yang, L.; Qiu, R-X.; Wang, G-C.; Li, Y-L. New phloroglucinol derivatives from the fruit tree Syzygium jambos and their cytotoxic and antioxidant activities. J. Agric. Food Chem., 2015, 63(47), 10257-10262.
[http://dx.doi.org/10.1021/acs.jafc.5b04293 ] [PMID: 26554667]
Yu, H-Y.; Li, J.; Liu, Y.; Wu, W-M.; Ruan, H-L. Triterpenoids from the fruit of Schisandra glaucescens. Fitoterapia, 2016, 113, 64-68.
[http://dx.doi.org/10.1016/j.fitote.2016.07.005 ] [PMID: 27425445]
Mahmoudi, M.; Rabe, S.Z.T.; Balali-Mood, M.; Karimi, G.; Tabasi, N.; Riahi-Zanjani, B. Ursolic acid induced apoptotic cell death following activation of caspases in isolated human melanoma cells. Cell Biol. Int., 2015, 39(2), 230-236.
[http://dx.doi.org/10.1002/cbin.10376 ] [PMID: 25230943]
Li, J.; Zhang, L.; Huang, C.; Guo, F.; Li, Y. Five new cyotoxic steroidal glycosides from the fruits of Solanum torvum. Fitoterapia, 2014, 93, 209-215.
[http://dx.doi.org/10.1016/j.fitote.2014.01.009 ] [PMID: 24444891]
Zhang, Z.; Li, S. Cytotoxic triterpenoid saponins from the fruits of Aesculus pavia L. Phytochemistry, 2007, 68(15), 2075-2086.
[http://dx.doi.org/10.1016/j.phytochem.2007.05.020 ] [PMID: 17599369]
Beretta, G.; Gelmini, F.; Fontana, F.; Moretti, R.M.; Montagnani Marelli, M.; Limonta, P. Semi-preparative HPLC purification of δ-tocotrienol (δ-T3) from Elaeis guineensis Jacq. and Bixa orellana L. and evaluation of its in vitro anticancer activity in human A375 melanoma cells. Nat. Prod. Res., 2018, 32(10), 1130-1135.
[http://dx.doi.org/10.1080/14786419.2017.1320793 ] [PMID: 28438040]
Payton, F.; Bose, R.; Alworth, W.L.; Kumar, A.P.; Ghosh, R. 4-Methylcatechol-induced oxidative stress induces intrinsic apoptotic pathway in metastatic melanoma cells. Biochem. Pharmacol., 2011, 81(10), 1211-1218.
[http://dx.doi.org/10.1016/j.bcp.2011.03.005 ] [PMID: 21419106]
Caprioli, G.; Alunno, A.; Beghelli, D.; Bianco, A.; Bramucci, M.; Frezza, C.; Iannarelli, R.; Papa, F.; Quassinti, L.; Sagratini, G.; Tirillini, B.; Venditti, A.; Vittori, S.; Maggi, F. Polar constituents and biological activity of the berry-like fruits from Hypericum androsaemum L. Front. Plant Sci., 2016, 7, 232.
[http://dx.doi.org/10.3389/fpls.2016.00232 ] [PMID: 26973675]
Miura, T.; Chiba, M.; Kasai, K.; Nozaka, H.; Nakamura, T.; Shoji, T.; Kanda, T.; Ohtake, Y.; Sato, T. Apple procyanidins induce tumor cell apoptosis through mitochondrial pathway activation of caspase-3. Carcinogenesis, 2008, 29(3), 585-593.
[http://dx.doi.org/10.1093/carcin/bgm198 ] [PMID: 17827407]
Chai, W-M.; Lin, M-Z.; Feng, H-L.; Zou, Z-R.; Wang, Y-X. Proanthocyanidins purified from fruit pericarp of Clausena lansium (Lour.) Skeels as efficient tyrosinase inhibitors: Structure evaluation, inhibitory activity and molecular mechanism. Food Funct., 2017, 8(3), 1043-1051.
[http://dx.doi.org/10.1039/C6FO01320A ] [PMID: 28128839]
Truong, X.T.; Park, S-H.; Lee, Y-G.; Jeong, H.Y.; Moon, J-H.; Jeon, T-I. Protocatechuic acid from pear inhibits melanogenesis in melanoma cells. Int. J. Mol. Sci., 2017, 18(8), 1809.
