Microfluidic Manufacture of Solid Lipid Nanoparticles: A Case Study on Tristearin-Based Systems

Author(s): Giulia Anderluzzi, Yvonne Perrie*

Journal Name: Drug Delivery Letters

Volume 10 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Solid lipid nanoparticles are lipid-based carriers that can be used for a range of drugs and biomolecules. However, most production methods currently used do not offer easy translation from laboratory preparation to scale-independent production.

Objectives: Within this study, we have investigated the use of microfluidics to produce solid lipid nanoparticles and investigated their protein loading capability. In the development of this process, we have investigated and identified the critical process parameters that impact on the product attributes of the solid lipid nanoparticles.

Methods: Solid lipid nanoparticles based on Tristearin and 1,2-Distearoyl-phosphatidylethanolaminemethyl- polyethyleneglycol conjugate-2000 were formulated using the NanoAssemblr® Benchtop system. The flow rate ratio, total flow rate and initial protein concentration were investigated as process parameters and the particle size, PDI, zeta potential, drug loading and drug release were measured as product attributes.

Results: Our results demonstrate the suitability of microfluidics as a production method for solid lipid nanoparticles containing protein. In terms of key process parameters to consider, both the solvent to aqueous flow rate ratio and the total flow rate were shown to have a notable impact on particle size. Protein loading capacity was influenced by the solvent to aqueous flow rate ratio but was similar across all flow rates tested.

Conclusion: Within this study, we outline a rapid and easy protocol for the scale-independent production of solid lipid nanoparticles. This process can support the rapid translation of production methods from bench to clinic.

Keywords: Solid lipid nanoparticles, microfluidics, protein delivery, high throughput manufacture, formulations characterisation, in vitro release.

[1]
Whitesides, G.M. The origins and the future of microfluidics. Nature, 2006, 442(7101), 368-373.
[http://dx.doi.org/10.1038/nature05058] [PMID: 16871203]
[2]
Bjork, S.M.; Joensson, H.N. Microfluidics for cell factory and bioprocess development. Curr. Opin. Biotechnol., 2019, 55, 95-102.
[http://dx.doi.org/10.1016/j.copbio.2018.08.011] [PMID: 30236890]
[3]
Geoffrey, S. The Development of a Low-Cost Microfluidic Magnetic Separation System., 2015.
[4]
Squires, T.M.; Quake, S.R. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys., 2005, 77, 977.
[http://dx.doi.org/10.1103/RevModPhys.77.977]
[5]
Kastner, E.; Kaur, R.; Lowry, D.; Moghaddam, B.; Wilkinson, A.; Perrie, Y. High-throughput manufacturing of size-tuned liposomes by a new microfluidics method using enhanced statistical tools for characterization. Int. J. Pharm., 2014, 477(1-2), 361-368.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.030] [PMID: 25455778]
[6]
Kastner, E.; Verma, V.; Lowry, D.; Perrie, Y. Microfluidic controlled manufacture of liposomes for the solubilisation of a poorly water soluble drug. Int. J. Pharm., 2015, 485(1-2), 122-130.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.063] [PMID: 25725309]
[7]
Forbes, N.; Hussain, M.T.; Briuglia, M.L.; Edwards, D.P.; Horst, J.H.T.; Szita, N.; Perrie, Y. Rapid and scale-independent microfluidic manufacture of liposomes entrapping protein incorporating in line purification and at-line size monitoring. Int. J. Pharm., 2019, 556, 68-81.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.060] [PMID: 30503269]
[8]
Dimov, N.; Kastner, E.; Hussain, M.; Perrie, Y.; Szita, N. Formation and purification of tailored liposomes for drug delivery using a module-based micro continuous-flow system. Sci. Rep., 2017, 7(1), 12045.
[http://dx.doi.org/10.1038/s41598-017-11533-1] [PMID: 28935923]
[9]
Joshi, S.; Hussain, M.T.; Roces, C.B.; Anderluzzi, G.; Kastner, E.; Salmaso, S.; Kirby, D.J.; Perrie, Y. Microfluidics based manufacture of liposomes simultaneously entrapping hydrophilic and lipophilic drugs. Int. J. Pharm., 2016, 514(1), 160-168.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.027] [PMID: 27863660]
[10]
Pradhan, P.; Guan, J.; Lu, D.; Wang, P.G.; Lee, L.J.; Lee, R.J. A facile microfluidic method for production of liposomes. Anticancer Res., 2008, 28(2A), 943-947.
