Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Enhancement of Separated Ultra Pure n-paraffin as Phase Change Materials (PCM) by W-Fe Bimetallic Oxides

Author(s): Fathi S. Soliman*, Heba H. El-Maghrabi, Tamer Zaki, Amr A. Nada and Fouad Zahran

Volume 10, Issue 6, 2020

Page: [817 - 826] Pages: 10

DOI: 10.2174/2210681209666190807153016

Price: $65

Abstract

Objective: Six ultra pure Paraffin Waxes (PW) were successfully fractionated at 35°, 30°, 25°, 20°, 15° and 10°C. The bimetallic oxide (Ferberite) was successfully synthesized by Microwave assisted method.

Methods: Enhanced Phase Change Materials (PCMs) were designed by loading W/Fe bimetallic oxides in the ultra pure PW matrix at 1, 2, 3, 4 and 5 wt. %. paraffin wax, W/Fe bimetallic oxide and the resultant composite blends were characterized by X-ray Diffraction (XRD), Gas Chromatography (GC), Deferential Scanning Calorimetry (DSC), Polarized Optical Microscope (POM), Scanning Electron Microscopy (SEM) and High Resolution Transmission Electron Microscopy (HRTEM). In addition to testing the thermal conductivity of the designed blends. According to SEM, DSC and POM data, the prepared nanocomposite was homogeneously dispersed into the selected PW matrix.

Results: Data revealed that thermal conductivity of the designed composite increases with increasing the loading ratio of W-Fe bimetallic oxides. The total latent heat storage ΔHT of the initial sample was improved from 295.91 J/g to 311.48 J/g at 5 wt. % loading percent.

Conclusion: Thermal conductivity was improved from 8.54 to 21.77 W/m2k with increasing up to 255% in comparison with pure paraffin wax.

Keywords: Composite, bimetallic oxides, paraffin wax, thermal conductivity, phase change materials, latent heat.