[http://dx.doi.org/10.3390/ijms18081809 ] [PMID: 28825660]
Higgins, C.A.; Bell, T.; Delbederi, Z.; Feutren-Burton, S.; McClean, B.; O’Dowd, C.; Watters, W.; Armstrong, P.; Waugh, D.; van den Berg, H. Growth inhibitory activity of extracted material and isolated compounds from the fruits of Kigelia pinnata. Planta Med., 2010, 76(16), 1840-1846.
[http://dx.doi.org/10.1055/s-0030-1250046 ] [PMID: 20560113]
Sumiyoshi, M.; Sakanaka, M.; Taniguchi, M.; Baba, K.; Kimura, Y. Anti-tumor effects of various furocoumarins isolated from the roots, seeds and fruits of Angelica and Cnidium species under ultraviolet A irradiation. J. Nat. Med., 2014, 68(1), 83-94.
[http://dx.doi.org/10.1007/s11418-013-0774-z ] [PMID: 23649674]
Beninati, S.; Oliverio, S.; Cordella, M.; Rossi, S.; Senatore, C.; Liguori, I.; Lentini, A.; Piredda, L.; Tabolacci, C. Inhibition of cell proliferation, migration and invasion of B16-F10 melanoma cells by α-mangostin. Biochem. Biophys. Res. Commun., 2014, 450(4), 1512-1517.
[http://dx.doi.org/10.1016/j.bbrc.2014.07.031 ] [PMID: 25019992]
Wang, J.J.; Sanderson, B.J.S.; Zhang, W. Cytotoxic effect of xanthones from pericarp of the tropical fruit mangosteen (Garcinia mangostana Linn.) on human melanoma cells. Food Chem. Toxicol., 2011, 49(9), 2385-2391.
[http://dx.doi.org/10.1016/j.fct.2011.06.051 ] [PMID: 21723363]
Wang, J.J.; Shi, Q.H.; Zhang, W.; Sanderson, B.J.S. Anti-skin cancer properties of phenolic-rich extract from the pericarp of mangosteen (Garcinia mangostana Linn.). Food Chem. Toxicol., 2012, 50(9), 3004-3013.
[http://dx.doi.org/10.1016/j.fct.2012.06.003 ] [PMID: 22705325]
Lourith, N.; Kanlayavattanakul, M.; Chaikul, P.; Chansriniyom, C.; Bunwatcharaphansakun, P. In vitro and cellular activities of the selected fruits residues for skin aging treatment. An. Acad. Bras. Cienc., 2017, 89(1)(Suppl. 0), 577-589.
[http://dx.doi.org/10.1590/0001-3765201720160849 ] [PMID: 28538817]
Yang, S.; Irani, K.; Heffron, S.E.; Jurnak, F.; Meyskens, F.L., Jr Alterations in the expression of the apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/Ref-1) in human melanoma and identification of the therapeutic potential of resveratrol as an APE/Ref-1 inhibitor. Mol. Cancer Ther., 2005, 4(12), 1923-1935.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0229 ] [PMID: 16373707]
Bagattoli, P.C.D.; Cipriani, D.C.; Mariano, L.N.B.; Correa, M.; Wagner, T.M.; Noldin, V.F.; Filho, V.C.; Niero, R. Phytochemical, antioxidant and anticancer activities of extracts of seven fruits found in the southern Brazilian Flora. Indian J. Pharm. Sci., 2016, 78(1), 34-40.
[http://dx.doi.org/10.4103/0250-474X.180239 ] [PMID: 27168679]
Kim, J.Y.; Lee, E.J.; Ahn, Y.; Park, S.; Kim, S.H.; Oh, S.H. A chemical compound from fruit extract of Juglans mandshurica inhibits melanogenesis through p-ERK-associated MITF degradation. Phytomedicine, 2019, 57, 57-64.
[http://dx.doi.org/10.1016/j.phymed.2018.12.007 ] [PMID: 30668323]
Neri-Numa, I.A.; de Carvalho-Silva, L.B.; Macedo Ferreira, J.E.; Tomazela Machado, A.R.; Malta, L.G.; Tasca Gois Ruiz, A.L.; de Carvalho, J.E.; Pastore, G.M. Preliminary Evaluation of antioxidant, antiproliferative and antimutagenic activities of Pitomba (Talisia esculenta). Lebensm. Wiss. Technol., 2014, 59, 1233-1238.
Juang, L-J.; Gao, X-Y.; Mai, S-T.; Lee, C-H.; Lee, M-C.; Yao, C-L. Safety assessment, biological effects, and mechanisms of Myrica rubra fruit extract for anti-melanogenesis, anti-oxidation, and free radical scavenging abilities on melanoma cells. J. Cosmet. Dermatol., 2019, 18(1), 322-332.