[PMID: 18507040]
[11]
Pihl, J.; Karlsson, M.; Chiu, D.T. Microfluidic technologies in drug discovery. Drug Discov. Today, 2005, 10(20), 1377-1383.
[http://dx.doi.org/10.1016/S1359-6446(05)03571-3] [PMID: 16253876]
[12]
Beebe, D.J.; Mensing, G.A.; Walker, G.M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng., 2002, 4(1), 261-286.
[http://dx.doi.org/10.1146/annurev.bioeng.4.112601.125916] [PMID: 12117759]
[13]
Jahn, A.; Stavis, S.M.; Hong, J.S.; Vreeland, W.N.; DeVoe, D.L.; Gaitan, M. Microfluidic mixing and the formation of nanoscale lipid vesicles. ACS Nano, 2010, 4(4), 2077-2087.
[http://dx.doi.org/10.1021/nn901676x] [PMID: 20356060]
[14]
Mazutis, L.; Vasiliauskas, R.; Weitz, D.A. Microfluidic production of alginate hydrogel particles for antibody encapsulation and release. Macromol. Biosci., 2015, 15(12), 1641-1646.
[http://dx.doi.org/10.1002/mabi.201500226] [PMID: 26198619]
[15]
Amoyav, B.; Benny, O. Controlled and tunable polymer particles’ production using a single microfluidic device. Appl. Nanosci., 2018, 8, 905-914.
[http://dx.doi.org/10.1007/s13204-018-0790-0]
[16]
Zhang, C.; Zhang, X.; Zhao, W.; Zeng, C.; Li, W.; Li, B.; Luo, X.; Li, J.; Jiang, J.; Deng, B.; McComb, D.W.; Dong, Y. Chemotherapy drugs derived nanoparticles encapsulating mRNA encoding tumor suppressor proteins to treat triple-negative breast cancer. Nano Res., 2019, 12(4), 855-861.
[http://dx.doi.org/10.1007/s12274-019-2308-9] [PMID: 31737223]
[17]
Jain, R.; Frederick, J.P.; Huang, E.Y.; Burke, K.E.; Mauger, D.M.; Andrianova, E.A.; Farlow, S.J.; Siddiqui, S.; Pimentel, J.; Cheung-Ong, K.; McKinney, K.M.; Köhrer, C.; Moore, M.J.; Chakraborty, T. MicroRNAs enable mRNA therapeutics to selectively program cancer cells to self-destruct. Nucleic Acid Ther., 2018, 28(5), 285-296.
[http://dx.doi.org/10.1089/nat.2018.0734] [PMID: 30088967]
[18]
Finn, J.D.; Smith, A.R.; Patel, M.C.; Shaw, L.; Youniss, M.R.; van Heteren, J.; Dirstine, T.; Ciullo, C.; Lescarbeau, R.; Seitzer, J.; Shah, R.R.; Shah, A.; Ling, D.; Growe, J.; Pink, M.; Rohde, E.; Wood, K.M.; Salomon, W.E.; Harrington, W.F.; Dombrowski, C.; Strapps, W.R.; Chang, Y.; Morrissey, D.V. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep., 2018, 22(9), 2227-2235.
[http://dx.doi.org/10.1016/j.celrep.2018.02.014] [PMID: 29490262]
[19]
Carugo, D.; Bottaro, E.; Owen, J.; Stride, E.; Nastruzzi, C. Liposome production by microfluidics: potential and limiting factors. Sci. Rep., 2016, 6, 25876.
[http://dx.doi.org/10.1038/srep25876] [PMID: 27194474]
[20]
Sa Correia, M.G.; Briuglia, M.L.; Niosi, F. Microfluidic manufacturing of phospholipid nanoparticles: Stability, encapsulation efficacy, and drug release. Int. J. Pharm., 2017, 516(1-2), 91-99.
[21]
Ran, R.; Middelberg, A.P.J.; Zhao, C.X. Microfluidic synthesis of multifunctional liposomes for tumour targeting. Colloid Surface B, 2016, 148, 402-410.