Graphical Abstract
[1]
Xu, B.; Li, P.; Chan, C. Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments. Appl. Energy, 2015, 160, 286-307.
[http://dx.doi.org/10.1016/j.apenergy.2015.09.016]
[2]
Abhat, A. Low temperature latent heat thermal energy storage: heat storage materials. Sol. Energy, 1983, 30, 313-332.
[http://dx.doi.org/10.1016/0038-092X(83)90186-X]
[3]
Gasia, J.; Miró, L.; Cabeza, L.F. Review on system and materials requirements for high temperature thermal energy storage. Part 1: General requirements. Renew. Sustain. Energy Rev., 2017, 75, 1320-1338.
[http://dx.doi.org/10.1016/j.rser.2016.11.119]
[4]
Noro, M.; Lazzarin, R.; Busato, F. Solar cooling and heating plants: An energy and economic analysis of liquid sensible vs. phase change material (PCM) heat storage. Int. J. Refrig., 2014, 39, 104-116.
[http://dx.doi.org/10.1016/j.ijrefrig.2013.07.022]
[5]
Kalaiselvam, S.; Parameshwaran, R. Thermal energy storage technologies for sustainability: Systems design, assessment and applications; Elsevier, 2014.
[6]
Jones, L.E. Renewable energy integration: Practical management of variability, uncertainty, and flexibility in power grids; Academic Press: USA, 2017.
[7]
Agyenim, F.; Hewitt, N.; Eames, P.; Smyth, M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew. Sustain. Energy Rev., 2010, 14, 615-628.
[http://dx.doi.org/10.1016/j.rser.2009.10.015]
[8]
Dincer, I.; Rosen, M. Thermal energy storage: Systems and applications. John Wiley & Son: USA , 2002.
[9]
Herrmann, U.; Kearney, D.W. Survey of thermal energy storage for parabolic trough power plants. J. Sol. Energy Eng., 2002, 124, 145-152.
[http://dx.doi.org/10.1115/1.1467601]
[10]
Demirbas, M.F. Thermal energy storage and phase change materials: An overview. Energy Sources B Econ. Plan. Policy, 2006, 1, 85-95.
[http://dx.doi.org/10.1080/009083190881481]
[11]
Giro-Paloma, J. Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review. Renew. Sustain. Energy Rev., 2016, 53, 1059-1075.
[http://dx.doi.org/10.1016/j.rser.2015.09.040]
[12]
Regin, A.F.; Solanki, S.; Saini, J. Heat transfer characteristics of thermal energy storage system using PCM capsules: A review. Renew. Sustain. Energy Rev., 2008, 12, 2438-2458.
[http://dx.doi.org/10.1016/j.rser.2007.06.009]
[13]
Zalba, B.; Marın, J.M.; Cabeza, L.F.; Mehling, H. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Appl. Therm. Eng., 2003, 23, 251-283.
[http://dx.doi.org/10.1016/S1359-4311(02)00192-8]
[14]
Kenisarin, M.M. High-temperature phase change materials for thermal energy storage. Renew. Sustain. Energy Rev., 2010, 14, 955-970.
[http://dx.doi.org/10.1016/j.rser.2009.11.011]
[15]
Sharma, A.; Tyagi, V.V.; Chen, C.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev., 2009, 13, 318-345.
[http://dx.doi.org/10.1016/j.rser.2007.10.005]
[16]
Nazir, H. Recent developments in phase change materials for energy storage applications: A review. Int. J. Heat Mass Transf., 2019, 129, 491-523.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.09.126]
[17]
Farid, M.M. A review on phase change energy storage: Materials and applications. Energy Convers. Manage., 2004, 45(9-10), 1597-1615.
[http://dx.doi.org/10.1016/j.enconman.2003.09.015]
[18]
Elefsiniotis, A.; Kokorakis, N.; Becker, T.; Schmid, U. A novel high-temperature aircraft-specific energy harvester using PCMs and state of the art TEGs. Mater. Today Proc., 2015, 2, 814-822.
[19]
Al-Abidi, A.A.; Mat, S.B.; Sopian, K.; Sulaiman, M.; Lim, C.H.; Th, A. Review of thermal energy storage for air conditioning systems. Renew. Sustain. Energy Rev., 2012, 16, 5802-5819.
[http://dx.doi.org/10.1016/j.rser.2012.05.030]
[20]
Tian, Y.; Zhao, C-Y. A review of solar collectors and thermal energy storage in solar thermal applications. Appl. Energy, 2013, 104, 538-553.
[http://dx.doi.org/10.1016/j.apenergy.2012.11.051]
[21]
Zhou, Z.; Zhang, Z.; Zuo, J.; Huang, K.; Zhang, L. Phase change materials for solar thermal energy storage in residential buildings in cold climate. Renew. Sustain. Energy Rev., 2015, 48, 692-703.
[http://dx.doi.org/10.1016/j.rser.2015.04.048]
[22]
Pielichowska, K.; Pielichowski, K. Phase change materials for thermal energy storage. Prog. Mater. Sci., 2014, 65, 67-123.
[http://dx.doi.org/10.1016/j.pmatsci.2014.03.005]
[23]
Chandra, D.; Chellappa, R.; Chien, W-M. Thermodynamic assessment of binary solid-state thermal storage materials. J. Phys. Chem. Solids, 2005, 66(2-4), 235-240.