[http://dx.doi.org/10.1111/jocd.12505 ] [PMID: 29460390]
Ghițu, A.; Schwiebs, A.; Radeke, H.H.; Avram, S.; Zupko, I.; Bor, A.; Pavel, I.Z.; Dehelean, C.A.; Oprean, C.; Bojin, F.; Farcas, C.; Soica, C.; Duicu, O.; Danciu, C. A comprehensive assessment of Apigenin as an antiproliferative, proapoptotic, antiangiogenic and immunomodulatory phytocompound. Nutrients, 2019, 11(4), 858.
[http://dx.doi.org/10.3390/nu11040858 ] [PMID: 30995771]
Pal, H.C.; Sharma, S.; Strickland, L.R.; Katiyar, S.K.; Ballestas, M.E.; Athar, M.; Elmets, C.A.; Afaq, F. Fisetin inhibits human melanoma cell invasion through promotion of mesenchymal to epithelial transition and by targeting MAPK and NFκB signaling pathways. PLoS One, 2014, 9(1), e86338-e86338.
[http://dx.doi.org/10.1371/journal.pone.0086338 ] [PMID: 24466036]
Remila, S.; Atmani-Kilani, D.; Delemasure, S.; Connat, J-L.; Azib, L.; Richard, T.; Atmani, D. Antioxidant, cytoprotective, anti-inflammatory and anticancer activities of Pistacia lentiscus (Anacardiaceae). Leaf and Fruit Extracts. Eur. J. Integr. Med., 2015, 7, 274-286.
Bao, J.; Ding, R-B.; Liang, Y.; Liu, F.; Wang, K.; Jia, X.; Zhang, C.; Chen, M.; Li, P.; Su, H.; Wan, J-B.; Wang, Y.; He, C. Differences in chemical component and anticancer activity of green and ripe Forsythiae fructus. Am. J. Chin. Med., 2017, 45(7), 1513-1536.
[http://dx.doi.org/10.1142/S0192415X17500823 ] [PMID: 28946767]
Pi, K.; Lee, K. Prunus mume extract exerts antioxidant activities and suppressive effect of melanogenesis under the stimulation by alpha-melanocyte stimulating hormone in B16-F10 melanoma cells. Biosci. Biotechnol. Biochem., 2017, 81(10), 1883-1890.
[http://dx.doi.org/10.1080/09168451.2017.1365591 ] [PMID: 28831862]
Guon, T.E.; Chung, H.S. Moringa oleifera fruit induce apoptosis via reactive oxygen species-dependent activation of mitogen-activated protein kinases in human melanoma A2058 cells. Oncol. Lett., 2017, 14(2), 1703-1710.
[http://dx.doi.org/10.3892/ol.2017.6288 ] [PMID: 28789398]
Diaconeasa, Z. Time-dependent degradation of polyphenols from thermally-processed berries and their in vitro antiproliferative effects against melanoma. Molecules, 2018, 23(10), 23.
[http://dx.doi.org/10.3390/molecules23102534 ] [PMID: 30287788]
Šavikin, K.; Zdunić, G.; Janković, T.; Gođevac, D.; Stanojković, T.; Pljevljakušić, D. Berry fruit teas: Phenolic composition and cytotoxic activity. Food Res. Int., 2014, 62, 677-683.
Forni, C.; Braglia, R.; Mulinacci, N.; Urbani, A.; Ronci, M.; Gismondi, A.; Tabolacci, C.; Provenzano, B.; Lentini, A.; Beninati, S. Antineoplastic activity of strawberry (Fragaria×ananassa Duch.) crude extracts on B16-F10 melanoma cells. Mol. Biosyst., 2014, 10(6), 1255-1263.
[http://dx.doi.org/10.1039/C3MB70316A ] [PMID: 24185584]
Wang, E.; Liu, Y.; Xu, C.; Liu, J. Antiproliferative and proapoptotic activities of anthocyanin and anthocyanidin extracts from blueberry fruits on B16-F10 melanoma cells. Food Nutr. Res., 2017, 61(1), 1325308
[http://dx.doi.org/10.1080/16546628.2017.1325308 ] [PMID: 28680383]
Byun, E-B.; Kim, H-M.; Song, H-Y.; Kim, W.S. Hesperidin structurally modified by gamma irradiation induces apoptosis in murine melanoma B16BL6 cells and inhibits both subcutaneous tumor growth and metastasis in C57BL/6 mice. Food Chem. Toxicol., 2019, 127, 19-30.
[http://dx.doi.org/10.1016/j.fct.2019.02.042 ] [PMID: 30844437]
Lima, E.; Silva, M.C.B.; Bogo, D.; Alexandrino, C.A.F.; Perdomo, R.T.; Figueiredo, P.O.; do Prado, P.R.; Garcez, F.R.; Kadri, M.C.T.; Ximenes, T.V.N.; Guimarães, R.C.A.; Sarmento, U.C.; Macedo, M.L.R. Antiproliferative activity of extracts of Campomanesia adamantium (Cambess.) O. berg and isolated compound dimethylchalcone against B16-F10 murine melanoma. J. Med. Food, 2018, 21(10), 1024-1034.
[http://dx.doi.org/10.1089/jmf.2018.0001 ] [PMID: 29715052]
Yoon, J.H.; Lim, T-G.; Lee, K.M.; Jeon, A.J.; Kim, S.Y.; Lee, K.W. Tangeretin reduces Ultraviolet B (UVB)-induced cyclooxygenase-2 expression in mouse epidermal cells by blocking Mitogen-Activated Protein Kinase (MAPK) activation and Reactive Oxygen Species (ROS) generation. J. Agric. Food Chem., 2011, 59(1), 222-228.
[http://dx.doi.org/10.1021/jf103204x ] [PMID: 21126077]
Li, C.; Wang, Q.; Shen, S.; Wei, X.; Li, G. HIF-1α/VEGF signaling-mediated epithelial-mesenchymal transition and angiogenesis is critically involved in anti-metastasis effect of luteolin in melanoma cells. Phytother. Res., 2019, 33(3), 798-807.
[http://dx.doi.org/10.1002/ptr.6273 ] [PMID: 30653763]
Jegal, J.; Chung, K.W.; Chung, H.Y.; Jeong, E.J.; Yang, M.H. The standardized extract of Juniperus communis alleviates hyperpigmentation in vivo HRM-2 hairless mice and in vitro murine B16 melanoma cells. Biol. Pharm. Bull., 2017, 40(9), 1381-1388.
[http://dx.doi.org/10.1248/bpb.b17-00122 ] [PMID: 28867722]
Hu, Y.; Li, Z.; Wang, L.; Deng, L.; Sun, J.; Jiang, X.; Zhang, Y.; Tian, L.; Wang, Y.; Bai, W. Scandenolone, a natural isoflavone derivative from Cudrania tricuspidata fruit, targets EGFR to induce apoptosis and block autophagy flux in human melanoma cells. J. Funct. Foods, 2017, 37, 229-240.
Munari, C.C.; de Oliveira, P.F.; Campos, J.C.L. Martins, Sde.P.; Da Costa, J.C.; Bastos, J.K.; Tavares, D.C. Antiproliferative activity of Solanum lycocarpum alkaloidic extract and their constituents, solamargine and solasonine, in tumor cell lines. J. Nat. Med., 2014, 68(1), 236-241.
[http://dx.doi.org/10.1007/s11418-013-0757-0 ] [PMID: 23475509]
Radulović, N.S.; Zlatković, D.B.; Ilić-Tomić, T.; Senerović, L.; Nikodinovic-Runic, J. Cytotoxic effect of Reseda lutea L.: A case of forgotten remedy. J. Ethnopharmacol., 2014, 153(1), 125-132.
[http://dx.doi.org/10.1016/j.jep.2014.01.034 ] [PMID: 24509155]
Chen, W-L.; Pan, L.; Kinghorn, A.D.; Swanson, S.M.; Burdette, J.E. Silvestrol induces early autophagy and apoptosis in human melanoma cells. BMC Cancer, 2016, 16, 17.
[http://dx.doi.org/10.1186/s12885-015-1988-0 ] [PMID: 26762417]
Allegra, M.; De Cicco, P.; Ercolano, G.; Attanzio, A.; Busà, R.; Cirino, G.; Tesoriere, L.; Livrea, M.A.; Ianaro, A. Indicaxanthin from Opuntia Ficus indica (L. Mill) impairs melanoma cell proliferation, invasiveness, and tumor progression. Phytomedicine, 2018, 50, 19-24.
[http://dx.doi.org/10.1016/j.phymed.2018.09.171 ] [PMID: 30466978]
Hercberg, S.; Ezzedine, K.; Guinot, C.; Preziosi, P.; Galan, P.; Bertrais, S.; Estaquio, C.; Briançon, S.; Favier, A.; Latreille, J.; Malvy, D. Antioxidant supplementation increases the risk of skin cancers in women but not in men. J. Nutr., 2007, 137(9), 2098-2105.
[http://dx.doi.org/10.1093/jn/137.9.2098 ] [PMID: 17709449]
Harlev, E.; Nevo, E.; Lansky, E.P.; Lansky, S.; Bishayee, A. Anticancer attributes of desert plants: A review. Anticancer Drugs, 2012, 23(3), 255-271.
[http://dx.doi.org/10.1097/CAD.0b013e32834f968c ] [PMID: 22217921]
Wang, X.; Ouyang, Y.; Liu, J.; Zhu, M.; Zhao, G.; Bao, W.; Hu, F.B. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ, 2014, 349, g4490-g4490.
[http://dx.doi.org/10.1136/bmj.g4490 ] [PMID: 25073782]
Chen, Y-T.; Kao, C-J.; Huang, H-Y.; Huang, S-Y.; Chen, C-Y.; Lin, Y-S.; Wen, Z-H.; Wang, H-M.D. Astaxanthin reduces MMP expressions, suppresses cancer cell migrations, and triggers apoptotic caspases of in vitro and in vivo models in Melanoma. J. Funct. Foods, 2017, 31, 20-31.
Kim, G.H.; Kim, J.E.; Rhie, S.J.; Yoon, S. The role of oxidative stress in neurodegenerative diseases. Exp. Neurobiol., 2015, 24(4), 325-340.
[http://dx.doi.org/10.5607/en.2015.24.4.325 ] [PMID: 26713080]
Strickland, L.R.; Pal, H.C.; Elmets, C.A.; Afaq, F. Targeting drivers of melanoma with synthetic small molecules and phytochemicals. Cancer Lett., 2015, 359(1), 20-35.
[http://dx.doi.org/10.1016/j.canlet.2015.01.016 ] [PMID: 25597784]
Valko, M.; Izakovic, M.; Mazur, M.; Rhodes, C.J.; Telser, J. Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell. Biochem., 2004, 266(1-2), 37-56.
[http://dx.doi.org/10.1023/B:MCBI.0000049134.69131.89 ] [PMID: 15646026]
Valko, M.; Morris, H.; Cronin, M.T. Metals, toxicity and oxidative stress. Curr. Med. Chem., 2005, 12(10), 1161-1208.
[http://dx.doi.org/10.2174/0929867053764635 ] [PMID: 15892631]
Narendhirakannan, R.T.; Hannah, M.A.C. Oxidative stress and skin cancer: An overview. Indian J. Clin. Biochem., 2013, 28(2), 110-115.
[http://dx.doi.org/10.1007/s12291-012-0278-8 ] [PMID: 24426195]
Carocho, M.; Ferreira, I.C.F.R. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol., 2013, 51, 15-25.
[http://dx.doi.org/10.1016/j.fct.2012.09.021 ] [PMID: 23017782]
Ramawat, K.G. Mérillon, J. Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes, 1st ed; Springer-Verlag Berlin Heidelberg, 2013.
Stanetic, D.; Buchbauer, G. Biological activity of some volatile diterpenoids. Curr. Bioact. Compd., 2015, 11, 38-48.
Junco, J.J.; Mancha-Ramirez, A.; Malik, G.; Wei, S-J.; Kim, D.J.; Liang, H.; Slaga, T.J. Ursolic acid and resveratrol synergize with chloroquine to reduce melanoma cell viability. Melanoma Res., 2015, 25(2), 103-112.
[http://dx.doi.org/10.1097/CMR.0000000000000137 ] [PMID: 25647735]
Harmand, P-O.; Duval, R.; Delage, C.; Simon, A. Ursolic acid induces apoptosis through mitochondrial intrinsic pathway and caspase-3 activation in M4Beu melanoma cells. Int. J. Cancer, 2005, 114(1), 1-11.
[http://dx.doi.org/10.1002/ijc.20588 ] [PMID: 15523687]
Navina, R. Kim*, Y.G.L. and S.M. Molecular biological roles of ursolic acid in the treatment of human diseases. Curr. Bioact. Compd., 2017, 13, 177-185.
Lee, Y-H.; Wang, E.; Kumar, N.; Glickman, R.D. Ursolic acid differentially modulates apoptosis in skin melanoma and retinal pigment epithelial cells exposed to UV-VIS broadband radiation. Apoptosis, 2014, 19(5), 816-828.
[http://dx.doi.org/10.1007/s10495-013-0962-z ] [PMID: 24375173]
Manu, K.A.; Kuttan, G. Ursolic acid induces apoptosis by activating p53 and caspase-3 gene expressions and suppressing NF-kappaB mediated activation of bcl-2 in B16F-10 melanoma cells. Int. Immunopharmacol., 2008, 8(7), 974-981.