[http://dx.doi.org/10.1016/j.colsurfb.2016.09.016]
[22]
Zhang, Y.; Tan, H.; Daniels, J.D.; Zandkarimi, F.; Liu, H.; Brown, L.M.; Uchida, K.; O’Connor, O.A.; Stockwell, B.R. Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem. Biol., 2019, 26(5), 623-633.e9.
[http://dx.doi.org/10.1016/j.chembiol.2019.01.008] [PMID: 30799221]
[23]
Thomas, A.; Garg, S.M.; De Souza, R.A.G.; Ouellet, E.; Tharmarajah, G.; Reichert, D.; Ordobadi, M.; Ip, S.; Ramsay, E.C. Microfluidic Production and Application of Lipid Nanoparticles for Nucleic Acid Transfection; Mult Myel, 2018.
[http://dx.doi.org/10.1007/978-1-4939-7865-6_14]
[24]
Yu, M.; Xu, L.; Tian, F.; Su, Q.; Zheng, N.; Yang, Y.; Wang, J.; Wang, A.; Zhu, C.; Guo, S.; Zhang, X.; Gan, Y.; Shi, X.; Gao, H. Rapid transport of deformation-tuned nanoparticles across biological hydrogels and cellular barriers. Nat. Commun., 2018, 9(1), 2607.
[http://dx.doi.org/10.1038/s41467-018-05061-3] [PMID: 29973592]
[25]
Morikawa, Y.; Tagami, T.; Hoshikawa, A.; Ozeki, T. The Use of an Efficient Microfluidic Mixing System for Generating Stabilized Polymeric Nanoparticles for Controlled Drug Release. Biol. Pharm. Bull., 2018, 41, 899-907.
[http://dx.doi.org/10.1248/bpb.b17-01036]
[26]
Karnik, R.; Gu, F.; Basto, P.; Cannizzaro, C.; Dean, L.; Kyei-Manu, W.; Langer, R.; Farokhzad, O.C. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett., 2008, 8(9), 2906-2912.
[http://dx.doi.org/10.1021/nl801736q] [PMID: 18656990]
[27]
Belliveau, N.M.; Huft, J.; Lin, P.J.; Chen, S.; Leung, A.K.; Leaver, T.J.; Wild, A.W.; Lee, J.B.; Taylor, R.J.; Tam, Y.K. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol. Ther. Nucleic Acids, 2012.
[http://dx.doi.org/10.1038/mtna.2012.28]
[28]
Sieber, S.; Grossen, P.; Uhl, P.; Detampel, P.; Mier, W.; Witzigmann, D.; Huwyler, J. Zebrafish as a predictive screening model to assess macrophage clearance of liposomes in vivo. Nanomedicine (Lond.), 2019, 17, 82-93.
[http://dx.doi.org/10.1016/j.nano.2018.11.017] [PMID: 30659929]
[29]
Andersen, M.N.; Etzerodt, A.; Graversen, J.H.; Holthof, L.C.; Moestrup, S.K.; Hokland, M.; Møller, H.J. STAT3 inhibition specifically in human monocytes and macrophages by CD163-targeted corosolic acid-containing liposomes. Cancer Immunol. Immunother., 2019, 68(3), 489-502.
[http://dx.doi.org/10.1007/s00262-019-02301-3] [PMID: 30637473]
[30]
Bartheldyová, E.; Turánek Knotigová, P.; Zachová, K.; Mašek, J.; Kulich, P.; Effenberg, R.; Zyka, D.; Hubatka, F.; Kotouček, J.; Čelechovská, H.; Héžová, R.; Tomečková, A.; Mašková, E.; Fojtíková, M.; Macaulay, S.; Bystrický, P.; Paulovičová, L.; Paulovičová, E.; Drož, L.; Ledvina, M.; Raška, M.; Turánek, J. N Oxy lipid-based click chemistry for orthogonal coupling of mannan onto nanoliposomes prepared by microfluidic mixing: Synthesis of lipids, characterisation of mannan-coated nanoliposomes and in vitro stimulation of dendritic cells. Carbohydr. Polym., 2019, 207, 521-532.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.121] [PMID: 30600036]
[31]
Bartheldyová, E.; Effenberg, R.; Mašek, J.; Procházka, L.; Knötigová, P.T.; Kulich, P.; Hubatka, F.; Velínská, K.; Zelníčková, J.; Zouharová, D.; Fojtíková, M.; Hrebík, D.; Plevka, P.; Mikulík, R.; Miller, A.D.; Macaulay, S.; Zyka, D.; Drož, L.; Raška, M.; Ledvina, M.; Turánek, J. Hyaluronic acid surface modified liposomes prepared via orthogonal aminoxy coupling: synthesis of nontoxic aminoxylipids based on symmetrically α-branched fatty acids. Bioconjug. Chem., 2018, 29(7), 2343-2356.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00311] [PMID: 29898364]
[32]
Heuck, G.; DeSouza, R.; Thomas, A.; Backstrom, I; Garg, SM.; Ouellet, E.; Singh, J.; Chang, S.; Marshall, K.; Johnson, P.; DeLeonardis, M.; Armstead, A.; Tharmarajah, G.; Ip, S. mRNALipid Nanoparticles: A potent tool for manipulating neuronal genes. Vaccines Vaccin, 2017, 2041-1723.
[33]
Abstiens, K.; Goepferich, A.M. Microfluidic manufacturing improves polydispersity of multicomponent polymeric nanoparticles. J. Drug Deliv. Sci. Technol., 2019, 49, 433-439.
[http://dx.doi.org/10.1016/j.jddst.2018.12.009]
[34]
Zhu, C.; Yang, H.; Shen, L.; Zheng, Z. Microfluidic preparation of PLGA microspheres as cell carriers with sustainable Rapa release. J Biomater Sci Polym Ed, 2019, 0920-5063.
[35]
Dong, YD.; Tchung, E.; Nowell, C.; Kaga, S.; Leong, N.; Mehta, D.; Kaminskas, LM.; Boyd, BJ. Microfluidic preparation of drug loaded PEGylated liposomes, and the impact of liposome size on tumour retention and penetration J Liposome Res, 2019, 0898-2104.
[36]
Lallana, E.; Donno, R.; Magrì, D.; Barker, K.; Nazir, Z.; Treacher, K.; Lawrence, M.J.; Ashford, M.; Tirelli, N. Microfluidic-assisted nanoprecipitation of (PEGylated) poly (d,l-lactic acid-co caprolactone): Effect of macromolecular and microfluidic parameters on particle size and paclitaxel encapsulation. Int. J. Pharm., 2018, 548(1), 530-539.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.031] [PMID: 30009983]
[37]
Capretto, L.; Mazzitelli, S.; Nastruzzi, C. Design, production and optimization of solid lipid microparticles (SLM) by a coaxial microfluidic device. J. Control. Release, 2001, 160, 409-417.
[38]
Thorsen, T.; Roberts, R.W.; Arnold, F.H.; Quake, S.R. Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device. Phys. Rev. Lett., 2001, 86, 4163.
[39]
Lin, X.Z.; Terepka, A.D.; Hong, Y. Synthesis of silver nanoparticles in a continuous flow tubular microreactor. Nano Lett., 2004, 4(11), 2227-2232.
[http://dx.doi.org/10.1021/nl0485859]
[40]
van Swaay, D.; deMello, A. Microfluidic methods for forming liposomes. Lab Chip, 2013, 13(5), 752-767.
[http://dx.doi.org/10.1039/c2lc41121k] [PMID: 23291662]
[41]
Park, K. The drug delivery field needs a well-diversified technology portfolio. J. Control. Release, 2017, 10, 245-177.
[42]
Lee, E.S.; Shin, J.M.; Son, S.; Ko, H.; Um, W.; Song, S.H.; Lee, J.A.; Park, J.H. Recent Advances in Polymeric Nanomedicines for Cancer Immunotherapy. Adv. Healthc. Mater., 2019, 8(4)e1801320
[http://dx.doi.org/10.1002/adhm.201801320] [PMID: 30666822]
[43]
Narayanaswamy, R.; Wang, T.; Torchilin, V.P. Improving Peptide Applications Using Nanotechnology. Curr. Top. Med. Chem., 2016, 16(3), 253-270.
[http://dx.doi.org/10.2174/1568026615666150817100338] [PMID: 26279082]
[44]
Wahlich, J; Desai, A; Greco, F; Hill, K; Jones, AT; Mrsny, RJ; Pasut, G; Perrie, Y; Seib, FP; Seymour, LW; Uchegbu, IF Nanomedicines for the Delivery of Biologics. Pharmaceutics, 2019, 11(5)
[http://dx.doi.org/10.3390/pharmaceutics11050210]
[45]
Singh, S.; Hussain, A.; Shakeel, F.; Ahsan, M.J.; Alshehri, S.; Webster, T.J.; Lal, U.R. Recent insights on nanomedicine for augmented infection control. Int. J. Nanomedicine, 2019, 14(14), 2301-2325.
[http://dx.doi.org/10.2147/IJN.S170280] [PMID: 31114188]
[46]
Heo, MB; Lim, YT Programmed nanoparticles for combined immunomodulation, antigen presentation and tracking of immunotherapeutic cells., 2014, 35
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.009]
[47]
Joshi, M.D.; Müller, R.H. Lipid nanoparticles for parenteral delivery of actives. Eur. J. Pharm. Biopharm., 2009, 71(2), 161-172.
[http://dx.doi.org/10.1016/j.ejpb.2008.09.003] [PMID: 18824097]
[48]
Shidhaye, S.S.; Vaidya, R.; Sutar, S.; Patwardhan, A.; Kadam, V.J. Solid lipid nanoparticles and nanostructured lipid carriers--innovative generations of solid lipid carriers. Curr. Drug Deliv., 2008, 5(4), 324-331.
[http://dx.doi.org/10.2174/156720108785915087] [PMID: 18855604]
[49]
Wissing, S.A.; Kayser, O.; Müller, R.H. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev., 2004, 56(9), 1257-1272.
[http://dx.doi.org/10.1016/j.addr.2003.12.002] [PMID: 15109768]
[50]
Kim, HR.; Kim, IK.; Bae, KH.; Lee, SH.; Lee, Y.; Park, TG. Cationic solid lipid nanoparticles reconstituted from low density lipoprotein components for delivery of siRNA Mol., Pharm., 20085-4. , 622-631.
[51]
Weiss, J.; Decker, E.A.; McClements, D.J.; Kristbergsson, K.; Helgason, T. Solid lipid nanoparticles as delivery systems for bioactive food components. Food Biophys., 2008, 3, 1557-1866.
[http://dx.doi.org/10.1007/s11483-008-9065-8]
[52]
Cerqueira, M.A.; Pinheiro, A.C.; Silva, H.D.; Ramos, P.E.; Azevedo, M.A.; Flores-López, M.L.; Rivera, M.C.; Bourbon, A.I.; Ramos, O.L.; Vicente, A.A. Design of bio-nanosystems for oral delivery of functional compounds. Food Eng. Rev., 2014, 1866-7910.
[http://dx.doi.org/10.1007/s12393-013-9074-3]
[53]
Almeida, A.J.; Souto, E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv. Drug Deliv. Rev., 2007, 59(6), 478-490.
[http://dx.doi.org/10.1016/j.addr.2007.04.007] [PMID: 17543416]
[54]
Stelzner, J.J.; Behrens, M.; Behrens, S.E.; Mäder, K. Squalene containing solid lipid nanoparticles, a promising adjuvant system for yeast vaccines. Vaccine, 2018, 36(17), 2314-2320.
[http://dx.doi.org/10.1016/j.vaccine.2018.03.019] [PMID: 29567034]
[55]
Olbrich, C.; Müller, R.H.; Tabatt, K.; Kayser, O.; Schulze, C.; Schade, R. Stable biocompatible adjuvants--a new type of adjuvant based on solid lipid nanoparticles: a study on cytotoxicity, compatibility and efficacy in chicken. Altern. Lab. Anim., 2002, 30(4), 443-458.
[http://dx.doi.org/10.1177/026119290203000407] [PMID: 12234249]
[56]
Chen, G.; Zeng, S.; Jia, H.; He, X.; Fang, Y.; Jing, Z.; Cai, X. Adjuvant effect enhancement of porcine interleukin-2 packaged into solid lipid nanoparticles. Res. Vet. Sci., 2014, 96(1), 62-68.