[http://dx.doi.org/10.1016/j.jpcs.2004.08.047]
[24]
Wi, S.; Seo, J.; Jeong, S-G.; Chang, S.J.; Kang, Y.; Kim, S. Thermal properties of shape-stabilized phase change materials using fatty acid ester and exfoliated graphite nanoplatelets for saving energy in buildings. Sol. Energy Mater. Sol. Cells, 2015, 143, 168-173.
[http://dx.doi.org/10.1016/j.solmat.2015.06.040]
[25]
Zhu, Y.; Liang, S.; Chen, K.; Gao, X.; Chang, P.; Tian, C.; Wang, J.; Huang, Y. Preparation and properties of nanoencapsulated n-octadecane phase change material with organosilica shell for thermal energy storage. Energy Convers. Manage., 2015, 105, 908-917.
[http://dx.doi.org/10.1016/j.enconman.2015.08.048]
[26]
Luyt, A.; Krupa, I. Phase change materials formed by uv curable epoxy matrix and Fischer–Tropsch paraffin wax. Energy Convers. Manage., 2009, 50, 57-61.
[http://dx.doi.org/10.1016/j.enconman.2008.08.026]
[27]
Karkri, M.; Lachheb, M.; Nógellová, Z.; Boh, B.; Sumiga, B.; AlMaadeed, M.; Fethi, A.; Krupa, I. Thermal properties of phase-change materials based on high-density polyethylene filled with micro-encapsulated paraffin wax for thermal energy storage. Energy Build., 2015, 88, 144-152.
[http://dx.doi.org/10.1016/j.enbuild.2014.11.061]
[28]
Sobolciak, P.; Mrlik, M.; Almaadeed, M.A.; Krupa, I. Calorimetric and dynamic mechanical behavior of phase change materials based on paraffin wax supported by expanded graphite. Thermochim. Acta, 2015, 617, 111-119.
[http://dx.doi.org/10.1016/j.tca.2015.08.026]
[29]
Zhong, Y.; Li, S.; Wei, X.; Liu, Z.; Guo, Q.; Shi, J.; Liu, L. Heat transfer enhancement of paraffin wax using compressed expanded natural graphite for thermal energy storage. Carbon, 2010, 48, 300-304.
[http://dx.doi.org/10.1016/j.carbon.2009.09.033]
[30]
Reyes, A.; Henríquez-Vargas, L.; Aravena, R.; Sepúlveda, F. Experimental analysis, modeling and simulation of a solar energy accumulator with paraffin wax as PCM. Energy Convers. Manage., 2015, 105, 189-196.
[http://dx.doi.org/10.1016/j.enconman.2015.07.068]
[31]
Yang, D.; Shi, S.; Xiong, L.; Guo, H.; Zhang, H.; Chen, X.; Wang, C.; Chen, X. Paraffin/Palygorskite composite phase change materials for thermal energy storage. Sol. Energy Mater. Sol. Cells, 2016, 144, 228-234.
[http://dx.doi.org/10.1016/j.solmat.2015.09.002]
[32]
Cai, Y. Fabrication and characterization of capric–lauric–palmitic acid/electrospun SiO2 nanofibers composite as form-stable phase change material for thermal energy storage/retrieval. Sol. Energy, 2015, 118, 87-95.
[http://dx.doi.org/10.1016/j.solener.2015.04.042]
[33]
Xu, X. Prospects and problems of concentrating solar power technologies for power generation in the desert regions. Renew. Sustain. Energy Rev., 2016, 53, 1106-1131.
[http://dx.doi.org/10.1016/j.rser.2015.09.015]
[34]
Huang, X. Morphological characterization and applications of phase change materials in thermal energy storage: A review. Renew. Sustain. Energy Rev., 2017, 72, 128-145.
[http://dx.doi.org/10.1016/j.rser.2017.01.048]
[35]
Krupa, I.; Nógellová, Z.; Špitalský, Z.; Malíková, M.; Sobolčiak, P.; Abdelrazeq, H.W.; Ouederni, M.; Karkri, M.; Janigová, I.; Al-Maadeed, M.A.S. Positive influence of expanded graphite on the physical behavior of phase change materials based on linear low-density polyethylene and paraffin wax. Thermochim. Acta, 2015, 614, 218-225.
[http://dx.doi.org/10.1016/j.tca.2015.06.028]
[36]
Mancin, S.; Diani, A.; Doretti, L.; Hooman, K.; Rossetto, L. Experimental analysis of phase change phenomenon of paraffin waxes embedded in copper foams. Int. J. Therm. Sci., 2015, 90, 79-89.
[http://dx.doi.org/10.1016/j.ijthermalsci.2014.11.023]
[37]
Reyes, A.; Negrete, D.; Mahn, A.; Sepúlveda, F. Design and evaluation of a heat exchanger that uses paraffin wax and recycled materials as solar energy accumulator. Energy Convers. Manage., 2014, 88, 391-398.
[http://dx.doi.org/10.1016/j.enconman.2014.08.032]
[38]
Oya, T.; Nomura, T.; Tsubota, M.; Okinaka, N.; Akiyama, T. Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles. Appl. Therm. Eng., 2013, 61, 825-828.
[http://dx.doi.org/10.1016/j.applthermaleng.2012.05.033]
[39]
Yu, S.; Jeong, S-G.; Chung, O.; Kim, S. Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity. Sol. Energy Mater. Sol. Cells, 2014, 120, 549-554.