[http://dx.doi.org/10.1016/j.intimp.2008.02.013 ] [PMID: 18486908]
Hassan, L.; Pinon, A.; Limami, Y.; Seeman, J.; Fidanzi-Dugas, C.; Martin, F.; Badran, B.; Simon, A.; Liagre, B. Resistance to ursolic acid-induced apoptosis through involvement of melanogenesis and COX-2/PGE2 pathways in human M4Beu melanoma cancer cells. Exp. Cell Res., 2016, 345(1), 60-69.
[http://dx.doi.org/10.1016/j.yexcr.2016.05.023 ] [PMID: 27262506]
Patlolla, J.M.R.; Rao, C.V. Triterpenoids for cancer prevention and treatment: Current status and future prospects. Curr. Pharm. Biotechnol., 2012, 13, 147-155.
[http://dx.doi.org/10.2174/138920112798868719 ] [PMID: 21466427]
Gill, B.S.; Kumar, S. Navgeet. Triterpenes in cancer: Significance and their influence. Mol. Biol. Rep., 2016, 43(9), 881-896.
[http://dx.doi.org/10.1007/s11033-016-4032-9 ] [PMID: 27344437]
Lawal, T.O.; Wicks, S.M.; Mahady, G.B. Ganoderma Lucidum (Ling-Zhi): The impact of chemistry on biological activity in cancer. Curr. Bioact. Compd., 2017, 13, 28-40.
Chudzik, M.; Korzonek-Szlacheta, I.; Król, W. Triterpenes as potentially cytotoxic compounds. Molecules, 2015, 20(1), 1610-1625.
[http://dx.doi.org/10.3390/molecules20011610 ] [PMID: 25608043]
Sparg, S.G.; Light, M.E.; van Staden, J. Biological activities and distribution of plant saponins. J. Ethnopharmacol., 2004, 94(2-3), 219-243.
[http://dx.doi.org/10.1016/j.jep.2004.05.016 ] [PMID: 15325725]
Man, S.; Gao, W.; Zhang, Y.; Huang, L.; Liu, C. Chemical study and medical application of saponins as anti-cancer agents. Fitoterapia, 2010, 81(7), 703-714.
[http://dx.doi.org/10.1016/j.fitote.2010.06.004 ] [PMID: 20550961]
Galanty, A.; Michalik, M.; Sedek, L.; Podolak, I. The influence of LTS-4, a saponoside from Lysimachia thyrsiflora L., on human skin fibroblasts and human melanoma cells. Cell. Mol. Biol. Lett., 2008, 13(4), 585-598.
[http://dx.doi.org/10.2478/s11658-008-0013-x ] [PMID: 18553182]
Yu, Z.; Zhang, T.; Zhou, F.; Xiao, X.; Ding, X.; He, H.; Rang, J.; Quan, M.; Wang, T.; Zuo, M.; Xia, L. Anticancer activity of saponins from Allium Chinense against the B16 melanoma and 4T1 breast carcinoma cell. Evid. Base Compl. Altern. Med., 2015, 2015, 12.
Aggarwal, B.B.; Sundaram, C.; Prasad, S.; Kannappan, R. Tocotrienols, the vitamin E of the 21st century: Its potential against cancer and other chronic diseases. Biochem. Pharmacol., 2010, 80(11), 1613-1631.
[http://dx.doi.org/10.1016/j.bcp.2010.07.043 ] [PMID: 20696139]
Montagnani Marelli, M.; Marzagalli, M.; Moretti, R.M.; Beretta, G.; Casati, L.; Comitato, R.; Gravina, G.L.; Festuccia, C.; Limonta, P. Vitamin E δ-tocotrienol triggers endoplasmic reticulum stress-mediated apoptosis in human melanoma cells. Sci. Rep., 2016, 6, 30502.
[http://dx.doi.org/10.1038/srep30502 ] [PMID: 27461002]
Hilde, N.; Gun, W. Realizing the potential of health-promoting rosehips from Dogroses (Rosa sect. Caninae). Curr. Bioact. Compd., 2017, 13(1), 3-17.
Wahle, K.W.J.; Brown, I.; Rotondo, D.; Heys, S.D. Plant Phenolics in the Prevention and Treatment of Cancer Springer.Bio-Farms for Nutraceuticals: Functional Food and Safety Control by Biosensors; Giardi, M.T.; Rea, G; Berra, B., Ed.; Springer: Boston, MA, 2010, pp. 36-51.
Kampa, M.; Hatzoglou, A.; Notas, G.; Damianaki, A.; Bakogeorgou, E.; Gemetzi, C.; Kouroumalis, E.; Martin, P-M.; Castanas, E. Wine antioxidant polyphenols inhibit the proliferation of human prostate cancer cell lines. Nutr. Cancer, 2000, 37(2), 223-233.
[http://dx.doi.org/10.1207/S15327914NC372_16 ] [PMID: 11142097]
Chinembiri, T.N.; du Plessis, L.H.; Gerber, M.; Hamman, J.H.; du Plessis, J. Review of natural compounds for potential skin cancer treatment. Molecules, 2014, 19(8), 11679-11721.
[http://dx.doi.org/10.3390/molecules190811679 ] [PMID: 25102117]
Kanlayavattanakul, M.; Lourith, N. Biologically active phenolics in seed coat of three sweet Tamarindus Indica varieties grown in Thailand. Adv. Sci. Eng. Med., 2012, 4, 511-516.
Kostova, I. Synthetic and natural coumarins as cytotoxic agents. Curr. Med. Chem. Anticancer Agents, 2005, 5(1), 29-46.
[http://dx.doi.org/10.2174/1568011053352550 ] [PMID: 15720259]
Jain, P.K.; Joshi, H. Coumarin: Chemical and phamacological profile. J. Appl. Pharm. Sci., 2012, 02, 236-240.
Pal, D.; Mishra, P.; Sachan, N.; Ghosh, A.K. Biological activities and medicinal properties of Cajanus cajan (L). Millsp. J. Adv. Pharm. Technol. Res., 2011, 2(4), 207-214.
[http://dx.doi.org/10.4103/2231-4040.90874 ] [PMID: 22247887]
Emami, S.; Dadashpour, S. Current developments of coumarin-based anti-cancer agents in medicinal chemistry. Eur. J. Med. Chem., 2015, 102, 611-630.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.033 ] [PMID: 26318068]
Rohini, K.S.P. Therapeutic role of coumarins and coumarin-related compounds. J. Biofertilizers Biopestic., 2014, 05, 10-12.
Velasco-Velázquez, M.A.; Agramonte-Hevia, J.; Barrera, D.; Jiménez-Orozco, A.; García-Mondragón, M.J.; Mendoza-Patiño, N.; Landa, A.; Mandoki, J. 4-Hydroxycoumarin disorganizes the actin cytoskeleton in B16-F10 melanoma cells but not in B82 fibroblasts, decreasing their adhesion to extracellular matrix proteins and motility. Cancer Lett., 2003, 198(2), 179-186.
[http://dx.doi.org/10.1016/S0304-3835(03)00333-1 ] [PMID: 12957356]
Gutierrez-Orozco, F.; Failla, M.L. Biological activities and bioavailability of mangosteen xanthones: A critical review of the current evidence. Nutrients, 2013, 5(8), 3163-3183.
[http://dx.doi.org/10.3390/nu5083163 ] [PMID: 23945675]
Pinto, M.M.M.; Sousa, M.E.; Nascimento, M.S. Xanthone derivatives: New insights in biological activities. Curr. Med. Chem., 2005, 12(21), 2517-2538.
[http://dx.doi.org/10.2174/092986705774370691 ] [PMID: 16250875]
Niles, R.M.; McFarland, M.; Weimer, M.B.; Redkar, A.; Fu, Y-M.; Meadows, G.G. Resveratrol is a potent inducer of apoptosis in human melanoma cells. Cancer Lett., 2003, 190(2), 157-163.
[http://dx.doi.org/10.1016/S0304-3835(02)00676-6 ] [PMID: 12565170]
Caltagirone, S.; Rossi, C.; Poggi, A.; Ranelletti, F.O.; Natali, P.G.; Brunetti, M.; Aiello, F.B.; Piantelli, M. Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. Int. J. Cancer, 2000, 87(4), 595-600.
[http://dx.doi.org/10.1002/1097-0215(20000815)87:4<595:AID-IJC21>3.0.CO;2-5 ] [PMID: 10918203]
Shu, X-H.; Li, H.; Sun, Z.; Wu, M-L.; Ma, J-X.; Wang, J-M.; Wang, Q.; Sun, Y.; Fu, Y-S.; Chen, X-Y.; Kong, Q-Y.; Liu, J. Identification of metabolic pattern and bioactive form of resveratrol in human medulloblastoma cells. Biochem. Pharmacol., 2010, 79(10), 1516-1525.
[http://dx.doi.org/10.1016/j.bcp.2010.01.022 ] [PMID: 20105429]
Smoliga, J.M.; Baur, J.A.; Hausenblas, H.A. Resveratrol and health-A comprehensive review of human clinical trials. Mol. Nutr. Food Res., 2011, 55(8), 1129-1141.
[http://dx.doi.org/10.1002/mnfr.201100143 ] [PMID: 21688389]
Pal, H.C.; Baxter, R.D.; Hunt, K.M.; Agarwal, J.; Elmets, C.A.; Athar, M.; Afaq, F. Fisetin, a phytochemical, potentiates sorafenib-induced apoptosis and abrogates tumor growth in athymic nude mice implanted with BRAF-mutated melanoma cells. Oncotarget, 2015, 6(29), 28296-28311.
[http://dx.doi.org/10.18632/oncotarget.5064 ] [PMID: 26299806]
Gibellini, L.; Pinti, M.; Nasi, M.; Montagna, J.P.; De Biasi, S.; Roat, E.; Bertoncelli, L.; Cooper, E.L.; Cossarizza, A. Quercetin and cancer chemoprevention. Evid. Based Complement. Alternat. Med., 2011, 2011, 591356
[http://dx.doi.org/10.1093/ecam/neq053 ] [PMID: 21792362]
Wang, L-S.; Stoner, G.D. Anthocyanins and their role in cancer prevention. Cancer Lett., 2008, 269(2), 281-290.
[http://dx.doi.org/10.1016/j.canlet.2008.05.020 ] [PMID: 18571839]
Priprem, A.; Limsitthichaikoon, S.; Sukkhamduang, W.; Limphirat, W.; Thapphasaraphong, S.; Nualkaew, N. Anthocyanin complex improves stability with in vitro localized UVA protective effect. Curr. Bioact. Compd., 2017, 13, 10-17.
Joshi, Y.; Goyal, B. Anthocyanins: A lead for anticancer drugs. Int. J. Res. Pharm. Chem., 2011, 1, 1119-1126.
Dini, C.; Zaro, M.J.; Viña, S.Z. Bioactivity and functionality of anthocyanins: A review. Curr. Bioact. Compd., 2019, 15(5), 507-23.
Lu, J-J.; Bao, J-L.; Chen, X-P.; Huang, M.; Wang, Y-T. Alkaloids isolated from natural herbs as the anticancer agents. Evid. Based Complement. Alternat. Med., 2012, 2012, 485042
[http://dx.doi.org/10.1155/2012/485042 ] [PMID: 22988474]
Choo, W.S. Betalains: Application in Functional Foods.Bioactive Molecules in Food; Mérillon, J-M; Ramawat, K.G., Ed.; Springer International Publishing: Cham, 2018, pp. 1-28.
Rahimi, P.; Abedimanesh, S.; Mesbah-Namin, S.A.; Ostadrahimi, A. Betalains, the nature-inspired pigments, in health and diseases. Crit. Rev. Food Sci. Nutr., 2019, 59(18), 2949-2978.
[PMID: 29846082]
Abaffy, T.; Duncan, R.; Riemer, D.D.; Tietje, O.; Elgart, G.; Milikowski, C.; DeFazio, R.A. Differential volatile signatures from skin, naevi and melanoma: A novel approach to detect a pathological process. PLoS One, 2010, 5(11), e13813
[http://dx.doi.org/10.1371/journal.pone.0013813 ] [PMID: 21079799]
Kim, S.; Hwang, B.Y.; Su, B-N.; Chai, H.; Mi, Q.; Kinghorn, A.D.; Wild, R.; Swanson, S.M. Silvestrol, a potential anticancer rocaglate derivative from Aglaia foveolata, induces apoptosis in LNCaP cells through the mitochondrial/apoptosome pathway without activation of executioner caspase-3 or -7. Anticancer Res., 2007, 27(4B), 2175-2183.
[PMID: 17695501]
Kogure, T.; Kinghorn, A.D.; Yan, I.; Bolon, B.; Lucas, D.M.; Grever, M.R.; Patel, T. Therapeutic potential of the translation inhibitor silvestrol in hepatocellular cancer. PLoS One, 2013, 8(9), e76136-e76136.
[http://dx.doi.org/10.1371/journal.pone.0076136 ] [PMID: 24086701]
Wyllie, A.H.; Kerr, J.F.R.; Currie, A.R. Cell death: The significance of apoptosis. Int. Rev. Cytol., 1980, 68, 251-306.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 27 October, 2020
Page: [1009 - 1035]
Pages: 27
DOI: 10.2174/1573407215666190808113341
Price: $65

Article Metrics

PDF: 10
PRC: 1