[http://dx.doi.org/10.1016/j.rvsc.2013.11.017] [PMID: 24374120]
[57]
Xie, S.; Wang, S.; Zhao, B.; Han, C.; Wang, M.; Zhou, W. Effect of PLGA as a polymeric emulsifier on preparation of hydrophilic protein-loaded solid lipid nanoparticles. Colloids Surf. B Biointerfaces, 2008, 67(2), 199-204.
[http://dx.doi.org/10.1016/j.colsurfb.2008.08.018] [PMID: 18829272]
[58]
Sjöström, B.; Bergenståhl, B. Preparation of submicron drug particles in lecithin-stabilized o/w emulsions I. Model studies of the precipitation of cholesteryl acetate. Int. J. Pharm., 1992, 88, 53-62.
[http://dx.doi.org/10.1016/0378-5173(92)90303-J]
[59]
Saraf, S.; Mishra, D.; Asthana, A.; Jain, R.; Singh, S.; Jain, N.K. Lipid microparticles for mucosal immunization against hepatitis B. Vaccine, 2006, 24(1), 45-56.
[http://dx.doi.org/10.1016/j.vaccine.2005.07.053] [PMID: 16122855]
[60]
Muller, RH; Radtke, M; Wissing, SA Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm., 2002, 242(1-2), 121-8.
[http://dx.doi.org/10.1016/S0378-5173(02)00180-1]
[61]
Maeki, M.; Saito, T.; Sato, Y.; Yasui, T.; Kaji, N.; Ishida, A.; Tani, H.; Baba, Y.; Harashima, H.; Tokeshi, M. A strategy for synthesis of lipid nanoparticles using microfluidic devices with a mixer structure. RSC Advances, 2015, 5, 46181-46185.
[http://dx.doi.org/10.1039/C5RA04690D]
[62]
Patra, M.; Salonen, E.; Terama, E.; Vattulainen, I.; Faller, R.; Lee, B.W.; Holopainen, J.; Karttunen, M. Under the influence of alcohol: the effect of ethanol and methanol on lipid bilayers. Biophys. J., 2006, 90(4), 1121-1135.
[http://dx.doi.org/10.1529/biophysj.105.062364] [PMID: 16326895]
[63]
Huang, X.; Caddell, R.; Yu, B.; Xu, S.; Theobald, B.; Lee, L.J.; Lee, R.J. Ultrasound-enhanced microfluidic synthesis of liposomes. Anticancer Res., 2010, 30(2), 463-466.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2501] [PMID: 20332455]
[64]
Zhigaltsev, I.V.; Belliveau, N.; Hafez, I.; Leung, A.K.; Huft, J.; Hansen, C.; Cullis, P.R. Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Langmuir, 2012, 28(7), 3633-3640.
[http://dx.doi.org/10.1021/la204833h] [PMID: 22268499]
[65]
Zook, J.M.; Vreeland, W.N. Effects of temperature, acyl chain length, and Flow rate ratio on liposome formation and size in a microfluidic hydrodynamic focusing device. Soft Matter, 2010, 6, 1352-1360.
[http://dx.doi.org/10.1039/b923299k]
[66]
Balbino, T.A.; Azzoni, A.R.; de la Torre, L.G. Microfluidic devices for continuous production of pDNA/cationic liposome complexes for gene delivery and vaccine therapy. Colloids Surf. B Biointerfaces, 2013, 111, 203-210.
[http://dx.doi.org/10.1016/j.colsurfb.2013.04.003] [PMID: 23811421]
[67]
Mehnert, W.; Mäder, K. Solid lipid nanoparticles: production, characterization and applications. Adv. Drug Deliv. Rev., 2001, 47(2-3), 165-196.
[http://dx.doi.org/10.1016/S0169-409X(01)00105-3] [PMID: 11311991]
[68]
Xue, H.Y.; Wong, H.L. Tailoring nanostructured solid-lipid carriers for time-controlled intracellular siRNA kinetics to sustain RNAi-mediated chemosensitization. Biomaterials, 2011, 32(10), 2662-2672.
[http://dx.doi.org/10.1016/j.biomaterials.2010.12.029] [PMID: 21236485]
[69]
Battaglia, L.; Ugazio, E. Lipid Nano- and Microparticles: An Overview of Patent-Related Research. J. Nanomater., 2019, 2019, 1-22.
[http://dx.doi.org/10.1155/2019/2834941]
[70]
Wang, R.; Xiao, R.; Zeng, Z.; Xu, L.; Wang, J. Application of poly(ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE) block copolymers and their derivatives as nanomaterials in drug delivery. Int. J. Nanomedicine, 2012, 7, 4185-4198.
[PMID: 22904628]
[71]
Wu, H.; Zhu, L.; Torchilin, V.P. pH-sensitive poly(histidine)-PEG/DSPE-PEG co-polymer micelles for cytosolic drug delivery. Biomaterials, 2013, 34(4), 1213-1222.
[http://dx.doi.org/10.1016/j.biomaterials.2012.08.072] [PMID: 23102622]
[72]
Lobovkina, T.; Jacobson, G.B.; Gonzalez-Gonzalez, E.; Hickerson, R.P.; Leake, D.; Kaspar, R.L.H.; Contag, C.H.; Zare, R.N. In vivo sustained release of siRNA from solid lipid nanoparticles. ACS Nano, 2011, 5(12), 9977-9983.
[http://dx.doi.org/10.1021/nn203745n] [PMID: 22077198]
[73]
Uner, M.; Yener, G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int. J. Nanomedicine, 2007, 2(3), 289-300.
[PMID: 18019829]
[74]
Kashanian, S. Rostami E. PEG-stearate coated solid lipid nanoparticles as levothyroxine carriers for oral administration. J. Nanopart. Res., 2014, 16, 2293.
[http://dx.doi.org/10.1007/s11051-014-2293-6]
[75]
Bahl, K.; Senn, J.J.; Yuzhakov, O.; Bulychev, A.; Brito, L.A.; Hassett, K.J.; Laska, M.E.; Smith, M.; Almarsson, Ö.; Thompson, J.; Ribeiro, A.M.; Watson, M.; Zaks, T.; Ciaramella, G. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol. Ther., 2017, 25(6), 1316-1327.
[http://dx.doi.org/10.1016/j.ymthe.2017.03.035] [PMID: 28457665]
[76]
Lam, Y.; Gan, H.; Nguyen, N.; Lie, H. Micromixer based on viscoelastic flow instability at low Reynolds number; Biomicrofluid, 2009, p. 3014106.
[77]
Huang, M.Z.; Yang, R.J.; Tai, C.H.; Tsai, C.H.; Fu, L.M. Application of electrokinetic instability flow for enhanced micromixing in cross-shaped microchannel. Biomed. Microdevices, 2006, 8(4), 309-315.
[http://dx.doi.org/10.1007/s10544-006-0034-z] [PMID: 17003961]
[78]
Meijer, H.E.H.; Singh, M.K.; Kang, T.G.; den Toonder, J.M.J.; Anderson, P.D. Passive and active mixing in microfluidic devices. Macromol. Symp., 2009, 279, 201-209.
[http://dx.doi.org/10.1002/masy.200950530]
[79]
Dziubinski, Marek 2012.Hydrodynamic Focusing in Microfluidic Devices.
[http://dx.doi.org/10.5772/34690]
[80]
Chaudhury, M.K.; Whitesides, G.M. Direct measurement of interfacial interactions between semispherical lenses and flat sheets of poly(dimethylsiloxane) and their chemical derivatives. Langmuir, 1991, 7, 1013-1025.
[http://dx.doi.org/10.1021/la00053a033]
[81]
Morra, M.; Occhiello, E.; Marola, R.; Garbassi, F. Humphrey P. D.J. Johnson. On the aging of oxygen plasma-treated polydimethylsiloxane surfaces. J. Colloid Interface Sci., 1990, 137, 11-24.
[http://dx.doi.org/10.1016/0021-9797(90)90038-P]
[82]
Harmonized tripartite guideline, Q3C impurities: residual solvents. Fed. Regist., 1997, 62, 67377.
[83]
Klok, R.P.; Windhorst, A.D. Residual solvent analysis by gas chromatography in radiopharmaceutical formulations containing up to 12% ethanol. Nucl. Med. Biol., 2006, 33(7), 935-938.
[http://dx.doi.org/10.1016/j.nucmedbio.2006.07.003] [PMID: 17045174]
[84]
Qin, L.; Hu, C.Q.; Yin, L.H. Establishment of a knowledge base for prescreening residual solvents in pharmaceuticals. Chromatographia, 2004, 59, 475-480.
[http://dx.doi.org/10.1365/s10337-004-0211-2]
[85]
Schwartz, L. Desalting and Buffer Exchange by Dialysis, Gel Filtration, or Diafiltration Pall Life Sciences
[86]
Schwartz, L.; Seeley, K. Introduction to Tangential Flow Filtration for Laboratory and Process Development Applications Pall Life Science,
[87]
Dalwadi, G.; Sunderland, V.B. Purification of PEGylated nanoparticles using tangential flow filtration (TFF). Drug Dev. Ind. Pharm., 2007, 33(9), 1030-1039.
[http://dx.doi.org/10.1080/03639040601180143] [PMID: 17891590]
[88]
Hirsjärvi, S.; Peltonen, L.; Hirvonen, J. Effect of sugars, surfactant, and tangential flow filtration on the freeze-drying of poly(lactic acid) nanoparticles. AAPS PharmSciTech, 2009, 10(2), 488-494.
[http://dx.doi.org/10.1208/s12249-009-9236-z] [PMID: 19381823]
[89]
Morel, S.; Ugazio, E.; Cavalli, R.; Gasco, M.R. Thymopentin in solid lipid nanoparticles. Int. J. Pharm., 1996, 132, 259-261.
[http://dx.doi.org/10.1016/0378-5173(95)04388-8]
[90]
Ugazio, E.; Cavalli, R.; Gasco, M.R. Incorporation of cyclosporin A in solid lipid nanoparticles (SLN). Int. J. Pharm., 2002, 241(2), 341-344.
[http://dx.doi.org/10.1016/S0378-5173(02)00268-5] [PMID: 12100861]
[91]
Salmaso, S.; Bersani, S.; Elvassore, N.; Bertucco, A.; Caliceti, P. Biopharmaceutical characterisation of insulin and recombinant human growth hormone loaded lipid submicron particles produced by supercritical gas micro-atomisation. Int. J. Pharm., 2009, 379, 51-58.
[92]
Salmaso, S.; Elvassore, N.; Bertucco, A.; Caliceti, P. Production of solid lipid submicron particles for protein delivery using a novel supercritical gas‐assisted melting atomization process. J. Pharm. Sci., 2009, 10, 1002.
[93]
Jahn, A.; Reiner, J.; Vreeland, W.; DeVoe, D.; Locascio, L.; Gaitan, M. Unexpectedly high entrapment efficiencies in nanometer scale liposomes with hydrodynamic focusing using continuous flow microfluidics. Twelfth International Conference on Miniaturized Systems for Chemistry and Life Sciences, 2008.
[94]
Jahn, A.; Vreeland, W.N.; DeVoe, D.L.; Locascio, L.E.; Gaitan, M. Microfluidic directed formation of liposomes of controlled size. Langmuir, 2007, 23(11), 6289-6293.
[http://dx.doi.org/10.1021/la070051a] [PMID: 17451256]
[95]
Wilson, B.; Samanta, M.K.; Santhi, K.; Kumar, K.P.S.; Paramakrishnan, N.; Suresh, B. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res., 2008, 1200, 159-168.
[http://dx.doi.org/10.1016/j.brainres.2008.01.039] [PMID: 18291351]
[96]
Liu, J.; Gong, T.; Wang, C.; Zhong, Z.; Zhang, Z. Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: preparation and characterization. Int. J. Pharm., 2007, 340(1-2), 153-162.
[http://dx.doi.org/10.1016/j.ijpharm.2007.03.009] [PMID: 17428627]
[97]
Zhang, X.; Chen, G.; Zhang, T.; Ma, Z.; Wu, B. Effects of PEGylated lipid nanoparticles on the oral absorption of one BCS II drug: a mechanistic investigation. Int. J. Nanomedicine, 2014, 9, 5503-5514.
[PMID: 25473287]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 3
Year: 2020
Published on: 10 September, 2020
Page: [197 - 208]
Pages: 12
DOI: 10.2174/2210303109666190807104437
Price: $25

Article Metrics

PDF: 33
HTML: 2
EPUB: 1
PRC: 1