[http://dx.doi.org/10.1016/j.solmat.2013.09.037]
[40]
Li, M.; Wu, Z.; Kao, H.; Tan, J. Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material. Energy Convers. Manage., 2011, 52, 3275-3281.
[http://dx.doi.org/10.1016/j.enconman.2011.05.015]
[41]
Xu, B.; Li, Z. Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites. Energy, 2014, 72, 371-380.
[http://dx.doi.org/10.1016/j.energy.2014.05.049]
[42]
Wang, J.; Xie, H.; Guo, Z.; Guan, L.; Li, Y. Improved thermal properties of paraffin wax by the addition of TiO2 nanoparticles. Appl. Therm. Eng., 2014, 73, 1541-1547.
[http://dx.doi.org/10.1016/j.applthermaleng.2014.05.078]
[43]
Jiang, X.; Luo, R.; Peng, F.; Fang, Y.; Akiyama, T.; Wang, S. Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3. Appl. Energy, 2015, 137, 731-737.
[http://dx.doi.org/10.1016/j.apenergy.2014.09.028]
[44]
Jesumathy, S.; Udayakumar, M.; Suresh, S. Experimental study of enhanced heat transfer by addition of CuO nanoparticle. Heat Mass Transf., 2012, 48, 965-978.
[http://dx.doi.org/10.1007/s00231-011-0945-y]
[45]
Park, S.; Lee, Y.; Kim, Y.S.; Lee, H.M.; Kim, J.H.; Cheong, I.W.; Koh, W-G. Magnetic nanoparticle-embedded PCM nanocapsules based on paraffin core and polyurea shell. Colloids Surf. A Physicochem. Eng. Asp., 2014, 450, 46-51.
[http://dx.doi.org/10.1016/j.colsurfa.2014.03.005]
[46]
Li, J.; Wang, X.; Qiao, Y.; Zhang, Y.; He, Z.; Zhang, H. High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites. Scr. Mater., 2015, 109, 72-75.
[http://dx.doi.org/10.1016/j.scriptamat.2015.07.022]
[47]
Pethurajan, V.; Sivan, S. Fabrication, characterisation and heat transfer study on microencapsulation of nano-enhanced phase change material. Chem. Eng. Proc.-. Proc. Intens., 2018, 133, 12-23.
[http://dx.doi.org/10.1016/j.cep.2018.09.014]
[48]
Pak, J-J.; Bahgat, M.; Paek, M-K. Synthesis and reduction behavior of sol-precipitated iron oxide/tungsten oxide nanoparticles. J. Alloys Compd., 2009, 479, 613-618.
[http://dx.doi.org/10.1016/j.jallcom.2009.01.010]
[49]
Cid-Dresdner, H.; Escobar, C. The crystal structure of ferberite, FeWO4. Z. Kristallogr., 1968, 127, 61-72.
[http://dx.doi.org/10.1524/zkri.1968.127.1-4.61]
[50]
Laishram, K.; Mann, R.; Malhan, N. A novel microwave combustion approach for single step synthesis of α-Al2O3 nanopowders. Ceram. Int., 2012, 38(2), 1703-1706.
[http://dx.doi.org/10.1016/j.ceramint.2011.08.044]
[51]
Yu, F.; Schanz, U.; Schmidbauer, E. Single crystal growth of FeWO4 and CuWO4. J. Cryst. Growth, 1993, 132, 606-608.
[http://dx.doi.org/10.1016/0022-0248(93)90088-E]
[52]
Zhou, Y-X.; Yao, H-B.; Zhang, Q.; Gong, J-Y.; Liu, S-J.; Yu, S-H. Hierarchical FeWO4 microcrystals: solvothermal synthesis and their photocatalytic and magnetic properties. Inorg. Chem., 2009, 48(3), 1082-1090.
[http://dx.doi.org/10.1021/ic801806r] [PMID: 19125677]
[53]
Almeida, M.; Cavalcante, L.; Morilla-Santos, C.; Lisboa Filho, P.N.; Beltrán, A.; Andrés, J.; Gracia, L.; Longo, E. Electronic structure and magnetic properties of FeWO4 nanocrystals synthesized by the microwave-hydrothermal method. Mater. Charact., 2012, 73, 124-129.
[http://dx.doi.org/10.1016/j.matchar.2012.08.006]
[54]
Zaky, M.T.; Mohamed, N.H. Comparative study on separation and characterization of high melting point macro-and micro-crystalline waxes. J. Taiwan Ins. Chem. Eng., 2010, 41, 360-366.
[http://dx.doi.org/10.1016/j.jtice.2009.09.003]
[55]
Castro, S. In, Thesis. Universidad Nacional,. 2003.
[56]
Soliman, F.S.; Zaky, M.T.; Farag, A.S.; Mohamed, N.H.; Mohamed, L.S.; Hanafi, S. Evaluation of various techniques for separation of non-polar modifier concentrates from petroleum waxy by-products. Egyptian. J. Petrol., 2014, 23, 315-321.
[57]
Allinson, J.P. Criteria for quality of petroleum products; Halsted Press: Sydney, 1973.
[58]
Nakagawa, H.; Tsuge, S.; Itho, T.; Kimoto, M. Characterization of hydrocarbon waxes by gas-liquid chromatography with a high-resolution glass capillary column. J. Chromatogr. A, 1983, 260, 391-409.
[http://dx.doi.org/10.1016/0021-9673(83)80047-8]
[59]
Mohamed, N.H.; Soliman, F.S.; El Maghraby, H.; Moustfa, Y. Thermal conductivity enhancement of treated petroleum waxes, as phase change material, by α nano alumina: Energy storage. Renew. Sustain. Energy Rev., 2017, 70, 1052-1058.
[http://dx.doi.org/10.1016/j.rser.2016.12.009]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy